
Analysis of irregular behaviour on an optical computing logic cell 
A. Gonzalez-Marcos*, J.A. Martm-Pereda 

E. T.S.I. Telecomunicacion, Universidad Politecnica de Madrid\ Ciudad Universitaria, 28040-Madrid', Spain 

Abstract 

A new methodology to study irregular behaviours in logic cells is reported. It is based on two types of diagrams, namely phase 
and working diagrams. Sets of four bits are grouped and represented by their hexadecimal equivalent. Some hexadecimal numbers 
correspond to certain logic functions. The influence of the internal and external tolerances, namely those appearing in the employed 
devices and in the working signals, may be analysed with this method. Its importance in the case of logic structures with chaotic 
behaviours is studied. © 2000 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

As it is well known, most of the digital optical com-
puting architectures nowadays are based on optical devices 
with some non-linear properties. Although there are two 
main philosophies, namely guided and free-space configu-
rations, both are based on similar concepts. Optical input 
signals are processed inside the adopted structure to give 
rise to a particular output. This output is a function of 
the initial data. Two are the more important types of em-
ployed devices to perform these functions. The first one 
are devices with "on-off" switching characteristics. They 
offer a "zero" output up to a certain level of the input 
signal and "one" for higher level values. The second type 
corresponds to devices with more complex behaviours. Al-
though output signals remain "0"s and "l"s as before, they 
are obtained for different values of the input signals, with 
a pattern depending on the adopted device. One of the 
more employed, corresponding to this type of behaviour, 
is the self-electrooptic effect device (SEED). Its properties 
are well documented in the literature [1]. 

The two above-mentioned devices have been the basis 
to implement different optical computing systems. In most 
of the cases, they configure a main structure, called in 
some cases as unit cell or unit block. Larger systems are 
constructed from this structure. The more common config-
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uration of these units is a black box with a pair of input 
ports and a single output gate. The fourth input is some-
time added to allow a control signal. The output signal 
is the result of a logic function between the two input 
signals. We reported an extension of these structures in 
the form of an optically programmable logic cell [2]. Our 
cell was able to offer two outputs from two input signals 
being these outputs the result of different logic functions 
performed inside. Two other input gates were added for 
control signals. 

The main objective in almost anyone of the previously 
reported architectures was to obtain as many logic func-
tions as possible and to apply them to optical computing 
architectures. Flexibility, a good yield and an easy way 
to handle and maintain them were the main targets. Sev-
eral have been the published papers concerning this type 
of applications. Many of them were published between 
1990 and 1995 - see, for instance, the volume indicated 
in [9]. The last years have seen an important number of 
news works most of them related with computer arith-
metic for optical computing. Li et al. have reported [3] 
parallel optical negabinary signed-digit computing, with 
algorithm and optical implementation. Electron-trapping 
devices [4] have been some of the employed technologies. 
Qian et al. proposed a new two-step digit-set-restricted 
modified signed-digit addition-subtraction algorithm [5]. 
Finally, Zhang and Karm [6] have presented a program-
mable addition module based on binary logic gates. 

Moreover, as it has been shown, these structures exhibit 
some other type of behaviours. As a matter of fact, under 
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certain conditions they offer the possibility to present an ir-
regular output than, in some cases, becomes chaotic. These 
types of signals are potentially good candidates to be em-
ployed in secure systems if both, emitter and receiver are 
synchronised [7], It is because that a deep knowledge of 
the internal behaviour of these structures is needed. If it is 
important to know their working conditions when they are 
employed in computational structures, these conditions are 
even more important if they are employed in communica-
tions systems. This is because there is no way to recover 
the transmitted information when synchronisation is lost. 
It is not just to lose a bit, as it can be in data processing. 
It is the whole communication that is lost. 

Two are the main needs derived from the above consid-
erations. The first one is the certainty to obtain a particular 
logic function at the unit cell, when needed. The second 
one is the ability to maintain an irregular behaviour, with 
identical chaos characteristics, at two synchronised chaos 
generators. In both cases, these needs can be just achieved 
when a proper knowledge of the working conditions of the 
employed devices and circuits is available. 

The analysis of chaotic structures has been the object 
of a large number of papers in the last years. Most of 
them are related to the behaviours derived from the im-
plementation of some set of partial differential equations 
at a particular system. In many cases, this system was 
an electronic set-up with a particular set of controlling 
equations. These equations have been analysed previously 
from a mathematical point of view. Chua's circuits are 
one of the most well-known studied case [8], In any of 
them, due to the characteristics of the initial conditions, 
signals were analogue. This fact allows the use of standard 
mathematical analysis techniques. 

But the above situation is no longer valid when the 
system and the output have a digital character. The type 
of analysis previously employed in analogue systems may 
not be directly applied here. For instance, a straightfor-
ward method to study chaos, the phase diagram, cannot 
be applied in these situations. Because just two possible 
outputs, a "1" and a "0", are obtained, the phase diagram 
of this system should be composed by four points only. 
This type of diagram should give no information about its 
properties. If this is the case for a simple situation, as the 
phase diagram, other employed methods in analogue chaos 
would give similar problems. This is the reason why other 
techniques need to be implemented when one is dealing 
with digital signals. 

We have reported a digital chaotic system in several 
places [9-12], Its properties have been analysed by nu-
merical techniques and some conclusions have been ob-
tained. But a particular aspect of this system has not been 
studied yet. It is related to the fractal-like properties that 
appear when its digital behaviour is represented in a work-
ing diagram. Because it has not been possible, by now, to 
determinate a set of equations that give indication about its 
way of working, a peculiar logic diagram was presented. 

It offers the possibility to know what type of logic func-
tion is performed depending on the type of applied con-
trol signal and the level of signals. The important point of 
this working diagram is that offers a fractal-like structure 
depending on its properties on the precision adopted in 
the computer simulation. Moreover, because the boundary 
contour between the different logic operations performed 
by the cell has that fractal-like structure, its behaviour will 
be related with the jumps between regions. 

Several are the influences of the above considerations. 
If the optical logic cell operates under strict logic condi-
tions the fractal properties of the boundary between re-
gions will affect to the precision of the performed logic 
function. This is the case when it works, for example, 
as a part of an optical computer. If it is working under 
a chaotic regime, the chaotic output properties will have 
some relation with the above-mentioned fractal structure. 
The main objective of this paper is to study some of the 
possible indicated relations between the different working 
regions in a diagram and the chaotic regime. 

The paper will be divided into three main parts. The 
first one will be just a short summary of the main proper-
ties of the optical logical cell to be studied. Although most 
of them have been reported previously, it is necessary 
to review some of them because they will be necessary 
for our study. The second one will present the dynamical 
properties derived from some changes in the parameters 
of the cell and its simulation. Finally, the third one will 
deal with a new form to study non-linear behaviours in 
digital optical structures. This last part is an extension of 
previous studies carried out by us in this field and presents 
a new methodology to be applied in similar situations. In 
this paper we will report just the main aspects concerning 
a particular region of our logic cell working diagram. 

2. Optical computing logic cell 

The use of a dynamically programmable logic cell re-
sults in an efficient implementation of complex digital cir-
cuits. This is a well-known fact in electronics where it has 
been one of the main battle-horses almost since the be-
ginning of computer architecture [13], Although several 
equivalent configurations have been reported also in pho-
tonics, its use is not so widespread. The one presented 
here was reported previously by us [15], the design and 
the used devices being the main difference with the pre-
vious ones. Input and output signals are optical and the 
devices, optical non-linear devices with digital character-
istics. 

Fig. la shows a block representation of our basic cell. 
Its two outputs, 0\ and Oi, are logic functions of two 
independent signals, I\ and h , applied to the cell. The 
type of functions performed by the cell at a particular time 
is determined by the values of two controlling signals, g 
and h. 
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Fig. 1. fa) Block representation; (b) internal representation of the OPLC. 

Table 1 
Programmable logic functions of the OPLC 

Control signal 
P-deviceOi 

Output signals Control signal 
P-deviceOi On Oi On Oi On 

go XOR XOR NAND 
at NAND NOR NOR 
<72 XNOR AND XNOR OR AND ON 
<73 AND OR OR 
<74 OR OR ON 

Control signal —> 
Q-device ho hi hn 

Because the cell works with optical signals, it allows 
an internal multilevel processing. In this way, input and 
output data signals are binary but the control is performed 
by multilevel signals. Table 1 lists the different program-
ming combinations available from our optical program-
mable logic cell (OPLC). At least in one of the outputs, 
the eight Boolean functions - AND, OR, XOR, ON and 
the negative NAND, NOR, XNOR and OFF - can be 
obtained. 

Fig. lb shows the real internal configuration of the 
OPLC with its two basic non-linear optical devices. The 
main characteristics of these non-linear devices are also 
shown. Device Q corresponds to a thresholding or switch-
ing device. Device P response is similar to that achieved 
by a self-electro-optic-effect-device (SEED) [14], Further 
details, ample than what is presented here as well as its 
physical implementation, can be found in [15], 

The study reported here was performed by computer 
simulation of the OPLC, with the Simulink™ application 
from Matlab™. It has been considered an ideal response 
of the non-linear devices. This fact concerns to the out-
put level but not to the possible hysteresis. The hysteresis 
appears in any real behaviour of a non-linear device and 
it should be the origin of non-controlling responses when 
the signal level is out of the tolerance range. 

For an easier understanding of the work presented here, 
and because the versatility of our OPLC is mainly due to 
the P device, we will concentrate our attention here on 
its behaviour. Device Q allows the possibility to obtain 
a second output gate with some particular logic function 
of the input data. This is important when the cell is em-
ployed in optical computing. But if it is employed as chaos 
generator, as it is our present interest, the main influence 
comes from the P device. From another point of view, 
this case may be associated with a particular situation. It 
corresponds to a control signal, g, equal to zero and to a 
value of the decision level for the thresholding device, Q, 
so high that the addition of the two input signals never 
reaches that value. In this way, the output of Q-device 
is equal to "0" and hence does not affect the input of 
P-device. 

The main aspect concerning its possible application 
in optical computing is related to the diagram shown in 
Fig. 2. It shows the representation of P-device output 
when an OFF function is obtained at Q-device output On. 
Input data level is fixed. The .r-axis corresponds to the 
equidistant value d\ (as it can be seen in Fig. 3b) and 
v-axis is the level of the control signal applied to the 
P-device, all of them being normalized to input data level 
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Fig. 2. OPLC working diagram for output 0\ (output C>2= OFF). 
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"1". The geometric pattern of this figure shows different 
areas corresponding to the different Boolean logic func-
tion, the OPLC is able to perform. As it can be seen, 
the boundaries are step-like. If we try to measure the to-
tal area for a particular logical function the task is not 
straightforward. This is because there is no clear mathe-
matical function defining the cell behaviour. This is due 
to the discrete character of the functions involved in the 
process. Moreover, it is difficult too because there always 
exists a certain hysteresis in any real device depending on 
the type and characteristics of its fabrication. So we can 
say that this geometric figure is similar to the problem 
of coast length evaluation that gives us a different length 
depending on the scale employed to measure it and hence 
it has a fractal-like structure. Similar diagrams may be 
obtained for other logic functions at output O2. 

Another important parameter to be fixed on the per-
formed simulation is the width value of the existing hys-
teresis cycles. Fig. 3a shows how we modelled the device 
P. As it can be seen, it is based on three step functions 
related according to the rules indicated on that figure. In 
any case, there is a certain tolerance in the definition of 
the transition from the lower to the higher state. This tol-
erance, that it may be called "internal tolerance", has as a 
consequence the presence of the indicated hysteresis cy-
cles. Moreover, there is another "external tolerance" re-
lated to the previous one. Its influence on the final result 
appears in the example of Fig. 3b. It is related to the real 
position of the control value with respect to the decision 
level. The same input signals may give different results 
depending on where the control signal with respect to the 
decision level is located. In the example a function NAND 
performed in one case and an OR in the other one are 
shown. These tolerances are of a great importance when 
our logic cell is applied in optical computing. But, as it 
will be shown later, they strongly affect any dynamical be-

haviour. This is the case when a chaotic signal is needed: 
according to the decision levels, both internal and exter-
nal, chaos may or may not be obtained although similar 
conditions are present. 

It is clear that the precision adopted at the model has 
a direct relation with the real situation. When a hardware 
set-up is present, any device has a certain tolerance in its 
nominal value. This tolerance is equivalent to the previous 
one. 

3. Dynamical behaviour of the logic cell 

In order to analyse dynamically our programmable logic 
cell, we have extended the above-mentioned method. It is 
based on a certain representation of the working char-
acteristics of the structure. We call it, the "working dia-
gram" of the cell. This diagram represents the input/output 
characteristic on a 3D representation. The z-axis gives the 
Boolean function generated at the output, corresponding 
to a particular pair of values for control and input signals. 
The Boolean function is characterised by an hexadecimal 
value. The reason for choosing this representation will be 
clarified latter. In this case, we understand as input signal 
the situation when two equal bits, with value "1", arrive 
at both input data gates. Moreover, in order to obtain this 
diagram, the two input data signals must maintain a rela-
tion between their frequencies. In this case, the period of 
an input signal have to be double than the period of the 
other one. In this way, the internal input signal to P-device 
is the one represented in Fig. 4. Then, every four bits of 
the output signal correspond to a Boolean function truth 
table. We convert these four bits to its hexadecimal value 
and obtain the corresponding point at the working dia-
gram. Fig. 4 shows also the corresponding hexadecimal 
value for each Boolean function. 
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Fig. 3. (a) Influence of internal tolerance on P device characteristics; (b) influence of external tolerance on the obtained logic function. 

Fig. 5a is an example of the input/output characteristics 
for the P-device behaviour on a particular situation. Fig. 
5b shows the top view as a 2D diagram. This will be the 
type of diagrams we will adopt because they are much eas-
ier to handle than the previous 3D diagram. Moreover, it 
has the same information and it is easier to visualise. The 
case represented here corresponds to an equidistant posi-

tion between the decision levels on P device, as shown 
in Fig. 3a. This situation is slightly different from the one 
reported by us in previous papers. The working diagram 
in previous works showed the variation with d\, the equi-
distant value, normalised to a bit "1", as it is shown in 
Fig. 2. The representation here corresponds to the be-
haviour for different values of the input data, for a bit 
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Fig. 4. Internal input signal to P device. Hexadecimal representation of 
Boolean functions. 

"1", and for d\ = 0.5. As it can be expected the repre-
sentation when the input value of a bit "1" is over 2, the 
P-device characteristic is obtained as we change the con-
trol level. Further studies of OPLC will be reported with 
its behaviour dependence on the distance between the de-
cision level. 

4. Analysis of non-linear behaviour 

The situation to be analysed here corresponds to the par-
ticular case when a chaotic output is obtained. As it has 
been shown in the literature, the dynamics of non-linear 
systems depend strongly on the type of delay that is added 
to it. This problem was first analysed for optical bistable 
devices, mainly for the case of hybrid systems, when a fi-
nite feedback delay comparable to or greater than the com-
bined time constants of all system components is added. 
The mathematical analysis was made by difference-
differential equations because the behaviour was analogue. 
Ikeda was the first to apply this type of analysis to a ring 
cavity system with a non-linear medium [16]. He con-
cluded that new types of instabilities should be found in 
such system yielding periodic and chaotic solutions. The 
main result obtained is that the non-linear solution de-
pends on the ratio between external time delay and in-

ternal time response. When this ratio (external time over 
internal time) is much larger than one, a highly non-linear 
dynamics is achieved. This means that when external time 
is larger than one order of magnitude than the internal 
time the situation originates, under certain conditions, a 
chaotic solution. Furthermore, Okada and Takizawa [17] 
investigated the effect of a delayed feedback in a hybrid 
electrooptic system with the restriction that the delay is 
less than or comparable to the response time of such a 
system. Neyer and Voges [18], finally, studied the pure 
effect of the feedback delay on the behaviour of an elec-
trooptic system, neglecting all time constants of the system 
components. 

In order to study the non-linear behaviour we have ap-
plied an external delay of 200 time units. The chaotic 
output has also a dependence on input data period. We 
have to study this dependence but it is not the objective 
of this work to analyse it. Here we have to take a relation 
where the period for one input data is 20 samples time 
and 33 for the other, and with a pulse width of 10 and 
16 samples times, respectively. In this configuration, the 
input signal to device P shows a form like the one shown 
in Fig. 6. It corresponds to the addition of two trains of 
pulses coming from generators f\ and fa. 

The general diagram of the model simulated appears in 
Fig. 6. We have studied the dependence, with the am-
plitude of a bit "1", of input and output digital signals. 
The output digital signal is feedback with a certain delay 
and acts as a control signal for device P on the OPLC. 
Levels for input data and feedback signal are manually 
changed on the model of Fig. 7. The position where the 
levels are modified is choosen for a better understanding 
of the block representation. For example, the output can 
be modified before the delay without changes on results. 

The final result is analysed with a phase diagram as 
indicated. Simulation time was over 300,000 time units. 
This phase diagram is similar to other phase diagrams 
reported by us in previous papers. It represents the situa-
tion at the system at time ti+\ as a function of the state 
at time tt. Because just two states are possible, namely 
"0" and "1", we have taken four bits sets and repre-
sented their hexadecimal value. More details can be seen 
in Ref. [9]. 

We have studied, with this method, the region around 
an input data signal level of value 1 and the region around 
feedback signal level of value 0.5. Results are shown in 
Table 2. As it can be seen, there is a strong influence on 
the precision value adopted. We have indicated with "yes" 
values that give rise to chaotic behaviour and with 44no" 
where there is a periodic solution. There is a fractal-like 
structure similar to the one appearing in Fig. 2. 

Figs. 8a-c show the results for a feedback signal fixed 
to 0.501 and three values of input data, namely 0.99, 
0.9999 and 1.0001. They are representatives of Table 2. 
Fig. 8a shows a time evolution that after a certain inter-
val returns to the initial value and starts again the same 
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Fig. 5. Working diagram of P device, fa) 3D; (b) 2D. 

cycle. Hence, it has a definite period. This time evolution, 
which does not change after some simulation time, does 
not give information about period length. It gives informa-
tion about the time that takes the system to respond with a 
periodic output. Fig. 8a is representative of the borderline 

of Table 2 where there is no chaos behaviour for input 
data values over 1. 

The second one, analysed by the same methods em-
ployed by us previously in other papers, offers a chaotic 
behaviour. 
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Fig. 6. Real input data signal to P device in Fig. 7. 
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Fig. 7. Simulink™ model for phase diagram generator. 

Table 2 
Signal levels for chaos generation in the studied interval 

Feedback signal level 

0.61 0.6 0.5999 0.599 0.59 0.51 0.501 0.5001 0.5 0.4999 0.4 

Input data signal level 1.0001 No No No No No No Noa No No No No 
1 Yes Yes Yes Yes Yes Yes Yes Yes Yes No No 
0.9999 Yes Yes Yes Yes Yes Yes Yesa Yes No No No 
0.999 Yes Yes Yes Yes Yes Yes Yes No No No No 
0.99 Yes Yes Yes Yes Yes Yes Noa No No No No 
0.98 Yes Yes Yes Yes Yes No No No No No No 
0.9 Yes Yes Yes No No No No No No No No 

aResults represented in Fig. 8. 

Finally, the third one, that it is not chaotic, has a time 
evolution to a periodic output shorter than the case in 
Fig. 8a but with a larger fix period. There are other cases 
as when the input data level is 0.9 (further from the chaos 
behaviour) that after a simulation time the output is fixed 

to a value of "1" which is represented on the phase dia-
gram as a point on (15H, 15H). 

As a consequence of this result we observe that the 
non-linear behaviour dependence is not only due to the 
frequency and delay relation. We have presented only the 
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Fig. 8. Phase diagrams for feedback signal level 0.501 and input data signal level: (a) 10001; (b) 0.9999; (c) 0.9900. 

results of modifying the value of a bit "1", but the same 
kind of results has been obtained modifying the value 
of a bit "0", that in a real design has also a tolerance 
value. 

Also if we look at the working diagram of Fig. 5b we 
see that around point (1,0.5) we are almost on the bor-
derline between logic function regions. This can be better 
appreciated for working diagram with different precision 
level or scale. Further study will show the dependence of 
fractal structure of Table 2 and the corresponding diagram. 
Some ideas related to this aspect are reported in [19]. 

5. Conclusions 

As it is well known, the study of chaotic digital sig-
nals is not possible with the same techniques employed in 
chaotic analogue signals. A different approach is needed 

and this paper offers a new way to do it. A particular sit-
uation has been analysed among the many problems ap-
pearing in any optical digital systems. It is the one related 
to the influence of the precision levels both in components 
and in signals. Its importance is not just because it may 
have some incidence on a particular result. It may give 
rise to very different dynamical behaviours with respect 
to the previously envisaged. This effect is of particular 
importance when logic structures are applied in chaotic 
situations. Signals may have a very long period and in 
some aspects be like chaotic. The difference with a real 
chaotic signal is, in some cases, the result of just a small 
variation in the precision level of some of the involved 
signals. It is because that a new method to study this 
situation has been reported in this paper. The main differ-
ence with other techniques is the use of a working dia-
gram where some of the main parameters are represented. 
Logic functions - working diagram - as well as the train 



of pulses - phase diagram, have been represented in hex-
adecimal form. This solution allows us the possibility to 
represent quantities with higher values than "0" and "1" as 
are present in binary circumstances. Phase diagrams and 
3D representation are now possible. In this way, a first 
study of how this method can be applied to a particular 
situation has been reported. It concerns the influence of 
the adopted precision in input data and feedback signal 
levels on the onset of chaotic behaviour. The obtained re-
sults give us the possibility to establish the validity of our 
method. 
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