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The quasisteady structure of the corona of a laser-irradiated pellet is completely determined for 
arbitrary Z, (ion charge number} and re/ra (ratio of critical and ablation radii), and for heat-flux 
saturation factor/above approximately 0.04. The ion-to-electron temperature ratio at rc grows 
sensibly with Z,; all other quantities depend weakly and nonmonotonically on Z,. For rc /ra close 
to unity, and all Z, of interest (Z, < 47}, the flow is subsonic at rc. For a given laser power W, flux 
saturation may decrease (low/) or increase (high/) the ablation pressure Pa relative to the value 
obtained when saturation is not considered; in some cases a decrease in/with W fixed increases 
Pa. For intermediate^ ~0.1), Pa cc (W/r* )2/3 p\n\pc = critical density), independently of rc/ra; 
for/~0.6, Pa «s larger by a factor of about [rc/raf

13. For rjra > 1.2 roughly, the mass ablation 
rate is C{Z,) [{m/kZ.f^Kr^Pl) l,\ independent of pc and/, and barely dependent on Z,(m, is 
ion mass; k, Boltzmann's constant; K, conductivity coefficient; and C, a tabulated function). 

I. INTRODUCTION 

The complex set of phenomena involved in laser fusion 
is usually studied through thorough numerical simulations. 
It is clear, however, that simple scaling laws for partial 
aspects of the entire process would be quite interesting. In 
the recent past there have been attempts to derive such laws 
for the corona of plasma ablated from the target, setting 
aside the problem of target compression. Reasonable ap­
proximations introduced in the analysis have been (a) fluid 
description, (b} spherically symmetric flow, (c) quasisteady 
flow, (d) classical (Spitzer's) conductivity, and (e) anomalous 
absorption at the critical density nc (negligible inverse 
bremsstrahlung). In the analyses relations were sought 
between laser power W, wavelength X (or nc), instantaneous 
pellet radius ra, average ion mass mt and charge number Z,, 
pressure at the cold ablation surface Pa, ablation rate con­
stant ft, radius of critical surface rc, temperatures Tec and 
7;c,etc. 

The problem was first discussed by Caruso1 who sug­
gested that, for rjra —• oo, the critical density nc, then lying 
at infinity, would be an ignorable parameter. Later Gitomer 
et al.2 and Afanas'ev et al.3 carried out detailed analytical 
studies. Max et al.4 introduced into the problem the usual 
flux-limit factor/ to take into account that flux saturation 
must occur over part of the corona under a broad range of 
conditions; they presented a thorough discussion of physical 
phenomena not included in the analysis. Saturation in a re­
lated astrophysical context had been discussed by Cowee 
and McKee.5 Nuckolls6 had earlier suggested how flux satu­
ration would affect the relation Pa(W). 

The analysis of Refs. 2 and 3 was reexamined by the 
authors elsewhere.7 If ra, nc, m„ and Z, are given, their di-
mensionless formulation leads to a two-eigenvalue problem, 
in which rjra is a free parameter in the range (1, oo). One 

then obtains complete results for W, Pa,fi, etc., in dimen-
sionless form. In particular, elimination of rc/ra yields W 
and (i in terms of ra, Pa, nc, m,, and Z,; briefly W{ra,Pa) 
and/z(r„, Pa). The interest of this is that the "inner" problem 
(the region r < ra, as opposed to the outer one, r>ra) can in 
principle be solved, if fi[ra,Pa)is known, for any kind of 
compression desired, without further consideration of the 
corona; in each case one would then obtain laws ra{t), Pa {t), 
and thus finally fi[t) and W[t). 

The formulation of Ref. 7 showed that the behavior of 
the far away plasma evolves as ^increases (Te first decaying 
with distance as r~4/3, then as r~215, and finally as r~211), 
with a dramatic effect on the relation/^(JF): When re/ra (or 
W) is large, the absorbed laser energy is mostly conducted 
outward, leading to an ablation pressure well below that pre­
dicted by Caruso1; for rc/ra large, nc is not an ignorable 
parameter. This effect went unnoticed in Ref. 2, where no 
explicit results were given, and in Ref. 3, where wrong laws 
were presented [Pa<^Wl/2/r7/4, Tec ccPl^r3/4, etc., for rc/ra 

not too close to unity). Again the special behavior of the 
solution for rjra close to unity was either unnoticed2 or 
incorrectly determined3 because the structure of a laser-pro­
duced deflagration layer was not taken into account. Finally, 
Ref. 7 showed that one should let Te ̂  T, for consistency 
(times for ion-electron energy relaxation and electron heat 
conduction being comparable); T, was decoupled from the 
problem by assuming Z, large, and correctly determined at 
the end. Gitomer et al.2 had set Te = T,; Afanas'ev et al.3 

assumed Z, large but their T, was wrong because they did 
not take into account ion cooling due to expansion. 

In the present work we extend the analysis of Ref. 7 to 
include finite (arbitrary) Z, values (Sec. II) and flux satura­
tion (Sec. III). In the final discussion of results (Sec. IV) we 
include a comparison with the analysis and results of Refs. 4 
and 6. 
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II. ARBITRARY ION CHARGE NUMBER 

Following the earlier work of Sanz et al.,7 we consider 
the equations for quasineutral, steady, spherically symmet­
ric flow: mass conservation 

nvr2 =fi, 

ion-electron momentum conservation 

d m,nv— = - ^-nk{Z,Te + T,), 
dr dr 

(1) 

(2) 

ion entropy 
n T d (i i ^ ' ' T,v — I A: ln 

Z, dr \ n 

-l T ~~T 

2 1„,T3/2 (3) 

and an overall energy equation which, making use of the 
boundary conditions at ra{v = Te = T, = T]n dT/dr = 0), 
reads 

^-1*^,7;+ r,)+ ym,yj 

Z.r^KT 5/2 
dT„ 

+ 
WZ.H[r\ 

(4) 
dr Air 

H=0 (r<rc), H=l (r>rc), 

and is used instead of the entropy equation for electrons. All 
symbols have the usual meaning. 

Defining 

r a Te T, 
V= — 0,= ~^r> 0,= - = - . 

u = 
v 

(Z,*7;/m,)1 /2 ' 

and choosing Tr in such a way that the boundary condition 
•P(r„)=.Pa, using (1), reads 

u/6e = 1 at 17= 1, 

we find 

(5) 

T = z, P2A 
l+Zj m,k tf 

and 

J _ ^ _ 0e+50,/3Z, W 

u2 ) dy 

V\ 3Z, 

d0e 6.45* 0, e v 1 

dy 0Z, rfu 

d0a =_ 

2,,2/j 3/2 ' 

(6} 

{( &e + Y-) + \ u2 = /V* T ~ + WH to). (?) 

3 2 <», , 2«20, 1 d B 2 \ 
#r -f« 2 (fy 

= 9.68 * 
fl3/2 » (8) 

H = 0 {v<Vc)> H=\ {y>Vc}. 

Here 

0 

W = 

z, \y 
i + z j { 

z, + iy 
z, J 

, - z . + > 

z'l mj 

m, 
4TTZ, 

m, 

!5/2 j f 
' A 7 / 2 

fiW 

Pit ' 
^ 2 . 

rl
a
lPt 

V6 

'«""«'= z, z,„P„,r 
* (Z, ) = Z , ^ (Z, )/K{\) varies between 1 at Z, 
Z , —»• 00. 

The boundary conditions are (5) and 

0e=O, 0J0e = \ at y = \, 

$e —*Q, as y —> 00, 

together with either one of two conditions, 

(9) 

(10) 

111] 

1 and 4.2 for 

dde 

dy 
= 2 

0e+50,/3Z, 6A5b 

V pz, v
2u2e, 

or 

(12a) 

(12b) 

at the point ys where u2 = 0e + 50, /3Z,. Notice that condi­
tions (12), required to avoid multivalued solutions in Eq. (6), 
occur at a sonic point, partly isothermal, partly isentropic. 

As in Ref. 1 we solve Eqs. (6)-(8) choosing as free pa­
rameter yc, in the range 1 < yc < 00; for each value we find /?, 
W, and u[yc), and then through (9)-(ll) we arrive at Pa, W, 
and//. Now, however, T, is coupled to both v and Te. 

For y<yc{H = 0), we may introduce phase-space var­
iables Y=0y8\n, M2=u2/$e, together with $=0,/0e; 
they obey equations 

dY = Fl(M,j>,Y), (13) 
d\n y 

dM2 di/> 

dY X Y ' dY 
F3(M, fr Y). (14) 

Assume first that the flow, which starts as subsonic [u2/ 
$~u~0 at y = 1), is supersonic at yc{ys <yc)- Condition 
(12a) shows that the solution must cross the sonic plane irs, 

M2=l + 5ip/3Z, 

at its intersection L0 with the surface 

[ 1 - ^ ) . 2M2{Y- 1) - 1 = (6.45 b/Z,) 
M: 

L0 is a line of saddle points. The solution to (14) near its 
singular point Y= 0, M2 = 0, if/ = 1, which is part node, 
part saddle and corresponds to y = 1, takes the form 

M: 
y \2 /5 

1. 
f - l = 

25(Z, + 1) zy/5. 
6X6.456Z, 

this one-parameter family of curves intersects irs in a curve 
Ls. Sweeping through positive values of 0 we determine Ls, 
and thus the value /?, for which it meets L0 at a point 
Ysi. Msl, if>sl. The topology of the solutions is shown in Fig. 1: 
Ls ends at L0; for/? > 0t the solutions do not reach ws and the 
flow stays everywhere subsonic. 

Integrating from the point Ysl, Msl, fsl into the super­
sonic half-space, we entirely determine M2{Y), x}>{Y). Then 
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FIG. I, Topology of integral curves in the phase space of Eqs. (14). 

Eq. (13), with the boundary condition Y — 0 at j] = 1, yields 
the sonic radius ys, and Y(y), and hence 1/(77), 0e[y), and 0,[y) 
(shown in Fig. 2 for Z, = 1) up to the critical radius yc , wher­
ever it may be. For any chosen yc > ysl, all three values u[yc}, 
0e [yc}, and 0/ [yc} are known. Equations (6)-(8) could be inte­
grated, starting at yc, if Wv/ere known- The quantity Wis 
then determined by the condition at infinity (0e —> 0). 

As W (and yc ) decreases a value W, is reached for which 
Tjc = jjtl't both Eqs. (12a) and (12b) are then satisfied. There 
are two slopes at yc: Equation (12a) holds clearly at 
i}~(ys ~ y~). For W< W, (or yc <ysl) Eq. (12b) must be 

used instead of (12), that is, the solution corresponds to some 
value /3</?,. For any such fi, integration of (13) and (14) 
yields y,, u{y,), 0e [ys), and 0, (T/S ). Since yc = ys, to solve for 
the range y > ys one proceeds as previously. 

As yc decreases further a value yCi may be found such 
that Eq. (12a), in addition to (12b), is again satisfied; now 
(12a) holds at yc

+ [ys =yc
+)- For 1 < 77̂  <?/„,Eq. (12a) and 

not (12b) must be used [ys > yc). At ys (and in general for any 
77 > yc) one should have d& /dy < 0. This is impossible for 
Z,- —>• 00, when the last term in (12a) vanishes7; thus, no such 
ycs exists for Z, above some value, which we find numerical­
ly to be approximately 46. 

As yc —* 1, we find (3 —> 0; heat conduction is then li­
mited to a thin deflagration layer (adjoining the pellet) which 
involves large gradients and may be treated as planar.7 Out­
side, the flow is isentropic and 7", — Te. 

Figures 3 and 4 show Pa vs W, and /i vs Pa, respectively; 
Fig. 5 gives rc/ra, P [rc )/Pa, and T, (rc }/Te {rc )vsPa. Figures 
6 and 7 relate W to Pa and mass ablation rate (m 
=4irmifi/Zi)t and to Te(rc) and r,(rc), respectively, for par­
ticular conditions. Figure 8 and Table I give r^{rc), and 0, 
and y*,8 respectively, for several values of Z,-. 

III. HEAT FLUX SATURATION EFFECTS 

When the electron mean free path is larger than the 
characteristic length for temperature changes, the classical 
result, q = — KT$/2 dTe/dr, yields unphysically large val­
ues of the heat flux. A simple way to correct for this has been 
to saturate, or limit the value of, q, in the form 

\q\<fnkTe{kTe/m,)m. 

FIG. 2. Dimensionless squared velocity and temperatures versus radius \-q=r/ra) for 1 <i) <-qc and i]s, < Vc> and Z, = I. 
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0 7 

0 6 

FIG. 3. Ablation pressure P„ versus absorbed laser power fP, for Z, = 1, 2,4, and 16. In convenient units, the horizontal axis is 39.7 WAin[A,/Z,)ll*ru " / 4 

and the vertical axis is0.522Par4/'A " W " " 1 (Z,/A,)in; Pa is measured in 106 bars, Win 1012 W, A in fun, and ra m mm. Here,4, is the ion mass number. 

FIG. 4. Mass ablation rate m vs Pa for Z, = 1, 4, and 16. The horizontal axis is 0.961 PaA
3,\Ai/Z^'Ara >/2 and the vertical axis is 1.93x10" 

XmAsnr~9/4(Z,/A,)3/&; m is measured in g/sec, other units as in Fig. 3. 
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FIG. 5. Ion-to-electron temperature ratio at the critical radius, ablation to critical pressure ratio, and critical to ablation radius ratio, for Z ; = 1, 2, 4, and 16; 
same horizontal axis as in Fig. 4. 

FIG, 6. Mass ablation rate and ablation pressure versus laser power for ra = 500 fim, laser wavelengths^ = 1.06/imand 10.6/im,Z/ = I (—)and 16 ( ), 
and A,/Z, = 2. (TW= 10'2 W). 
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FIG. 7. Ion and electron temperatures at critical radius for the same conditions as in Fig. 6. 
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FIG. 8. Sonic radius versus critical radius, for Z, = 1, 2, 4, 16, and oo. 
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TABLE I. Parameters f3, and i/* for several values of ion charge number 

2, 

1 
2 
4 

16 
00 

ft 

146 
3.85 
6.54 
9.68 

11.30 

7?* 

1 80 
1.85 
195 
2 0 
2.05 

The flux-limit factor / has been discussed in detail in the 
literature; while theory suggests tha t /^0 .6 , some experi­
ments and numerical simulations could only be explained for 
values of/sensibly smaller.9 

Assume now Z, to be large; Eq. (8) decouples from (6) 
and (7), and they simplify into 

i/1_^)*d = ^ _ ^ (15) 
2 V u J drj y dy 

\6e+ \u2= -q+WH[y). (16) 

Here q may take either one of two forms: 

dy 

q=-( m' \/2/3/2
 Sign (

 dll) 
\Z,me) u \ dy/ 

The solution to Eqs. (15) and (16) should satisfy obvious con­
ditions: denning the function oi~qc,/q%, we should have 
a < 1 in the regions where the classical flux was used, and 
a > 1 where the flux was saturated. Because of the continuity 
of the heat flux (except at yc), we also required that a = 1 on 
the classical side of any boundary between classical and satu­
rated regions. 

The problem to be solved is similar to those in the pre­
vious section and in Ref. 7: Choosing i)c freely in the range 
(1, co), we must determine u(yc) and the eigenvalues f3 and 
W; then Eqs. (9)-( 11) [where now Z, (Z, + l ) " l ~ l ] will yield 
fi[i)e), Pa{Vc)> a n d wknX fr°m which fi\Pa) follows. It is 
worth stressing beforehand a few points proved in Ref. 4: (1) 
Both near 77 = 1 and 77 —*• co heat conduction must be classi­
cal; (2) the Mach number M = u/0 \ n at yc

+ cannot be less 
than unity (and grows with 77 for 77 > yc); and (3) if there is a 
saturated region within the interval 1 <y <yc, Eq. (16) with 
H = 0 and q = qs leads to M = Ms, where 

/ Mf\ 2 ( m, \ l / 2 

The last two points show that if Ms < 1, there must exist a 
discontinuous jump from subsonic to supersonic flow. 

Here, we only analyze the rangeM s>\. Notice that Z, 
is some appropriate mean value of several ionization levels, 
which may be of order of 10 for typical ablators; we assumed 
Z, > 1 (large ion mass number^,) to simplify the analysis (the 
assumption T, = Te of Ref. 4 leads to errors unless Z, is 
large). For the ablative regime of interest, and ,4, large, full 
ionization may not occur throughout the corona, the less so 
in the overdense, low-temperature, classical region at the 
boundary of which condition (17) is established: for Z, 

c~A,/2, Z, c^A,/X and Z, c^A,/A, we get 
f[M, = 1)—4.95X10"2, 4.04X10"2, and 3.50xl(T2 , re­
spectively. Thus, the restriction Ms > 1 corresponds roughly 
to condition />0.04, allowing for most of the range 
0.03 < / < 0.6, considered in experiments and simulations. 
Furthermore if Ms < 1 the problem that ensues is undeter­
mined; in Ref. 4 the jump was assumed isothermal and an ad 
hoc relation between densities, ahead and behind, was used. 
For 0.03 < / < 0.04 [Ms S 1), that model does not appear bet­
ter than just extrapolating results from the range/> 0.04. On 
the other hand, if Ms is small (/well below 0.04) the jump is 
large, implying substantial transformation from thermal 
into (macroscopic) kinetic energy; there are some doubts 
about the validity of such a model. 

As shown in Sec. II, in the absence of a flux limit both/? 
and the solution [1/(17), 0e[y)] up to yc, could be found, for 
any tjc without recourse to the interval ?/c < 77 < 00. For 
Z, > 46, two yc intervals could be distinguished: As yc went 
from 1 to 7/^(^1.215 for Z, —• 00, see Fig. 8), the solution 
[u(y), 6e{y)] changed, and0 went from zero to (3, (~11.3, 
for Z,—*• 00), although Mfy c )=l . On the other hand, for 
Vc>ysi neither /?( = /?,), nor the solution (given in Fig. 2 of 
Ref. 7 for Z, —• 00, and called here [u0{7]), 0o[y)]) depended 
on 77c; defining M0{TJ) = uo/0Q/2

t we had then M(yc) 
= M0(Vc)>l. 

Consider then any/such that Ms > 1 and let y[Ms] be 
the root of the equation M0{y)=Ms. If 1 < yc < y{Mi), 
neither 0 nor the solution up to yc, and in particular u(rfc), 
are modified by the flux limit: for 1 < yc < ysl , use of (9) and 
(11) to eliminate yc yields fi[Pa), while for 77̂  <yc, Eq. (9) 
alone yields/j(Ffl) because f3 — (3,. If y{M, )<yc, the flux lim­
it does not modify the solution up to tj(Ms), while M = Ms 

and (17) hold for y(M,)<y <yc;/3 =/3, and again (9) alone 
yields fi(Pa). Hence the relation fi[Pa) is independent of/and 
is that given in Ref. 7. 

To find W we must consider the interval yc < 77 < 00. 
We find that there are three different cases. 

(a) Classical flux throughout the interval; as in Sec. II, 
Wis found by requiring that 6e —> 0 as y —* 00. 

(b) Saturated flux up to, say, ycl, and classical for 
Vd <V < <»; FFis obtained by evaluating (16) at ?7C

+ [H= 1, 
q = qs = (m,/mc,Z,) , /2 fOJM ] and then yc, is found by 
requiring 0e —<- 0 as y —> co [remember that for any tentative 
value of ycl, the slope d& /dy at y$ follows from the require­
ment o-(77c|) = 1 ] . 

(c) Classical flux up to, say, y j, saturated for 
Vj < V < Vei>an(* classical again for ycl < y < co. For W cho­
sen within some range the solution, starting classical, satu­
rates at a value y j[W) such that a= 1 atyj[W}; Wandyj 
are determined from the condition da/dy = 0 at y][W), 
and then ycl follows in the manner of (b). To justify the con­
dition da/dy = 0 at y]~, we evaluate the trivial equality 

_ da dqLl dq, 
q, = a at y} , 

dhiy dlny dlny 
using qcl = W- ee (5 +M 2 ) / 2 , q, = [ml/m,Zl)

U2feL,/M, 
and Eq. (15) to obtain dqc,/d In 77 and dqjd In 77 for 77 < yf, 
and using(16) w i t h i / = 1 sadq = [ml/Z,me)

t,2fdl./M and 
again (15), to obtain 
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din 6, 

din TJ 
= 4 

[mJm.Z^f-M 
3M3-5M-\-(3M- 1 ) K / Z , m e ) 1 / 2 / ' 

(18) 

We finally arrive at 

_ da 
dm TJ 

1/2 J M3 - 5M+{ml/Zlme)
luf{3M2 - 1) 

X 
dd. 

2M{M2-\) 

l<r+ ~ 1). (19) 
(/In?/ 

Since d In 0e/</ In TJ\ + should be negative, and M>MS > 1, 
the denominator in (18) is non-negative; then the left- and 
right-hand sides of (19) must be non-negative and nonposi-
tive, respectively. Hence <r+ = 1, and da/drj\ = 0. 

Figure 9 shows the correspondence between/, W7values 
and the different sequences of classical and saturated regions 
(forboth7j<7jc and7j>7jc). Figures lOand 11 showPa and 
rc vs W for several values off. 

IV. DISCUSSION 

A. Arbitrary ion charge number 

If Zj is not large the ion temperature is coupled to other 
fluid variables. Fluid profiles for Z, = 1 are shown in Fig. 2. 

Complete results are given in Figs. 3-5 in dimensionless 
form. It is convenient to introduce the speed 

VI r. m, ,Z, 
r„n„ 7/2 \ 1/4 

(20) 
Z, • 7 \m,/ZlK{Z,\ 

The horizontal axis of Fig. 3 is W/ripc V\Z, = 1) and that 
ofFigs.4and5isi>I//>cF'2(Z l = l);here/jc=nem,/Z ( . The 
vertical axis of Fig. 4 is m/4rrr^pc V{ZI = 1), m being the 
mass ablation rate 4jrm,///Z(; the vertical axis of Fig. 3 is 
[\.\1 Pa/PcV

2[Z, = l)]/[fV/AmipeV
3^, = l ) ] 2 ' 3 . 

Results for particular conditions are given in Figs. 6 
and 7 in dimensional form. As Z, goes from 1 to 16, m and Pa 

change at most by 25% and 30%, respectively; Te and T, at 
rQ change by about 60% and 600%, respectively. Figures 3 -
7 show that using Z, independent of position is an approxi­
mation that should hardly affect the results except for T, {rc), 
and to some extent for Te{rc) and P(rc). 

Figure 8 shows the sonic radius rs versus the critical 
radius rc. For Z, below some value (Z, < 47) the flow at rc is 
subsonic if rc/ra is close to unity. For rc/ra such that rc > rs 

(Fig. 8), Eq. (9) yields 

m/4,nipeV= {Pm/PeV
2f*Z?6/{l + Ztf

,60}'\ (21) 

0, given in Table I; [Zf/(Z, + \)% ] 1 / 6 ranges from 0.527 

FIG. 9. Sequences of spatial regions with classical (c) and saturated (s) heat flux, in terms of flux limit/and laser power W; horizontal axis differs from that in 
Fig. 3 by the factor [Jtr[Z;)/AT ji)]3 / 4 , K ^Spitzer's heat-conductivity factor. For the conditions, for instance, of point P, the overdense flow presents two 
regions, classical next to ra and saturated next tor,.; the underdense flow is classical next to rc, and far enough from the pellet, and saturated inbetween. The 
solidus marks the critical radius rc. M] = 5, M) = 3, in Eq. (17). 
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FIG. 10, Pa vs W for several values of/; results from Ref. 4 { ) and Ref. 7 (gross full line, no saturation considered) also shown. The vertical axis differs from 
that in Fig. 3 by factor 54/3/8X 1.17; same horizontal axis as in Fig. 9. 

40 

20 

r,/r. 

10"' 10° 101 10" \03 1 0 - 10° 10" 10' 10° I0 3 10' 

FIG. 11. Ratio rc/ra vs W for several values of/; results from Ref. 7 (gross full line) also shown. Same horizontal axis as in Fig. 9. 
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at Z, = 1 to 0.668 at Z, = co. For rc/rQ —>• 1 heat conduc­
tion is restricted to a thin deflagration layer. A rigorous anal­
ysis of such layers' ° (detailed in Ref. 7 for Z,- —> oo} gives 

m/4inipeV= [5nd/Snc)
i/2(Pa/pc V2?'2, 

Pa/PeV
2={mnd/125nc)

l*[JV/*™ipeVT3, 

where nd is the density on the underdense side of the layer; 
(125ne/128«d)1/3 ranges from 1.17 at Z, = 1 to 54/3/8 at 
Z, = oo (Ref. 10). 

Results in Ref. 2, which only apply for rc>rs, were 
given in terms of values of physical variables at rs. To conve­
niently relate those results to ours we now give the relevant 
sonic values, from our analysis, 

rjra = 1.215, Ps/PcV
2 = {B\n^/^PJpcV\ 

Z.kTJm, V2 - 9£ Y\PJpc V2)x'\ 

ns^Ps/kTes, 

0,~11.3,0,-0.42 (Fig. 2, Ref. 7); PJpc V2 can be obtained 
from Fig. 10 (gross full line). To write the preceding equa­
tions we assumed Z, large, for which case the hypothesis 
Ti = Te of Ref. 2 is unimportant (except for the determina­
tion of Tj). The parameter "M" introduced in Ref. 2 should 
be set equal to 2/3. 

B. Heat flux saturation 

To analyze saturation we considered Zt large. Figure 9 
shows the sequence of spatial regions with classical and satu­
rated flux, in terms of the dimensionless parameters of the 
problem, /(^,./2Z,-)1/2 and W/rlpcV'\ Fig- 10 shows 
PM W). 

Equation (17) can be written as 2<$> = Ms(\ +M2/5), 
0~12.1/(/f , /2Z,) ' / 2 , a quantity used in Ref. 4. It was as­
sumed there that M*/5<1, while we considered M2> 1; 
thus, the analyses are somehow complementary. Actually in 
Ref. 4, its analysis was assumed valid up to tf>~\ [M2 = 2, 
f{A,/2Z,)l,2~0.082]; our Fig. 10 confirms this. Agreement 
with simulations was found up to ^ = 1 . 4 4 [M2 = 3, 
f[Ai/2Zi)

l/2~0Al5], where we find some disagreement 
(Fig. 10). Results from Ref. 4 should not be used above 
M2 ~ 3, marked in Fig. 9. They should not be used either for 
W too low [rc/ra too close to unity): Fig. 9 shows that the 
sequence {c, s/c, s, c) (see caption to Fig. 9 for symbols expla­
nation), considered in Ref. 4 for M2 < 5, has a restricted 
range of validity. [For M2 > 5, Ref. 4 discussed only the se­
quence {c, s/s, c}.] To conclude we note that recent spherical 
experiments" suggest / values higher than those found in 
planar geometry. 

The result for Pa[W) obtained when saturation is not 
considered7 {/—»• oo) is also drawn in Fig. 10 which shows 
that for a given power ^saturation may decrease (low/) or 
increase (high/) the pressure Pa relative to the value attained 
when /—*• oo. The explanation of this result lies in a fact 
recalled in Sec. I: for/—• oo and rjra large most of the 
energy absorbed is lost by outward conduction.7 Hence, for 
h igh / (weak flux inhibition) only this huge outward loss is 
inhibited, increasing Pa, while for / low enough the inward 
heat flux is strongly inhibited, reducing Pa. This leads to a 
second, seemingly paradoxical effect, seen in Fig. 10, too: In 

some cases a decrease in/, with W fixed, affects more strong­
ly flux inhibition in the underdense flow, resulting in a high­
er Pa (or a lower W for given pressure). 

Figure 10 shows that for some values of/, 

PJ\{W/r\fnemt/Zt]
1/3 -const . (22) 

This is not a trivial result, required by dimensional argu­
ments; the left-hand side of (22) could have been any function 
of the abscissa,12 or alternatively, of the ratio rc/ra [for in­
stance, rc could figure instead of ra in (22)]. Nuckolls, in fact, 
suggested6 Pa\{W/^fn.m./Z.Y^^rJr^, which 
would only be right for / high enough. In Ref. 4, emphasis 
was laid on low values of/, for which the left side of (22) 
decreases with growing W. 

Figure 11 shows that rjra is weak function of the flux-
limit factor. We also find that Pa/Pc and Tic/Tec decrease 
with/, and that the relation rh{Pa) is not affected by satura­
tion. We had found earlier [Eq. (21)] that for rc >rs, m{Pa) 
was independent of nc and nearly so of Zt: 
moc^. /Z, . )7"2 / -^6^^6 . Since ra[t) will follow from 
*"(>"0 > Pa)

an^tne pressure law Pa [t), once this law is selected 
the ablation rate m{t) appears to be unaffected by conditions 
in the corona. 

When the analysis of Ref. 4 is valid, the parameter a 
introduced there is approximately 1.3X10 -4 $~l!\W/ 
ripe V3)4/3. Note that the ratio W'/r\pe V3 (horizontal axis 
of Figs. 9-11) covers a very large range of values; for 
1000>ra(,um)>50 (beginning and end of compression), 
0.35 <A.(p,m)< 10.6 (third harmonic of Nd and C02), 
Z-t = 10, AiC^lZj, and a single power (1013 W) whose ratio 
ranges from 40 to 2.3 X1010. The influence of inverse brems-
strahlung for low values of W/rapc V3, and hot electrons for 
high values is considered elsewhere.13 
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