
f=(\ + T/3t*)-K (2) 

The differential equation3-4 used hitherto for a radiation 
field of energy density u is 

d{uR*)/dt = R\u* - U)/T, (3) 

and the condition for darkness at night in a steady-state 
universe is hence 

U/U* = T/(4T+T)«\, (4) 

which is the well-known result quoted by Lategan. 
The first term on the right of Eq. (3) represents the rate 

of emission by luminous sources, and the second term rep­
resents the rate of absorption by luminous sources only. 
Since sources exist that have decayed and become nonlu-
minous, the second term must include absorption by both 
luminous and nonluminous sources, and the differential 
equation should therefore take the form 

d(uR*)/dt = {RA/T){U* - u/f). (5) 

The condition for darkness thus becomes 

u/u* = Tf/{4rf+ T) « 1 (6) 

and is dependent, through/(/*, T), on the luminous lifetime 
/*. It is now evident that a sufficient condition for darkness 
i s / « 1, or 3/* « T, and this is also a necessary condition 
in those steady-state universes of T2 » \2rt*. When T2 « 
12T?*, the sufficient and necessary condition is T « 4r, as 
before. 

The above argument, I think, confirms my previous belief 
that the luminous lifetime t* cannot be ignored in the 
steady-state universe. Also, we use "growth time" and 
"decay time" for exponential functions, and I do not think 
the expression "expansion time" is misleading when applied 
to the steady-state universe. 

•E. R. Harrison, Phys. Today 27, 30 (1974). 
2E. R. Harrison, Am. J. Phys. 45, 124 (1977). 
3E. R. Harrison, Mon. Not. R. Astr. Soc. 131, 1 (1965). 
4E. R. Harrison, Vistas in Astron. 20, 341 (1977). 

Widespread error in a standard problem in the dynamics of deformable bodies 
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While recently discussing variable mass systems, Siegel1 

considered a standard problem in the mechanics of de­
formable bodies: A homogeneous chain (or flexible, inex-
tensible rope), of length L and mass XL, slides off a smooth 
table, starting from rest with a length ah (a < 1) hanging 
over the table (see Fig. 1). Siegel gives 

XA = gXA/L (1) 

as the equation of motion for the entire range aL < XA < 
L; this equation implies the arrangement of Fig. 1. 

We wish to point out first that actually Eq. (1) becomes 
invalid, the chain separating from the corner, before end 
B leaves the table. Indeed, if separation would not occur, 
momentum along the y axis would vanish when either XA 

= aL or XA = L, and would be positive in between, de­
creasing during part of the motion; but this is obviously 
impossible since the y component of the reaction at the 
corner cannot be negative. Equation (1) is (wrongly) used 

-L-XA-

in a variety of textbooks and treatises2-1' to determine either 
the time when B leaves the table or XA at that time. The 
need to externally guide the chain around the corner to 
avoid separation is noticed by Meriam12 and Green­
wood.13-14 The falling chain problem is considered in many 
other texts with no mention of the range of validity of Eq. 
(1). 

A proof that separation does occur, even if friction exists 
on both table top and corner, is given by Laine.15 A simpler 
proof is as follows: As long as there is no separation, the 
equations of motion for the shaded parts drawn in Fig. 2(a) 
are 

T2 - n\(L -XA)g= X(L - XA)XA, 

X^Ag — T] = \XAXA, 

while at the corner [Fig. 2(b)] 

dT 
d<p 

-L-X/ 

= — fiN + Xpg cos0 — XpXA, 

h 

(2) 

(3) 

(4) 

Tl 

XA 

Fig. 1. Chain of length L and links of negligible size, sliding off a smooth 
table. 

(a) 

Fig. 2. Motion of the various chain pieces, (a) Horizontal and vertical 
pieces, (b) Arc of chain at the corner; p is the radius of curvature. 



N = T - XXA + Xpg sin</>, (5) 

li being the friction coefficient and N the normal reaction 
per unit angle; separation will occur if N becomes negative. 
Letting p -+ 0, Eqs. (4) and (5) yield 

T(<t>) = \X2
A + ( 7 , - \XA) cxp(-/i*), 

N(4>) = T(<fi) - XX2
A. 

(6) 

(7) 

Assume that N(<p) is non-negative throughout and consider 
the time when XA = L. Equation (2) gives T2 = T(v/2) 
= 0, and there fore^ = 0 for N(v/2) to be non-negative. 
It follows from Eq. (6) that 7, = 0, and then Eq. (3) leads 
to XA = g. But clearly we cannot have both XA =0 and XA 

> 0 if the chain is falling! 
We find that a chain sliding off a table with a round 

corner (p comparable to L) does also separate. Otherwise, 
Eqs. (3)-(5) would remain valid when XA = L (that is, 
when B reaches the end of the corner at cp = 0); then T\ 
= T(0) = 0 and, from Eqs. (3) and (5), we recover the in­
compatible results XA = g, XA = 0. 

Motion after separation is extremely complex. However, 
for small L/2H, H being the table height, we may find 
immediately the time of fall tf, to order (£, /2/ /) ' /2 

.75 

f 

.25 

.25 .75 1 

Fig. 3. Dimensionless factor/(a) for the horizontal distance traveled by 
the chain during the fall. 

tf={2H/gyn. 

Then, if Vy is the velocity, along the y axis, of the chain 
center of mass, we have 

rf=v;tf=[(L-xA)xA/L]tf 

as the horizontal distance traveled by the chain during the 
fall (* labeling separation conditions). From Eqs. (2), (3), 
(6), and (7), neglecting friction for small n, we get X*A and 
X*A by setting N = 0. Then 

K/= (//Z,/8)' /2/(«)U + 0(n) + 0[(I/2//)i/2]} 

/ ( a ) = ( [ 3 - ( l + 8 « 2 ) i / 2 ] / 2 | 

X{[1 - 4 a 2 + (l + 8a 2 ) ' /2 ] /2) i/2. 

Figure 3 shows/(a). For H = 2 m, L = 4 cm, a « 1 we 
obtain Yj = 10 cm. 
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Many people today, including many science and engi­
neering students, run for physical fitness and pleasure. I 
have generated interest in the study of relative velocities in 
our introductory physics course by asking the following 
question: "Suppose I am running with the wind. Through 
what angle must I turn so that the wind appears to me to be 
blowing directly from the side?" A common, intuitive (and 
incorrect) answer is 90°. The correct answer varies from 

"it never does" to "zero" to "an angle less than about 78°" 
depending on whether the wind speed is less than, equal to, 
or greater than my running speed. An elementary appli­
cation of either geometrical or vector methods will readily 
provide these answers. 

Let v and v' be my velocity relative to the ground and to 
the wind, respectively, and let u be the wind velocity, with 
v = u + v'. Note that I am sensitive to the apparent wind 


