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The one-dimensional motion generated in a cold, infinite, uniform plasma of density na by the absorption, 
in a certain plane, of a linear pulse of energy per unit time and area <j> = 4>0t/r, 0< t< r, is considered, the 
analysis allows for thermal conduction and viscosity of ions and electrons, their energy exchange, and an 
electron heat flux limiter The resulting motion is self-similar and governed by a single nondimensional 
parameter a«(n0

2T/<f>0)
2/3 Detailed asymptotic results are obtained for both a < l and a > l , the general 

behavior of the solution for arbitrary a is discussed The analysis can be extended to the case of a plasma 
initially occupying a half-space, and throws light on how to optimize the hydrodynamics of laser fusion 
plasmas Known approximate results corresponding to motion of a plasma submitted to constant irradiation 
(<()) are recovered in the present work under appropriate limiting processes 

I. INTRODUCTION 

To achieve break-even conditions in microfusion, a 
laser pulse must compress a DT pellet to densities well 
above that of the solid state, ns, and strongly heat its 
core.1 This starts an outward burn wave that both mini­
mizes the energy requirements and increases the burn 
efficiency.2 

The cold, dense plasma around the core has a low 
specific entropy; consequently, the absorption of laser 
radiation must take place outside the dense pellet, since 
entropy production is associated with the absorption. 
This condition is met if the critical plasma density, nov, 
at the laser frequency, w, is smaller than ns. Then, 
the radiation energy is deposited in an expanding corona 
of hot and rarefied plasma, that results from ablation of 
the pellet.3 

Clearly, hydrodynamics must play an essential part 
in microfusion since it affects the attainment of the fol­
lowing goals: (a) the energy lost in the corona outflow 
should be held to a minimum; (b) entropy, and therefore 
entropy flux and production, should be kept low inside 
the pellet (except in its core); (c) both mass and energy 
should flow inward efficiently to reach high densities 
through compressional work. 

The hydrodynamics of laser-plasma interaction has 
already been considered, both in the approximate, theo­
retical analysis,4-9 usually for constant irradiation, and 
as part of extensive computer simulations that include 
detailed fusion physics.10-13 Nevertheless, exact results 
and clear conclusions for the hydrodynamic behavior of 
the plasma are still lacking. 

In order to clarify how this behavior depends on the 
laser design parameters (maximum power flux <£0, 
pulse duration T, and frequency w) we consider the 
quasi-neutral motion of an initially cold and uniform 
plasma, allowing for viscosity and heat conduction of 
both electrons and ions, their energy exchange, and an 
electron heat flux limiter; other effects, like pressure 
radiation, nuclear fusion, emission (and re-absorption) 
of radiation, and non-Maxwellian distribution functions 
(a point discussed later) are not taken into account. 

Then, a uniform power flux, linear in time (anomalous­
ly), absorbed in a certain plane, produces a self-simi­
lar motion. Anisimov14 noticed the existence of self-
similar motion including electron conduction and ion-
electron heating and Marshak15 pointed out self-similar 
motion of a gas with radiation heat conduction. We con­
sider an unbounded plasma, as a step prior to the more 
difficult analysis of a half-space plasma, the case of in­
terest for laser fusion plasmas, which we carry out in 
a forthcoming paper (any qualitative results found there 
should be valid for spherical geometries, except at the 
core of the pellet). 

In Sec. II we discuss the equations and physics of the 
problem. Section III introduces both self-similar vari­
ables and nondimensional parameters. The resulting 
system of equations is analyzed in Sees. IV and V (Ap­
pendices A and B include some related mathematical de­
tails). Finally, the results obtained are summarized 
and discussed in Sec. VI. 

II. STATEMENT OF THE PROBLEM 

We consider a fully ionized, single ion-species plas­
ma at rest, with uniform density n0. Att = 0, energy 
per unit time and unit area <p(t) starts being deposited at 
the plane x = 0, and the plasma becomes one-dimension­
al. The macroscopic equations of continuity, momen­
tum, and entropy for species j (e, electrons, i, ions) 
are 

Dt J 9x ' \Dt~dt + Vidx) ' [ ' 

W^̂  = ~i ( M^^ ) + l^(^S)+^£ + ̂ ' (2) 

where m, q, n, v, and T are particle mass and charge, 
density, macroscopic velocity, and temperature, re ­
spectively, and ju. and if are the classical coefficients of 
viscosity and thermal conduction16*17 

j i ^ ^ r j 7 8 , K}=KsT)n . (4) 
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Both /x and K depend weakly on T and n through Coulomb 
logari thms. 

We have assumed a collision-dominated plasma; that 
i s , at each time t the mean free path \ and the time be ­
tween collisions, for each species , are assumed to be 
much less than the length of p lasma disturbed, xf(t) and 
t, respectively; the conditions implied by this hypothe­
s is will be discussed in Sec. III. Nonetheless, a flux 
l imiter1 2 '1 8 

-K^)'>. 8 T 
dX 

(5) 

is included in the electron heat conduction to approxi­
mately deal with situations where these conditions a re 
not entirely met (viscous effects, for e lect rons , a re 
much less important than thermal conduction even 
though viscous and thermal diffusivities a re comparable, 
because, as will be shown, ve~v{ and therefore, mjo\ 
«kTe). On the other hand, since Xjcc T 2 and xs is only 
needed when Tf« Tg (see Sec. IV), we set 

ion diffusivities, moreover, are smal ler than electron 
diffusivities by a factor of the order of {me/mf)

l,z. 

If the motion is quasi-neutral (a point to be discussed 
in Sec. Ill), « e ~w,= n for singly charged ions, and thus 
(d/dx)(vg-v{)n — 0. Since vs vanishes in the undisturbed 
plasma, we have vg — V( = v everywhere. Then, Eqs . (1) 
become just 

&n/dt + a(nv)/dx = 0. (6) 

Also, adding Eqs. (2) for j = e,i, neglecting me against 
m,, and making use of quasi-neutrali ty we find 

m'^=-^[nk(Xt*Tt)] + ^ 
'*" Dt—Bxl [(^+^§] (7) 

since obviously the ion-electron friction satisfies Rs + Rf 

= 0. Thus, the electric field E, se t up by a slight 
charge separation, is dropped from the analysis . 

Neither emission or absorption of radiation, nor nu­
clear fusion a re considered here . The energy deposi­
tion at x = Q s imulates the anomalous absorption of l a se r 
radiation, its p re s su re being neglected. Then, 

Hi=\nk{{Te-T{)/tel\ (8a) 

and He = -Hi + ty(t)5(x), tel being the relaxation time for 
ion-electron energy exchange16 

tei - ta> *• ei ' e l e 
3/2 „ - l 

n (9) 

where te{ involves a Coulomb logarithm. 

If the laser absorption resul ts in an energy per par t i ­
cle of the order of 0 .1 keV or l a rge r , the present analy­
sis would retain its validity even if we have a condensed 
substance, instead of a plasma, a t£ = 0.4 For such en­
ergies we may, therefore, neglect the initial tempera­
tures and have 

Te(x,0) = Tt(x,0)=v(?c,0) = 0, n(x,0)=n0. (10) 

On the other hand, because of the symmetry of the prob­
lem with respect to the plane x = 0, we need only consid­

er the x > 0 half-space; then, the boundary conditions 
become 

Ta(°°, t) = Tt(°o, t)=v{<°, t) = 0, «(<*>, t) = n0, 

v(0,t) = 0, 3T{/dx\x=0 = 0. 
(11) 

Finally, integrating the electron entropy equation be­
tween 0" and 0* we get 

2xXTrdTe/ax\x-o+<!>(t) = 0- (12) 

Use of the boundary condition (12) allows one to drop the 
term <p(t)5(?c) in He and leads to 

H. •H, U • (8b) 

Now, if (j> is l inear 

the solution of the system (6), (7), and (3), with Eqs. 
(8) and conditions (10)—(12), while the pulse is on, is 
self-s imilar (as shown in the next section) as long as 
the Coulomb logarithms in Eqs. (4), (5), and (9) can be 
approximated by constants. 

I I I . SELF-SIMILAR VARIABLES AND EQUATIONS 

Let 

<t>tt) = 4>Jit/rY 0<t<T (13) 

and define 

^=x/[wt(t/r)q], n{x,t) = n0n{V) , 

v(x, t)=v0(t/r)ruU), T,(x, t) = T^t/TYe^), 

(14) 

Introducing (13) and (14) into the equations of the last 
section, the powers of t a r e found to drop out when 

/> = !» 9 = 3, r = 3, (15) 

Now, since w, Vo, and T0 may be chosen arbi t rar i ly , 
we set 

w 3 ' 
K,T 5/3 

know T ' 
KeTl'\ 
(p0WT 

in order to simplify the continuity equation in the usual 
way, and take into account the fact that both energy de­
position and electron heat conduction lie at the root of 
the phenomenon studied. Then, defining 

a = ^kT0/mtVtiW , 

we can compute all nondimensional coefficients in the 
equations in te rms of a and A{ (the ion mass number) 
from the known values of Kjt /Tp and Ie{^

6•1'' 

We thus a r r ive at the following system: 

n du (16a) 
dt, i-udi,' 

•»«»-«ff=-fif[»<v»,>] 
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n[eA1+3di)+2{u-^i^rdi[x^ -dj) 

0.00065 w(du\z q ^ O . - f l j 

- [ „ / , 4tfM\ - .do,! 0.041 d{„5/zd9,\ 

,0^052 M / & \ ' « 

v A , Q; 059 eg ^e g V1 

Bg- 9{ 

with boundary conditions 

(16c) 

(16d) 

(17) 

(18) 
«(0) = 0 , dfl,/dS|e.o = 0 , 2x,eJ" ,dfl./d$|t.0 = - l . 

We have taken all the Coulomb logarithms equal to a 
constant of a rb i t ra ry value. The relat ive importance 
of electron heat conduction, ion viscosity and heat con­
duction, and electron viscosity is clear from the numer­
ical coefficients in system (16). 

It proves convenient to wri te Eqs. (16) as conserva­
tion laws: 

H = dl tM^"M^ ' 

5 « M = — 4 « M ( ? - M ) - an(9e + 9l) 

0.039 n5,zdu 0.00049 5/2 du 

A W di \ 

(19a) 

(19b) 

3«(e, + e f+ |^)=^[2i(?-M)(e, + 0< + |^)-h«(e, + e,) 

^. , .5/2 d6 0.041 5/2 dfl, 0. 026 B/, <fa2 

0. 00033 .5/2 du2l 
dl\> 

(19c) 

the last equations being a combination of Eqs. (16c) and 
(16d). If £f is the length of plasma disturbed, we also 
get 

ndi> = if , 

5nudi = an(9e + 6{)\e=0 > 

(20a) 

(20b) 

(20c) 

It is of interest to refer the pa ramete r s n0, 0O, and T 
to values typical of laser fusion p lasmas . Choosing 

nr = ns(DT) ^4. 7xlO22 cm-3, 0 r = 1 0 u Wcm"2 , 

, « 9 ( 2 1 ) 

T r=10 s e c , 
defining 

n = n0/nr, 0 = 0 o / 0 r , r = r/rr, (22) 

and setting the Coulomb logarithms equal to 8, we then 
obtain 

9fe (kV0T\z/3, 12.9 

m)• (23a) 4™A<W 
A/ . 5 ^ 2 \ l / 9 / ?5 \ l / 9 

«o = l « = | ( ^ | l j - 1 . 7 3 X 1 0 7 ( ^ J cm/sec, (23b) 

*.-(&r--'»(*r--
The energy deposited in the plasma per unit a rea is 

I (j)0(t/T) dt * 500 T k J / cm 2 . 

For a sphere of radius 500 ii, that energy per area 
leads to a total energy 

£=* 1.570? kJ . 

The sel f -s imilar variables make a discussion of the 
approximations used in Sec. II easy. F i r s t , Eq. (17) 
shows that xe— 1 if 

« 1 . (24) 
\am{/ n 

d9e 
dt, 

From the resul ts in the following sections it may be 
shown that (24) is only violated for a comparable to mj 
m{ or l e s s ; thus, X g - 1 , if a»me/mi(~mo for DT). A 
s imilar condition resul ts from the requirement \«xf 

= £fwt(t/T)U3; since Xj~KJT
5/z(7ni/kTj)

uz(kn)-\ we ob­
tain, for e lectrons, 

(am{/nig)
m»9*Mf . 

Likewise, the time between electron collisions is much 
smal ler than t if 

am, /nig Q3/2/IT /n 

The corresponding inequalities for ions a re found to be 
less res t r i c t ive . 

Finally, the quasi-neutrali ty condition, \D=(kTe/ 
4ime2)1/z«xf , written in self-s imilar variables becomes 

Ka)lf%l«(UtiT)t/r , (25) 

where ix>pi is the ion plasma frequency. It is thus clear 
that charge separation is not se l f -s imi lar . Using ex­
press ions (21)-(23a), we obtain, from (25), 

1PI7" 
A}'8 

rs,i$1H « 1 0 5 

The resul ts for 8e, n, and l-f to be found later show that 
this inequality is easily satisfied for all reasonable val­
ues of a, A{, T, and 0. 

IV. ASYMPTOTIC SOLUTION FOR a<<C1 

Expanding all variables in powers of a 

n = nt+ anz+ • • • , 

u=iii+ auz+ • • • , 

9 ; = 0 j i + a 0 ; 2 + " - , 

Eqs. (16) yield, to lowest order , 

«i = l , Mi = e,j = 0 
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INTEGRAL METHOD SOLUTt 

"1 

i 
ON| 

• ! .3 

PIG. 1. Dimensionless electron temperature, eel, vs dimen-
sionless distance, £, for a « l . 

and, assuming 1 » a » me/m{ (xg ** 1 except in a narrow 
neighborhood of %f), 

(26) 

with the boundary conditions 

M°°) = o, eJf^elM|e=0=-i. 
Equation (26) represents a self-similar thermal wave.19 

It may be shown that there exists a value, £/( such that 
6el = 0 for | & $ / t Then, 6tl(lf) = 0, £, being given by 

( 

this condition results from integrating (26) between 0 
and £,f and making the heat flux vanish at (-,. Figure 1 
shows 9el(%) as given both by a numerical computation 
and by an approximate, integral method solution20 

eei = 0.76(1 - I / O . 31)°^ , H O . 31; 

actually, 0el behaves as (?, - £ ) M near %r 

The equations for n%, u&, and 6ti) neglecting viscosi­
ties and ion conduction, are 

dnjd^^du/dt, , 

Uz - 4 | duz/di, = - d6gJdk , (27) 

"7 

fi 

L 

7 

0 

•//} 

W^ 

1 i i 

i. 

-e;,<o) 
.5 

, 

^J 

i 

•» '• [«e„tor'^ 

FIG. 2. Dimensionless velocity, u%, vs dimensionless dis­
tance, £, for a «1. [The insert represents u% vs | in the in­
ner layer, £ =0 (a1 /2)]. 

, \ 
\ \ 

n / N X 
^ 

; e i 2 

" ^ 

" : ^ ^ 

FIG. 3. Dimensionless density perturbation, n2, and ion tem­
perature, 9j2, vs dimensionless distance, | , f o r a « l . 

with boundary conditions 

««(0) = 0, dd,z/di\(e0 = 0. 

We then have 

«. = -« 1 / *f / ( r f« . i / dS i )^ i /4« i V 4 , 

W2= (duz/dZi)dti/Zi, 

en^.lSp'f'dtM'&'i 

(28a) 

(28b) 

(29a) 

(29b) 

(29c) 

these solutions are represented in Figs. 2 and 3. 

For small | 

« 3 ^ - ^ i ( 0 ) - C | 1 / 4 , (30a) 

0<2-4.3[e f f l(O)]-1 /8-C1r1 /2
) ' (30b) 

n^Czi--3'*, (30c) 

where ^ i s J 9 e l / ^ | and C, C1( C2 are constants; thus, 
expressions (29a, c) do not satisfy conditions (28b), while 
w2 becomes singular at £ = 0. Clearly, a thin, inner 
layer must exist around £ = 0, in which some terms ne­
glected in (27) should be retained. 

A. Inner layer 

Defining new, stretched variables 

{ = « / « % ( 0 ) ] w , u = -uz/e'gl(0), 

Eq. (16b) becomes 

« - l = (4i- i-1)d5/ (f | 

whose solution is 

« = i - ^ | i - 4 i 2 | 1 / 8 . 

Boundary condition w(0) = 0 leads to A= 1; on the other 
hand, matching (31) for large | to (30a), we get 

A*-[aeel(0)M]mC/9'ei(0). 

Thus, u presents a cusp at 1 = 1/2 (see Fig. 2). 

The 1 = | plane is, therefore, a weak discontinuity 

(31) 
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surface.21 Such surfaces move relative to the fluid with 
the speed of propagation of small disturbances, c, 
which, due to heat conduction, is given here by c2 

= m;l(dP/dn)T~kTe/m, (T,«Tg); now, a t£ = £wehave 

or 

4(l;-uf~Hz=aeg(0), 

{dxJdt-vf = kTjmK , 

xt being the position of the discontinuity surface. 

Obviously, there must exist a very thin, viscous sub­
layer, centered at | = i ; a detailed analysis of this sub­
layer is given in Appendix A. 

We notice that w2, as given by (29b) and (31), is no 
longer singular at £ = 0. On the other hand, to satisfy 
condition d&fz/dZ =0 at ? =0, heat conduction should be 
retained in the ion energy equation, within a very thin, 
thermal, boundary layer around £ = 0. 

V. ASYMPTOTIC SOLUTION FOR a » 1 

Condition a«l implies either n0, and thus, heat ca­
pacity per unit volume, small, for given 0 O /T , or <£0/T 
large for given n0; either way Te must grow very fast 
with time. Heat conduction is then dominant, leading 
to a rapid equalization of both temperature and pres­
sure; consequently, the plasma is unable to begin mov­
ing, and convection is negligible, as found in last sec­
tion. In the opposite limit a » 1, on the contrary, con-
vective energy flow must be dominant and give rise 
(neglecting viscosity) to a shock bounding the disturbed 
plasma.19 However, since convection must vanish at 
£ = 0, there must exist a region where heat conduction 
is important, lying between the origin and the (isen-
tropic) region where convection is dominant. 

A. Isentropic region 
i 

The flow behind the shock is isentropic, ion and elec­
tron temperatures being equal and viscosity and conduc­
tion, negligible. The jump conditions across the shock, 
which may be directly obtained from system (19), are 

nf(£,f-Uf) = t,f , 

An}uf{£.f - uf) - 2anf9f = 0 , 

4nf{0f + 2w2/3a)(£/ -u f) - 8nfuf6f/3 = 0, 

where the subscript/labels the conditions just behind 
the shock; then, 

«, = 4, «, = 3 | , /4 , 8f = 3$/Ba. 

Defining the normalized variables 

n=Z/hf, v=n/nt, y=u/uf, z^d^e,, 

Eq. (20c) becomes 

f 3i/(*, + * l + 2/)d)j = af/3#; 

since ??, v, y, and zt are of order unity behind the shock, 
£f = ya1/3, where y is an unknown constant of order of 
unity, determining the shock position. 

Then, system (16) becomes 

dv _ 3v dy 
dr\~ 4r\- 3y dn ' 

^^(3y-47 )) |=-i |[ ,(2 g + ^)] + 0( a"3 '2) , 

r3 I372~ 

(32a) 

(32b) 

(32c) 

the upper sign corresponding to electrons. The viscos­
ity and conduction terms are 0(a^fZ), as indicated, and 
may be neglected to lowest order. Similarly, we get 
Xg^ 1 up to order a"3'2. On the other hand, the energy 
exchange term is dominant, so that ze^z{=z. Thus, 
Eq. (32b) will read 

vy + v(3y - 4rj)dy/diq = - d{vz)/di] , (3 2d) 

while adding the (32c) equations for ions and electrons, 
we obtain 

2,z(l + dy/dv) + (3y - 4v)dz/dy = 0 . (32e) 

Equations (32a), (32d), and (32e) must be solved subject 
to boundary conditions 

./(l)=y(l) = *(l) . 

Having neglected second-order derivatives, that system 
will clearly not be uniformly valid in the whole interval 
0<T)^ 1. 

A first integral of the system can be obtained by com­
bining Eqs. (32a, e), 

„7/3(47,-3y)/*2=l; 

this is the usual adiabatic integral of self-similar isen­
tropic flow.28 Furthermore, Eq. (32d) may be rewritten 
as 

dy= y(4rj-3y)+2z 
di}~" 5z-{4r\-3yY ' 

This equation, together with Eq. (32e), may now be 
easily solved defining 

Y=y/r\, Z = z/r\z; 

this leads to a (Y, Z) phase-space equation 

dZ 2Z £ (17-15F)+(4-3F)[F+3(F- l ) (4-3F)] 
dY'4-3Y £(2+5F) + 3F(F- l ) (4 -3F) 

together with 

ndY_ Y(4-3Y) + 2Z 
V di)~~ 5 Z - ( 4 - 3 F ) 2 ' 

It may be shown analytically, that Y increases, starting 
from unity, as i] decreases and that for F - 4 / 3 , Z~(4 
-3F)3 / 1 3; then, defining rf by F(i?) = 4/3, we obtain 

ze'Bib-rj)*'1*, y^^rj-Hv-V), v^B^-rj)-3'13. 

Numerical results for_ v, y, and z versus v are given in 
Fig. 4; we also find ??«0.82, -B^ l .70 , B2=*0.78. 

This solution corresponds to the classical problem of 
a gas at rest, compressed by a plane piston moving with 
a velocity £ / W . For certain values of n, the density 
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3.2 
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2.4 

1.6 

V 

y / 

.80 .84 .92 .96 

FIG. 4. Normalized dimensionless density, v, velocity, y, 
and ion and electron temperatures, z, vs normalized dimen­
sionless distance, 7); isentropic region, a»l. 

becomes infinite at the piston, while the temperature 
goes to zero, as in the present case (w= 1/3).22~24 

B. Conduction region 

The isentropic solution ceases to be valid in the neigh­
borhood of rj. Moreover, in a region containing the o r i ­
gin, conduction must be taken into account. To deter ­
mine the order of magnitude of the variables in this r e ­
gion we first notice that the last boundary condition in 
(18), may be rewrit ten 

(3WVa-v%z$fZdze/dvU,o=-t ; 

thus, ze-0{asn), and it is easy to show t h a t _ ^ ^ « , = ^ , 
X 8 - l . On the other hand, y = 0(l), since y(r]+) is of the 
order of unity. Finally, Eq. (20a) gives l\vdv = 1/4, 
while the isentropic solution is such that Ji(/rfT? = l / 4 ; 
thus, v must be much less than unity to the left of 77. 
Then, from (20b) we get l\$vydv-v(0)z(0), implying 
v = 0(a^). 

Now defining 0 = a3 / 7v, z=a'3/1z, system (16) to lowest 
order in a becomes 

dv 
dv 

3y dy 
4r) - 3y dV ' 

d(vz)/dV = 0, 

dy' 

(33a) 

(33b) 

2vz 
Y ' V dU A5/2 dz \ , 

V Tv)> \ dv/ y dv \ 8 / 4 dv\ -.., tnn . 
(33c) 

Eq. (33c) resul ts from adding (16c,d). We have ne­
glected viscosit ies and ion conduction. System (33) 
must be solved subject to five boundary conditions, 
since y is unknown: three conditions for matching with 
the isentropic solution, and 

\7/2 
y(0) = 0 , (I)" 6 . 5 / 2 ^ 

dv 

Integrating (33b) and matching to the isentropic solu­
tion, we obtain 

vz^BxBz^\.32. 

Then, using (33a) and (34), Eq. (33c) may be integrated 
once, giving 

1.32(27?+ 5y) = (3/8)5,z(r3/4)z5,zdz/dV + l / 3 y 3 . (35) 

Also, Eq. (33a) becomes 

3z dy/dv = - (4T? - 3y) dz/dv • 

The last two equations a re to be solved with boundary 
conditions 

y(o) = o, y(v)=lv , z(n) = o. 

In the neighborhood of rj, the solution is found to be­
have in the form \ 

z^D^-vf'1, y^lv-DziV-vf* . (36) 

Then, z5/zdz/dv~0 as 77 — 77, and from Eq. (35) 

y = 0 . 3 3 . 

Numerical resul ts for v, y, and z versus 77 are given in 
Fig. 5. 

It is important to notice that expression y(4?7- 3v) 
must increase monotonically with 77, for all 77 [see Eq. 
(19a)], and that the solution in this section violates this 
condition at 77: 

^ (477-3 j ) )~ (?7 -^ ) l o n 3 -0 as 7 7 - ^ * , 

12/5, v-3/7 a s 77 — 77" v(4v-3y)~a-3n(v~vr'Hv-v) 

and therefore, V(4T) - 3y) (mass flow relat ive to the sur­
face TJ) presents a negative jump at 77, of order a'3'1. A 
detailed analysis of the solution in the neighborhood of 
77, car r ied out in Appendix B, shows that i/(4??- 3y) is 
continuous at this point, and that z and v present a mini­
mum (^0.77a"9 / 7 0) and a maximum ( « 1 . 72a9 / 7 0) , r e ­
spectively, at 77 + 0.032a"39 ' '70. Naturally, the solution 
given in F igs . 4 and 5, will not be modified by this cor­
rection, except in a narrow layer around 7) = ?j. 

VI. DISCUSSION OF RESULTS 

We have studied the one-dimensional motion generated 
in a cold, unbounded plasma of density no, when a pulse 
of energy per unit time and area , <p = (f>Qt/T, is (anoma­
lously) absorbed in a given plane. The analysis , includ-

(34) 
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FIG. 5. Normalized dimensionless density, v, velocity, y, 
and ion and electron temperatures, z, vs normalized dimen­
sionless distance, TJ; conduction region, a » l . 
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FIG. 6. Schematic dependence 
of length of plasma disturbed, 
velocity and temperatures as 
functions of »0, T, and a. 

ing heat conduction, viscosity, ion-electron energy ex­
change, and an electron flux l imi ter , shows that the mo­
tion is se l f -s imi lar and governed by a single parameter 
ace («OT/(/>O)2/3- For all reasonable values of «0, T , and 

(j)0, the motion is quasi-neutral , and for a » mjml the 
plasma is collision dominated (no flux l imiter) . 

For a « 1, a thermal wave c a r r i e s the energy, con­
vection and ion temperature being negligible. The order 
of magnitude of the se l f -s imi lar variables defined in 
Sec. Ill is 

^ ~ 0 e = O( l ) , e J ~ w - l ~ M = 0 ( a ) . 

Both n and u present a maximum for £ = 0 (a 1 / 2 ) . 

For a » 1, ion and electron temperatures a re p r ac ­
tically equal to each other. Close to the origin, there 
is a region where conduction and thermal energy convec­
tion a re comparable; a thin layer of cold and very dense 
plasma separates it from an isentropic region further 
ahead, where thermal and kinetic energies a r e of the 
same order , and which is bounded by a shock from the 
undisturbed plasma. The order of magnitude of the 
self -s imilar variables is 

Conduction region: 

« = 0 (a - 3 ' 7 ) , es = 0{a^), ^ = 0{am); 

Isentropic region: 

1=0(1), 9rO(c - l / 3 \ A^Ofa1'8); 

Intermediate layer: 

n = 0(a9/n), e} = 0(a-9imo), A£ = 0 ( a - 4 7 ' 2 1 0 ) ; 

where A£ is the thickness of the region considered; 
u = 0(aus) everywhere. There is also a shock p recu r ­
sor1 9 of thicknes s A g = o (a -5/f6). 

Qualitative information on the solution for a =0(1) 
may be obtained from the resul ts for a « 1 and a » l . 
For a large and decreasing, the density maximum and 
temperature minimum become less sharp , while A£ ; for 
all zones, approaches 0(1). Thus for a = 0(1), a shock 
will stand in the middle of a thermal wave; in other 
words , the precursor thickness and the distance of the 

shock to the origin a r e comparable and of order oi unity. 
Then, convection and conduction of energy a re compara­
ble everywhere; moreover, de, 6,, n, and u a re of 
order unity, and 8ei=6{. As a decreases further the 
shock collapses toward the origin until, at a certain a, 
becomes a weak discontinuity surface, where n and u 
present a maximum ( a « 1 case) . 

The dimensional variables xf, v, and Ts (j = e,i), at 
t = T, depend on a in the way 

V T 0 C (n0T)1/3Hf(a)a-5'6a: (<j,0T)i'%(a)a-
,"u , 

voz (noT)mu(a, ?)cT5'6°= {^)XI6u{a, Z)oCim, 

T^in^f'H^a, | ) a - 2 ' 3 cc ( 0 „ T ) ^ ( a , $<*** • 

These expressions a re schematically represented in 
Figs . 6 and 7; for large a, Ts presents different behav­
ior depending on the value of \. 

We next point out some qualitative conclusions of in­
teres t for l a se r fusion plasmas: 

(a) Both velocity (and therefore kinetic energy) and 
ion temperature , as function of a, present a maximum 
for a value of a of order unity. 

(b) Both production and flux of entropy depend cr i t ical­
ly on a since, f irst , Te^T{ for a»l and Te±T, for 
a « 0(1), and second, for a >"> 1 the motion of the p las ­
ma in the front is isentropic, while for a « 0(1) heat 
conduction is important everywhere. 

We notice here that these conclusions will remain valid 
for spherical geometries and for nonlinear pulses (if 
appropriate values of dep/dt are used instead of <PQ/T). 

Finally, some approximate resul ts by previous au­
thors may be recovered as certain limits of our solu­
tion: 

(1) For given <j>0 and ^ T - ° ° (<£^<£0, <p/t-~Q), a - 0 0 , 
and therefore 

xf/r~v~ (4>Q/n0) 
1/3 

(0o/«o); ,2/3 

This behavior has been previously obtained in Refs. 6 
and 7, for constant irradiation 0 = <p0) and long times 
(neglecting any transient) so that fi/t — 0. 
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FIG. 7. Schematic dependence 
of length of plasma disturbed, 
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(2) For given <p0 and f<*T-0 (<£^0O) <t>/t~°°), a - 0 , 
and therefore, 

A T ^ T 7 / ^ ) 1 ' 9 , Te~ (^oT/W a / 9 • 

This behavior has been previously obtained in Refs. 8 
and 9, for constant i rradiat ion </> = <£0, and short t imes 
(neglecting motion) so that (pa/t-*°°. One may also con­
sider the instantaneous deposition of energy per unit 
a rea W= 0 o r ; this leads to 

xriW^/nl)1", Te~(W*/Tn0f
/9. 
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APPENDIX A 

To study the viscous sublayer around f =1 /2 , for 
a « 1, we define 

?* = ( | - l/2)[aeel(0)/a]m , u* =1 -u , 

where 

CT = 0 .039[0 ( 1 (O)a] 6 / 74 / 2 + 0.00049[ee l(0)]5/2/AJ . 

Then, the momentum equation becomes 

a- = [l6a/ae e l<0)] : 1/16 (A3) 

S+sjV+^e^oXI-a*)" du* 
- w * = 0 ; (Al) 

it is easy to show that, aa ' has a maximum value of 
1.76, for A{ = 2 . 5 , at a =0.039. 

For £* - ± » , we find 

tt*<*a±(±£*)1/8. (A2) 

Matching to the solution of the inner layer for f - 1/2 
- 0 % yields, from Eq. (31), 

fl+ = -[«<rfl.i(0)]1/18C/e.'1(0) 

Equation (Al) together with the boundary conditions (A2), 
(A3) may now be solved numerically for any given a . 

APPENDIX B 

_ To study the cold, highly dense, narrow layer around 
?;, for a » 1 , we define 

z=z, J = v(4t] - 3y), P = vz. 

Then, system (19), to lowest order but retaining elec­
tron conduction, becomes 

4 P = * 
dJ_ 
dv ' 

VJ) dr\ dr)\ P 

zWi d(jPi,z\ / 3 \ 5 / 2 y 3 

dr\ 
,5/a d£ 

dv\ 

(Bla) 

(Bib) 

(Blc) 

In the isentropic solution (77 >r/), 

which is 0(a"3 / 7) for r\ -7j = 0(a"39 /7°). Defining a point 
i)x and a new variable r) 

r)x=r\ + bcr™m, ri = ariv-Vi) ( r > 3 9 / 7 0 ) , 

the isentropic solution, near rji, behaves as 

z ^Biiv - ij)3m - crmQBtfnz{l + a - m m o 37? /13)+ • • • , 

J<* a ' 3 / 7 5 . 2B2b
lom(l + a-nmi010v/13b) + • • • , 

P~B1BZ + --- , 

where we have set r = 39/28 to retain heat conduction in 
(Bl) to lowest order . 

We next expand the variables in the neighborhood of 

Vi 

z = a-9mB1b
3n3+a-*™°z1 + -

«/=af3/75.2£2&10/13+ar 

P=B1BZ+--- , 

so that (Bl) becomes 

, - 1 7 7 / H 0 J i + . (B2) 
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4 £ 2 = b%n3dJjdr\ , dP/drj = 0 , 

I 3 l r R5/2.15/26 d Z\ . 52 1 0 / 1 3 d ^ , 

then 

J1=4B2i7/63 /13+^, 

P=BlBz, 

zx =G + ffexp [ 52/8\5 / 2 265/26B? *") 3B,n 
L 3 \ 3 / y3B\'z ''J ' 13610/13 ' 

(B3a) 

(B5b) 

(B3c) 

w h e r e i^, G, # a r e c o n s t a n t s . C l e a r l y , the e x p a n s i o n 
(B2) c e a s e s t o b e v a l i d for -77 = 0 ( l n a ) . 

Defining 

E q . ( B l c ) , t o l o w e s t o r d e r , b e c o m e s 

(I) 
5/2 , , 3 ,?2 £7/2 5 2 

7 dr\c 

I n t e g r a t i n g once , we get 

3 (3 /8 ) 5 / 2 y 3 I 5 / 2 dt /dr j + 1 0 4 £ 2 6 1 0 / 1 3 ( l - Brf3'13) = 0 

w h o s e so lu t i on i s 

\5/2 3 y 3 / l 5 / 2 *3/2 
.3/13 £ 

-^(f) ^B^^\rv+B^ 3 

+ B2,6/13 |i/2+M^!! l n ^ - *i'V" \ 
+ -D10 2 1 + 2

 i n | l / 2 + £ l / 2 & 3 / 2 6 y • (B4) 

T h e n , fo r r\ — - °° 

z = c r 9 / , 0 I < 
- 9 / 7 0 ( ! ) ( 

260 £2& 10/13\2/5 

" 
(-ii): ,2/5 

3 y 

P = BtBz . 

M a t c h i n g to t h e so lu t ion of the conduc t ion r e g i o n g ives 

J - - a - 3 / 7 5 . 2 B 2 & 1 0 / 1 3 

b = ( 1 5 £ 2 5 1 / 2 6 £ 1 ) 1 3 / 1 0 ^ 0. 032 , 

« m l l l « a - 9 / T O B 1 6 s / l s - 0 . 7 7 a - B / T O , 
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