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A theory is presented for an end effect in the current response of a highly negative, cylindrical Langmuir 
probe in a collisionless plasma flow. Under conditions where the ratio of probe radius to Debye length 
is small and the ion-acoustic Mach number is large, the current exhibits a strong peak when the probe 
axis is brought into alignment with the flow direction. Closed formulas are given for the maximum and 
angular half-width of the peak, and universal graphical results are presented for the entire peak structure. 
The theory shows very good agreement with experimental data. The use of the end effect for diagnostic 
purposes, in particular, for the determination of the ion temperature, is discussed. 

I. INTRODUCTION 

The theory of an infinitely long, cylindrical Langmuir 
probe in a collisionless, quiescent plasma is particularly 
simple when the probe radius rp is smaller than the 
Debye length AD, since then the current is "orbital 
motion limited"1 and the old Langmuir analysis2 is 
valid. The analysis is approximately valid even in the 
more general case in which the plasma is in motion 
relative to the probe.2 If 6 is the angle between probe 
axis and flow direction, and — eVp and miU2^>icTe) KTI 
(where Vp is the applied potential, KT6 is the electron 
thermal energy and KT( and miUi/2 are the ion thermal 
and directed energies, respectively) the current Jm to 
a probe of length I, as I—><*>, is given by2 

JjlKON&Usinfl rp[_\.-2ZieVjmiW sin20]1'2, (1) 

where N0 is the plasma density and Z{ is the ion charge 
number. Notice that according to Eq. (1) / » decreases 
monotonically as 6 goes from \v to zero. 

In any actual experiment, however, I must be finite. 
Recently, (ion attracting probe) current data have 
been reported from both satellite3 and laboratory4 exper­
iments, for rp«AD, milP^ZiicTt, and l/rp as high as 
820, that show a striking disagreement with / „ as 
given in Eq. (1). The current observed / was close 
to / „ as long as 6 was not small, but as the probe 
approached the aligned orientation J exhibited a sharp 
rise that peaked at 0=0 at a value many times larger 
than 7W(0=O). This phenomenon may be explained3,6 

as an end effect due to the finite length of the probe. 
This shows that extremely long probes may be neces­
sary if Eq. (1) is to be applicable in the interpretation 
of probe characteristics. 

Of more interest for diagnostic purposes, however, 
is the end effect in itself. The peak may be quite strong, 
and it should be possible to use it in the determination 
of the relative direction of the plasma flow, and of a 
number of plasma parameters. Of particular interest 
is the fact that both the height and the half-width of 
the peak are often sensitive to the ion temperature. 
This is very important because no other feature of 
probe response is known to be noticeably dependent 
on Ti. 

Bettinger and Chen3 were the first authors to present 
a theoretical, although rough, analysis of the end effect; 
an important limitation of their approach, as pointed 
out in Ref. 5, was that I had to exceed a minimum 
value lm [lmtt3Xv(m.iU2/ZiKTey

12']. For l<Jm some nu­
merical computations were carried out by Hester and 
Sonin6for0=O. 

The present analysis is valid for AD<3CJ</m and 9 
arbitrary within the peak region, and starts from a 
similarity, suggested in Ref. 5, between the present 
steady-flow problem and a time-dependent one involv­
ing a quiescent plasma. In the next section, the basic 
points of a theory6 recently developed for the time-
dependent problem are introduced. In Sec. I l l ana­
lytical and graphical results for the main features of 
the end effect are presented and compared with experi­
mental data. The applications of the effect are dis­
cussed in Sec, IV, and Bettinger and Chen's analysis 
is discussed in an Appendix. 

Our analysis is based on a number of approximations. 
Obviously justifiable are the use of Boltzmann's law 
for the electron density, and the neglect of ion thermal 
motion in the direction of the probe axis (Sec. I I ) . 
The validity of the Hester-Sonin similarity rests upon 
several simplifications: (1) the ion velocity along the 
probe axis is approximated by the unperturbed value 
U; the second derivatives of the potential (2) along 
the probe axis, and (3) with respect to an azimuthal 
angle around that axis, are neglected in Poisson's 
equation; (4) the field ahead of the probe tip, and (5) 
the change in ion angular momentum, are also neglected. 
Approximations (1) and (2) are justified in Sec. II, 
and approximations (3), (4), and (5), in the Appendix. 
The solution of the time-dependent model problem it­
self is obtained by approximating the potential field in 
a given neighborhood of the probe by a certain time-
independent field (Sec. I I ) . 

II. BASIC FORMULATION 

We consider a long, cylindrical Langmuir probe with 
length I and radius rp in a collisionless plasma with 
unperturbed thermal energies KTS and uTi, density No 
and bulk velocity relative to the probe U at an angle 6 
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with its axis. The probe potential VP is negative such 
that 

meUK<KTe«-eVp; (2) 

the electron current is then negligible and the per­
turbed electron density is given by Boltzmann's law 

Ne=N<>exp(-t), (3) 

where \j/=—eV/KTe is the nondimensional potential 
field. Defining 

p=Ti/ZiTe, M=U/\wp{, (4) 

1=1/\D, e=rP/\o, (5) 

we assume that M and I are large, e is small and /?< 1; 
M is the ion-acoustic Mach number, XD= {KTe/AirN^)xn 

is the electron Debye length, wpl= (4iriVoZjeVw,-)1/2 is 
the ion plasma frequency and ?»,• and Z,- are the ion 
mass and charge number. Iij(z) is the current density 
at the probe at distance z from its tip,7 the average 
current density 

dz 

can then be written as a nondimensional function 

3lu= (J/J*)(l M, 6, ft *„, 6), (6) 

whereyw=j(Z-*oo); according to Eq. (1) 

jj&rWifiU &ind[\-2ZieVP/miU
i sin2)?]1'2. (7) 

The total current to the probe i s / =2irrpljx times j/jx. 
To obtain this last quantity, the ion Vlasov equation 
must be solved together with Eq. (3) and Poisson's 
equation. The last one is 

rl~P dP
r dp^P*d<t?^~Pd? e " ' w 

we have introduced cylindrical coordinates r, <£, and z 
and have defined dimensionless quantities 

P=r/rp, t = Z/l, v{=(ZiNi~N.)/Na, (9) 

where N, is the perturbed ion density. ^ equals ^j,= 
— eVp/nTe, at the probe and zero at infinity. The ion 
distribution function far ahead of the probe must also 
be known [even though LOKKTVW,-)1 '2] and here will 
be assumed to be Maxwellian. [Thermal velocities may, 
and will, be neglected in the motion along the z axis, 
but thermal motion in the (p, <f>) plane is of fundamen­
tal importance when 8 is small.] The probe surface is 
assumed to be perfectly absorbing. 

Let us begin by considering the limit 0 = 0 (which 
also implies d/d$=0). Hester and Sonin6 studied this 
limit and pointed out that, if I and M2/\pp are so large 
that dV/df2 can be neglected in Eq. (8) and the ion 
velocity along the z axis can be well approximated 
by its unperturbed value U, the steady-flow problem 

1 ' 1 
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FIG. 1. Potential field parameter Y, introduced in Eq. (15), 
versus nondimensional probe potential \j/p and nondimensional 
probe radius e (defined in first paragraph of Sec. II). 

is equivalent to a time-dependent one, wherein an 
infinitely long probe is immersed at time t=0 in an 
unperturbed quiescent plasma, all other conditions be­
ing the same as those of the original problem. The 
time of flight of the ions down the probe z/U and the 
current density at z are, respectively, equivalent to the 
time / and the (spatially uniform) current density at I. 
As z{t) increases, the ion distribution function readjusts 
itself and, if / is large enough, the "infinite" probe 
(steady state) limiting current density i«,(0=O) will 
eventually be reached. In the context of the time-
dependent problem we can write 

(0=0) = ̂  f m 
i«(»=o) 

dt, (10) 

where 
h=l/U (11) 

is the time equivalent of the length of the probe in the 
flowing plasma. 

The time-dependent problem has recently been ana­
lyzed by Sanmartin.6 His approach is based on the 
following points: (i) I t is possible to derive an accurate 
expression for the electric field dx/z/dp (for limited 
values of p) without simultaneously solving the ion 
Vlasov equation. Integrating Poisson's equation 

P a P ~ = e 2 e 
op dp 

(12) 

yields a formal expression 

^ - W W + ^ ^ D ^ O ) , (13) 
op p Lp 

where — \[/P8(t) is the field at the probe at time / and 
(c) is defined by 

2 

( P 2 - 1 ) < K P , 0 > = / P < Z ( P ' 2 > ( P ' , 0 . (14) 
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FIG. 2. Diagram showing regions A* and B* for simplest 
unperturbed ion distribution function in plane transverse to 
probe axis. A* is the set of the positions at z=0 (probe tip) of 
those ions that will strike the probe at some z>0. 

S(t) is found to change very little from t=0 to /= oo 
so that an intermediate constant value 5 can be used 
inEq. (13); one finds 

r 1 = l n 6 - 1 + F ( e , ^ ) , (15) 

where Y is given in Fig. 1. (v) varies over the entire 
range l>{i ' )>0; however, in a certain neighborhood 
of the probe, roughly p <pm^ (2\pp8)ll2e~1, (v) is found 
to be always close to a central value P=0.80. The error 
in the calculation of the current, resulting from these 
approximations, amounts to a few per cent.6 Thus, for 
p <pm, the electric field may be correctly approximated 
by a function that only depends on p (conservative 
central field) 

^ZjM+ £(,_!). 
dp p Lp 

Although for e small the concept of a sheath has little 
meaning ("orbital motion limited" current implies an 
infinite sheath in the Langmuir sense2) both pm and 
exp(5_1), which are close to each other, may be thought 
of as characteristic sheath radii. If tm is the typical time 
of flight to the probe of ions that were at the boundary 
of that sheath at t=Q, it is clear that the theory is 
only valid for, roughly, t <tm. 

(ii) With the field known, ion trajectories may be 
computed explicitly. Moreover, the current to the 
probe is linear in the (unperturbed) ion distribution 
function at t=0,fo(v±*). I t suffices, therefore, to deter­
mine the current for the simplest possible /0, that for 
which all ions have velocities of the same magnitude 
v±* and direction (parallel to an arbitrarily chosen 
polar axis); see Fig. 2. Once that current J*(vi*)/jx 

has been found, the current for any other /o is given by 
a definite integral, JMvA*)dvi*j*(v±*)/jM. To find 
j*/j» o n e c a n u s e energy and angular momentum con­
servation to divide the (p, <j>) plane at t=0 in two mu­
tually exclusive regions A*(vx*) and B*(vx*)\ a point 

(p, 4>) belongs to A* if an ion having such initial co­
ordinates, and moving under the field given by Eq. 
(16), strikes the probe at some />0. The time of flight 
to the probe of every point in A* can be computed and, 
therefore, a function a*(v±*, t) can be determined which 
represents the area of that part of A* which has been 
"collected" by the time /. The current per unit length 
of probe is then 

2Trrpj*{t) = Noeda*/dt (17) 

and defining a(t) = fa*dvx*f0(vx*), we have 

2irrpj(t) = Noeda/dt. (18) 

The average value of j is 

J=(N0e/2*rp)[a(t)/Q (19) 

and in nondimensional form 

j/u = ed(r)/(S^yi\ (20) 

where r = wPit and d is a nondimensional form of the 
areaa=a/r„2 . 

The general behavior of j/jx can be determined by 
a qualitative discussion of J*/jx assuming that v±* is 
of the order of the characteristic ion velocity. The con­
dition for a point (p0, </>o) to belong to A* follows from 
the equations of motion of an ion with initial coordi­
nates (p0, <£o). One finds the condition 

| sin 0o |<G(po)/po, (21) 

G= [ l+lnp0
2 /a*-KPo2-1 )/« V ] 1 / 2 , 

where 

o* = 20*/lM, p* = mi(v±*y/2Z{KTe. (22) 

For P̂>5>1 and fi*< 1, as assumed here, we have a*<JCl. 
For all a*< l there is a value pq such that G(pa)/pg= 1 
and then G(po)/po>l for po<pg; PA(<£), the boundary 
of A* given by Eq. (21), has the form indicated in 
Fig. 2.8 [As the ion temperature increases, a* goes up 
and point q moves down reaching p = l at «*=1; for 
a*>l , we have G(po)/po<l for all po>l-] Now, 
dty/dp^p-1 for, say, p<pm/3 [see Eq. (16)] and the 
potential field is then logarithmic. The mean velocity 
of an ion with po in that region, in its trip to the probe, 
is nearly independent of po; specifically, po/To~Pm, 
where ro(po, 4>o) is the time of flight to the probe. 
Therefore, as long as po<P9, 

#*~PmV2~iMrV<2 (23) 
and 

J*/ioo~e«*/^1/2'~^P
1/VS/6. (24) 

j*/j«> grows linearly with r until T=T9=TO(PO=P9 , 
<fo=!ir), when d* switches from a quadratic growth in 
Po to a nearly linear one; for even larger T, J*/j» will 
actually decline because ions from outside the di/'/dp~ 
p_1 region will begin to be collected and both field and 
ion mean velocity, po/ro, will rapidly decrease. Neglect-
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ing logarithmic variations, from (21) we get 

Pq~(+M*y2 (25) 
so that putting r=r<f^pj pm in (24) we obtain the 
peak in J*//*: 

J*/J«~(1<P/P*y'% (26) 
which can be far greater than unity and depends on jl*. 
The overshoot represented by (26) may be seen as 
caused by the sudden setup of the potential field which 
traps low angular momentum ions in the neighborhood 
of the probe; when /3* decreases, pt increases and the 
low angular momentum region increases too. For de­
creasing ion temperature, a critical /3* is reached for 
which ps moves out of the cty/dp~p_1 region; the growth 
of J*/i», as given in (24), is then stopped by the rapid 
decrease of po/ro, and not by the fact that the boundary 
of A* has been reached. The effect is the same for all 
smaller /3* so that the current is now insensitive to that 
quantity. The critical value of /3* is found by putting 
pg^Pm, i.e., r3<~l, 

/3*~e2; (27) 

the maximum current peak possible is 

r/j«~wnVt- (28) 
According to the Hester-Sonin similarity, the func­

tions given in Eqs. (20) and (6) (for 0=0) are the 
same. Equation (20) depends on T, e, /3, and \pp. In 
the flow problem the value^ corresponding to r is T ; S 
Wpiti=l/M; the parameters I and M in Eq. (6) appear, 
therefore, combined in a single one. All the qualitative 
results derived above for j/jx need not be repeated and 
we shall only add two new points, (a) For the present 
problem, Eqs. (19) and (20) become 

J = * « , ( » ) 

j/j.=\jM/(tyPyi*tyi(i/M). (30) 

Equation (29) makes clear the meaning of a(l/U): 
The total current to the probe is 

J=2*rplJ=NoeUa{l/U), (31) 

so that a(l/U) is an effective probe cross section in the 
plane perpendicular to the flow, (b) As already indi­
cated, the analysis of Ref. 6 is only valid for t"<tm; one 
finds that rm=upitm^3. Thus, the results of the present 
paper will be valid for, roughly, 

1<3M. {32) 

We note that the peak in j/jx occurs at ivfel. 
The theory given above explains the large value of 

j/jx at 0 = 0. It can also explain its sharp decrease when 
the probe is turned by a small angle. For 6^0, the 
problem changes in three respects. First, the unper­
turbed distribution function in the (p, <j>) plane,/o(vj.*), 

now has a drift velocity U sin0; second, the Laplacian 
in Poisson's equation includes the term p-~2d2\l//d<t>2; 
finally, angular momentum is not conserved. We shall 
now assume that the last two changes have no sub­
stantial effect on the current to the probe (this point 
is discussed in the appendix). Then, the results for 
J*(vx*)/jx, vx* arbitrary, are not changed; the drift 
is taken into account by using the new form of/0(VJ.*), 
which now has two characteristic velocities, (i<Ti/mi)m 

and U sin0. It is clear, therefore, that Eq. (6) may be 
written as 

J/U= 0/J»)l(i/M cos0), e, /S, i(M* sin20), * , ] . (33) 

Now the characteristic values of 0* and a* to be used 
in our earlier discussion on J*/jx are not /3*~j8 and 
a*~2/3/\l/pd but, say, 

0*ttl3+i (if2 sin20) =pT, (34) 

a*tt(2/tP8)\j3+i(M2 sitfd)l=aT (35) 

[although the effects of /3 and M% sin20/2 in (33) are 
not exactly additive, they may be considered so in a 
qualitative discussion]. As long as 0 is so small that 
iflrPy/3, the current remains fairly constant. When 8 be­
comes of the order of (2^)1'2/ikf or (2e2)1'2/ikf, which­
ever is the largest, the current begins to decrease. 
When 6 is so large that a r > l , we have p 3 <l and so 
G(po)/po in Eq. (21) is always less than one. Thus, d* 
always grows (almost) linearly in po, while po/ro remains 
fairly constant. Therefore, j*/jxttl (except for l/M cos0 
very small). We note that, in fact, the peak in the 
current disappears for 0 smaller than the value for 
which ar= 1. 

Before using the results of the preceding time-
dependent theory in the flow problem, we must ex­
amine the assumptions behind the Hester-Sonin sim­
ilarity more carefully. First, if the d^/df2 term is re­
tained in Poisson's equation, Eq. (13) would read 

dp p 2p \ w W <3f2/ VH 

where ( ) has the same meaning of Eq. (14) and we 
have used the variable f equivalent to T. We want to 
find some quantitative condition for writing 

(v-hwy/ep^iv) (37) 
in Eq. (36). The equation itself can be used to obtain 
d'ty/df2 by integrating once with respect to p and differ­
entiating twice with respect to f. If (37) is valid, we 
get 
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so that 

\ flJV 2P L 

Both (21np—1) and p2 have maxima at the largest 
value of p considered; thus, we have 

\ d ? / ^ 2P 

/ <P«-* j-JdS-iy , l a 2 A 

We estimate ( / r V ^ f ^ A r V A ^ r H ^ w J - i " 1 ^ = 0 ) , 
(PS-1/d^PH2Ad-\ d*v/dpffzs2Av, for the typical values 
of « and ^j, to be considered later, 5_1(f=°o) — 
8~1(r = 0)«0.1S and AJ><0.20.6 Thus, we obtain 

< ' 
-l-. * * \ 

# • / , « , . 
a<- .2 0.1. (38) 

Since 45 is never far from unity and the absolute error 
in writing (e) = V is typically 0.16 we find that the con­
dition for the neglect of dV/df2 in Poisson's equation 
is roughly 

l>fP 
1/2 (39) 

Second, if the z equation of motion of an ion is twice 
integrated up to z=l, with initial conditions z=0 and 
dz/dt= U, we get an equation for the time /; that the 
ion takes to travel the probe 

l=(EV/)[l+(W)(ft/2M2)], 
where fa is given by 

Jn of 

(40) 

(41) 

and this integral is along the trajectory of the ion. If 
o^/of is small enough, the bracket in Eq. (40) becomes 
unity and we get the uniform motion assumption, 
h — l/U, on which the Hester-Sonin similarity is based. 
This can only be true if fa/21iP is very small. Integrat­
ing Eq. (36) with respect to p and differentiating with 
respect to f we get 

# JSr1 / V 2 - l , /dv\ 

so that, at most, 

$(/2M>&0A(typ/4Mi)> (43) 

where we considered the worst possible case (initial p 
equal to pm) and estimated <B-y<Zf;=s0.15, dy/dfSrfO.20. 

From Eq. (43) we conclude that if 

4>P<M*, (44) 

we have U—l/lJ with an error of less than 3%. 
Third, we note that 1) to actually obtain the current 

to the probe we must add the expression N(>eUirrp
2 

[the front end of the probe was excluded from a(l/U)~\ 
to Eq. (31), and 2) Sanmartin's analysis concerned a 
probe whose potential was switched from zero to Vp 

at t = 0 (instead of a probe suddenly immersed in a 
plasma). The obvious corrections resulting from points 
1) and 2) are only important if TJ<SC1, but will be 
incorporated into the results in the next section. 

III. THE ION CURRENT 

The derivation of an expression for d* (and thus 
for J*/jx also) is detailed in the appendix of Ref. 6. 
The corrections indicated in the last paragraph above 
are equivalent to setting d?* = 0 in that appendix. 
Neglecting some small terms (that amount to less than 
2% for e, a*, and xf/f1 less than 0.1) we get (writing 
T=rml/My 

j*/u=bM/mPyiny^ 
eM J2 

^ 7TO"5 \ ~ 
IT (typyn 

a*<h, 

--© + 

(45) 

(a*A-l)1/2" 
a*/h 

+ A 2 ^ 
a* lncr2 '-;-(?r-;(T-'y 

a*>h, (46) 
where a is given by 

a erf (kw) w = (2<ffJyiH/(T+0.6li/M^Me (47) 

and 
A = lncr2/(<r2-l). (48) 

The actual nondimensional ion current j/jx may be 
obtained from 

j/u=Sdvx*fo(.vS)(J*/u)- (49) 

The unperturbed ion distribution function in the plane 
z=0 is Maxwellian with a drift U sind so that from 
Eq. (49) we get 

n r2r /•« 

r- = / dy v x*dv±* -—'— 
0 2irKi; 

Xexp \ ~ [(u±*)2+^2 sin20 
\2KTi 

•2v±*U smB COSY] flu 

= r ^ e x P ( - ^ e x p ( - ^ ) / o ( 2 - % - y - , (50) 

file:///2KTi
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where h is a modified Bessel function and 

7,= 2/3(o-2— 1)/,M W2 , n2 = M2 sin2e(<r2-l)/W ln<r2. 

(51) 

Using Eqs. (45) and (46) we can write (50) as 

S/U= C7re<rW/(8^)V2l]Z(M, V, *), (52) 

where 

I s I o f e ^ + A U l ) , ^=2(l-<r- 2) /W 2 , (53) 

and 

XoGu, )»)« W - i T 1 exp ( - - J J dv 

Xi(«, r))=Xy!"'^yr1 exp ( - - J J dv exp ^ j 

l - l s i n - i t r i / j - ^ ^ - l J V J 
IT IT 

(55) x'-(^)-
It has not been possible to carry out the integrations 

in (54) and (55) analytically. A number of limiting 
expressions may easily be derived, however. For ??—>0 
(cold ion limit) we get 

X^+sXx^^ 1, »<1 

_ 2 
IT 

' • -i - i . 0*2-i)1/2 ' 
sin V *+ • ;—• 

M2 

+ l - - s i n - V _ 1 - ~ ( M 2 - 1 ) 1 / 2 

IT IT 

n>l. (56) 

For (U—>0, 

X0
0"+sXi0"= erfr/-i'2+2(7r>;)-1/2 

Xexp(-7/-1)-27?-1 erfci?"1'2 

+slv-
lEl(2v-

i)-2(TrV)-m exp(-T)-1) erfc»r1/2]. (57) 

For »? fixed and p—><*>, 

X0
w"+^Xi'"^Zof'0+iX1''

l)Sri(4/7rAt)-*(2AM); (58) 

all curves approach the cold ion limit. Finally, for /i2/?? 
fixed and »)—»«> 

Xo"r>+sX1'"i^}[i/(irr,yii'] 

Xexp(-M
2/2r,)Jo(M2/2'))(l-^); (59) 
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FIG. 3. Normalized current peak X= (23/Vp1/2 T̂e<T2JW")j/i„ 
versus normalized ion temperature rj^2p(<Ti— 1)/^P6 W2, angle 
variable MSC(<^—1)/IM hw2]1'2 M sinfl, and parameter s(cr) = 
2(1—<r-2)/W2, full line s=0, dashed line s = i (X is linear in s). 
8 and o- (a normalized probe length) are defined in Eqs. (15) 
and (47); for other parameters, see first paragraph of Sec. II. 

as M2/2i)—»0 this equation approaches 4(7nj)~1/2(l — Is), 
which is the limit of Eq. (57) as ij->oo. Equation (59) 
can be also rewritten as 

(54) Xr+sXS'tt (4/TTM) ( M 2 A ) 1/2 

Xexp(-MV27))/o(M2A)(27r)1 '2(l-|.); (60) 

as/*2/2ij-»°°,Eq. (60) approaches 4(1—£s)/ir/*, which 
is the limit of Eq. (56) as /x-*00 • 

X^Xo+sXj. is given graphically in Fig. 3 as a func­
tion of n for several values of rj. For each i), curves for 
two values of s have been represented (s=0, s=%); 
interpolation and extrapolation for different s are 
immediate because X is linear in s. We note that X is 
practically always very close to X0. The function X(p) 
is a direct representation of the peak structure, since 
X~j/jx and ;u<~0(sin0:=^0 for the angles of interest).10 

In the computation of X an overshoot was observed 
for the largest values of r\ in Fig. 3: in approaching the 
cold ions (i, = 0) curve, each (large) 17 = const curve 
overshot it and then approached it from above. This 
effect was so small that it did not show up clearly in 
the figure, and all curves were interrupted when first 
meeting the i\ = 0 curve. The existence of the overshoot 
may be seen explicitly in Eq. (60), valid for large rj, 
since the function 

(27ry)»2exp(-:y)/o(:y), 

which is zero at ;y = 0 and unity at y= 00, has a maxi­
mum 1.17, at y^O.80. Actually, this would indicate 
that the overshoot should be substantial; thus, one may 
conclude that for the moderately large values of i\ 
considered here, finite ij effects partially mask the over­
shoot. 

The fact that the ?) = 0 curve is not an upper bound 
of the family »j = const implies that the seemingly ob­
vious condition <9X/dr/<0 is violated for some values 
of r) and n. That this is possible may easily be under­
stood by noticing that if vi* is the vectorial composi-
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FIG. 4. Auxiliary functions Xo0' and Xi0' [see Eq. (57) ] versus 
normalized ion temperature i j s ^ f u ' - l l / y w , The maximum 
of the normalized current (occurring at 0=0) is I s 
(2s^p

1IH/mffm)j/jm=X^+sXi^, where i(<r) = 2(l-o-2)/W2 . S 
and o- (a normalized probe length) are defined in Eqs. (15) and 
(47); for other parameters, see first paragraph of Sec. II. 

tion of an equiprobably oriented (thermal) velocity 
and a directed velocity (the drift) forming an angle y 
with each other, an increment of either component may 
decrease the value of vx* for a certain range of values 
of y; under some conditions the increase in current in 
this range may dominate the decrease that appears at 
all other values of 7. 

From Eqs. (56) and (57), closed formulas may be 
derived for the main features of the current peak, that 
is, its maximum and its angular half-width 0i/2 (the 
width of the peak at half-value of its maximum). For 
the maximum we have 

j/j*> Uax==(jr/i«,)(^ = 0) 

= \JKO*M/ (fyv)
llitXX<P'+sXi0'']; (61) 

the functions Xo0" and Xi0', given in Eq. (57), are 
graphically represented in Fig. 4 for convenience. For 
the half-width we have the condition 

Xd"+sXi"=*O.SlX0°'+sXi0'l, (62) 

where, from Eq. (52), 

M=Mi/2=lf^/2(<r2-l)1/2/2(^5 lna2)1'2. (63) 

We now note that all curves in Fig. 3 meet the cold-ion 
limiting curve at values of n clearly smaller than /t1/2. 
Thus, we can rewrite Eq. (62) as 

X«"°+JZI*°=. 0.5[X0<"+5Xi0']; (64) 

this equation only involves the functions given in Eqs. 
(56) and (57). A useful, explicit approximation for 01/2 

may be obtained by neglecting the dependence on s 
and writing 

Xo"°?»4/7r[>2+ (4 /TT) 2 - l ] - 1 ' 2 

which has an error of less than 3%; we then have 

XC(8/7rZ0°')2+l-(4/7r)2]1/2. (65) 

Equation (64) has been solved exactly for s = § and 
s=\) fiipW is given graphically in Fig. 5. 

Figure 6 presents j/j„ |mnx versus l/M for a fixed t//p 

and several values of «, from both Eq. (61) and the 
experimental data discussed in Ref. 5. Theoretical 
curves are presented for both /?=10~2 (solid line) and 
/?=10-3 (dashed line). In Ref. 5 it was estimated that 
in the experiments /? was of order 10-2 or less, and it 
was assumed that a cold-ion theory would, therefore, 
apply. Our analysis shows that the condition for a 
cold-ion theory is not /3<<Cl but ?/<<Cl (or more weakly, 
?;<0.5, say); this shows^up clearly in Fig. 6 for the 
largest values of e-1 and l/M. The agreement with the 
experiments is excellent for e=0.009 and 0.041 if ffpa 
10-2; for € = 0.08, the error is no more than 20% (ex­
cept for a datum obviously in error), still within the 
error of the measurements. If fi were 2X10-2, say, the 
over-all agreement would improve greatly. 

Hester and Sonin's experiments exhibited a linear 
dependence of the current on the potential; this is also 
in agreement with our theory since j x

r ^ J ^ P
l l i and j/jx

r^j 

$v
w. On the other hand, Bettinger and Chen's theory 

predicted J^^j,3 '2 . 
Figure 7 presents a nondimensional half-width vs 

l/M for the same conditions of Fig. 6, from both theory 
(full line, /3=10~2, dashed line, /3=10~3) and experi­
ments. The half-width 0i/2 is not #1/2; it is defined in the 
same way as dm, except that now the peak is defined 
as the current in excess of that predicted for an infinite 
probe. [0I/2]BC is the prediction from the theory of 
Bettinger and Chen for cold ions. The use of 0i/2 allows 
direct comparison with the experiments of Ref. 5. The 
agreement is, in general, good for 0?ylO_2. 

The experiments showed no dependence of 0\/2 (or of 
0i/2) on ^j , ; this is also in complete agreement with our 
theory, as is easily verified in Eq. (65) (on the other 
hand, the theory of Ref. 3 predicted Bm~\pp~

lli). We 
also note that for cold ions, our theory predicts that 
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FIG. 5. Normalized angular half-width of current peak, 
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2)/ln<r2. 5 and 
<r (a normalized probe length) are defined in Eqs. (15) and (47); 
for other parameters see first paragraph of Sec. II. 
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0i/2 is linear in e; this would explain the claim in Ref. 5 
that the experimental data for 0I/2/[0I/2]BC correlate in 
a single universal curve. However, we point out that 
for many of the experimental points of Fig. 7, as in 
Fig. 6, the ions cannot be considered as cold (»?>0.5). 
(Even for cold ions, all curves do not exactly meet 
except for small l/M, because of logarithmic effects.) 

IV. CONCLUSIONS 

The present paper deals with a significant end effect 
in the current response of a cylindrical Langmuir 
probe in a collisionless plasma flow. Infinitely-long-
probe theory predicts that when the angle 6 between 
probe axis and flow direction decreases, the current 
experiences a smooth decrease; for a finite probe, how­
ever, the current may exhibit a strikingly different 
behavior, in the form of a strong peak at small 0. The 
peak, which may be substantial even for very long 
probes, appears when the potential is highly negative 
and both the ion-acoustic Mach number M and the 
ratio of Debye length to probe radius e~l are large. 

The only analyses of this end effect available until 
now were a rough theory for the regime 1>3M (l being 
the ratio of probe length to Debye length)8 and some 
numerical computations for 1<3M and 0=O.6 Here, 
the regime I <3M is rigorously studied for 6 arbitrary 
within the peak region. The unperturbed ion distribu­
tion function is supposed to be Maxwellian. It is found 
that if j is the current density at the probe surface, 
averaged over that surface, and jx=j(I—»°o) [given in 
Eq. (7)], then j/j„ may be written as 

J/U=>J/U$/M, e, p, *„ M6), (66) 

where fi is the temperature ratio and \f/p=—eVp/i<Te 
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FIG. 6. Comparison of maximum nondimensional current 
density,Aj//co(^=0), versus nondimensional probe radius e and 
length l/M, for ^,, = 15, from both experiments (Ref. 5) and 
present theory (full lines /3=10-2, dashed lines /3=10~3). All 
parameters are defined in first paragraph of Sec. I I . 
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FIG. 7. Comparison of angular half-width (as defined in Ref. 
S) from both experiments (Ref. 5) and present theory; same 
conditions of Fig. 6. 

(Vp being the probe potential and Te the electron 
temperature). Specifically, it is found that 

[ (8^)^ /7reJf^] j / i M = X(M, „, s), (52') 

where 8, <x, n, t), and s are defined in Eqs. (15), (47), 
(51), and (53). The function F(e, fp) in Eq. (15) is 
given in Fig. 1. In Eq. (51), sin0^0, since only narrow 
peaks are of interest. 

An integral representation of the function X is given 
in Eqs. (53)—(55). Since X is linear in $, a single 
graph of the family of curves X{ix) with i jasa param­
eter, for two values of s, covers all conditions; this 
graph is given in Fig. 3. This figure represents the peak 
structure j/jx(d), except for scaling factors, since 
X-^j/jv, arid )x~d. Explicit formulas for the main fea­
tures of the peak (its maximum and its half-width) 
are presented in Eqs. (61), (64), and (56)—(57); these 
quantities can also be obtained graphically from Figs. 
4 and 5. All predictions of the theory agree well with 
the experimental data (see Figs. 6 and 7). 

The end effect may be advantageously used for 
diagnostic purposes. The first point to note is that the 
electron temperature has no effect on the peak: the 
dependence of j/jK on Te cancels out except by way of 
5; such dependence is very weak since the logarithmic 
variation in the term lne-1 is substantially balanced 
by F. Since j x does not depend on Te either, other 
aspects of probe response (usually the slope of the 
logarithm of the current for weakly negative poten­
tials) must be used to determine Te, if desired. The 
possibility of determining T{ without knowing Te is 
itself an advantage. 

Apart from parameters not related to the plasma 
(U, I, rp) and a weak (logarithmic) functional depend­
ency through 8 and ln<r, the maximum and half-width 



1142 J U A N R. S A N M A R T I N 

of the current peak can be written as 

Vf^NtZi/mi, KTi/tm), (67) 

$ii*~Fi(N*Zi/m{, KTi/mt), (68) 

where F\ and F% are known functions, No is the plasma 
density and Zt, nti, Ti are the ion charge number, 
mass, and temperature. Since 

7(0=TT/2)~No(l-2ZieVp/miU*)W, (69) 

J(0 = Tr/2)/J(6=0, l-*°° ) = (l-mtV*/2Z{eVpyi*, 

(70) 

it is possible to determine No, Vp, nti/Zi, and Tt/Zi. 
The value J (6=0, /—»<») must be extrapolated from 
experimental data at moderately small 0; if such extrap­
olation is not accurate enough, an equation []Eq. (70)] 
is lost and some additional datum is required to find 
all four No, VP) nti/Zj, Ti/Z{. On the other hand, for 
cold enough ions, say r?<0.5, we have Xc^X(r)=0) and 
one of the unknowns is lost (Ti cannot be determined). 

To the above-mentioned conditions on e, \pp, ••• 
necessary for the presentation of the end effect, some 
additional conditions, due to the simplifications of the 
analysis, should be pointed out: 

1«2<3M, 

20/~8«tP<M\ +p<h 
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APPENDIX 

When the probe is not exactly aligned with the flow, 
the ion density is not centrally symmetric because of 
the drift U sinO. In Sec. I I it was assumed that this 
asymmetry had no visible effect on the ion current to 
the probe. The asymmetry shows up twice in the equa­
tion for the radial motion of an ion 

d2p d\p e2 T r d\b I2 

where X0 is the nondimensional angular momentum at 
time T=o>pit=0 (when the ion crosses the 2 = 0 plane) 
and the second term in the bracket represents the 
change in angular momentum due to the azimuthal 
field. When 0=0, we have d\p/d<f>=0 and it is possible 
to determine the region A* and to find the function 
d*(r) in Eq. (20) by using Eq. (16) in (Al). If 6^0, 
however, we have dip/d^O; d\p/dp now depends on 4>, 

and the second term in the bracket in (Al) does not 
vanish. 

To get an estimate of the importance of the asym­
metry, we first note that in the plane 3=0 the ion 
density is uniform. As 0 increases the ions readjust 
their distribution function. If the probe is sufficiently 
long, the "infinite" (two-dimensional) limit density 
is finally reached. For simplicity of discussion assume 
that the limit charge density can be written as 

t>» = Ve«,+v<t,»cos<p, (A2) 

where vcx and c#00 are functions of p only. A (very) 
conservative estimate of v^„ for p<pm would be v$„— 1 
[note that within the 6 range of interest, the peak, we 
have a r < l or (M sin0)i/2\l/p<8/2«.lj, for p>pm, we 
may take c*,M=0. If the probe is sufficiently short, the 
asymmetry has no time to develop. A conservative 
estimate of the time required to reach the limit charge 
density (A2) would be an ion plasma period or 2= 2vM. 
The longest probes considered here have IttSM. Thus, 
we consider IPZJSM and assume 

^(2=0) = 0, 

Pi(z—l)= (3/2ir)^M cos(p, 

and a linear growth from v$(z=0) to v$(z=l). It is 
then possible to determine the ^-dependent part of ^ 
and its relative importance in Eq. (Al). We find that, 
under the worst conditions, the <p dependence affects 
no result by more than 10%. Because of the conserva­
tive conditions used, this should justify our neglecting 
d<p/d<f> in Sec. II. 

There is an assumption underlying the preceding dis­
cussion and the main body of our analysis that deserves 
consideration. This assumption is that the ion distri­
bution function at s=0 is the unperturbed distribution 
function far ahead of the probe. Obviously, the field 
ahead of the probe tip will somehow affect the ions 
reaching the plane 2=0. Since e<Kl and the potential 
field around the tip should be roughly spherically sym­
metric, we can assume this field to be ipzatyjp, (in 
order to get a rough estimate of the importance of 
that effect). Then, the ion motion for 2<0 can be 
solved exactly; we find, for instance, that 

ZiNi/No(z^O) = l+DVy(l+2W)-], 

2W=(l+2xP/Miyi2~l. 

It may be shown that the perturbations in ion density 
and ion azimuthal velocity are of no importance. The 
perturbation in ion radial velocity, however, may in 
some cases be so large as to affect the ion current to the 
probe. This occurs when the probe is very short (1<&3M) 
and tyJWP' is close to unity [remember condition (44)]. 

Finally, since our entire analysis is restricted to the 
regime |<3Af, we would like to comment briefly on 
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Bettinger and Chen's theory for the regime 1>3M.S To 
understand point (iv) below, we emphasize here that 
the limitation 1<3M of our analysis originates from 
our lack of a good approximation for d\p/dp, for p>pm) 
such values of p come into play when 1>3M. When 
d\l//dp is unknown, d*(r), and thus j / j „ , cannot be 
determined. 

In the light of our theory and of Fig. 2, Bettinger and 
Chen's approach may be summarized as follows: (i) 
they divided region A* in two subregions, call them A{ 

and A0, lying inside and outside the sheath, respectively. 
For the sheath radius [equivalent to our pm or exp(o-1)] 
they used an expression "a" patched up from numer­
ical results for probes in quiescent plasmas. As pointed 
out in Ref. 5, "a" has a wrong dependence on \pp; this 
leads to the wrong dependence of J and 0i/2 on \pp indi­
cated in Sec. III. (ii) They assumed that^all ions in At 

are collected; this leads to the requirement l> rmM^i2>M. 
For AD, they noticed that the appropriate equivalent 
time (probe length) was not n=l/M but TI—TM. How­
ever, they did not incorporate this correction into their 
formulas; instead, in a comparison with some experi­
ments, they appropriately adjusted the experimental 
data. This may lead to confusion: In the resume of 
Bettinger and Chen's theory given in Ref. 5, the cor­
rection was not considered; it may easily be verified 
that with such a correction the overall agreement in 
Figs. 5a, b, c of Ref. 5 would improve, (iii) To com­
pute Tm, power laws for d\p/dp were used instead of the 
correct expression given by our Eq. (16). The variation 
of Tm with the particular power law is not greatly 
significant however, (iv) The most crucial point of 
their analysis is that for d* inside A0 they wrote 

<V(T)~(Ti— Tm), 

where the proportionality constant is obtained from 
the limit n—><». This is obviously wrong because the 
value of ^ at the sheath boundary is still 0(1) so that 
for some distance outside the sheath, ion velocities are 

not well approximated by their asymptotic values, 
unless /35>>1. (This point is related to the well-known 
Bohm's sheath criterion.) For /3«1 the error can be 
substantial except if n is very large, (v) A final error 
is the approximation of PA(4>) everywhere by its asymp­
totic value. The approximation is good for A0 but not 
for A{. Thus, the resulting error should be noticeable 
for moderate n. 

Nevertheless, on the whole, the agreement of the 
theory of Ref. 3 with experiment is good for moderate 
potentials. Thus, it should be possible to use that theory 
for l> 3M, provided that an appropriate sheath radius 
(pm) is used and the correction rj—^n—rm is incorpo­
rated into the formulas. 
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