
Agent Architecture Modelling at the Knowledge Level

Carlos A. Iglesias

Departamento Ingenier��a de Sistemas Telem�aticos, Universidad Polit�ecnica de Madrid

E.T.S.I. Telecomunicaci�on, Ciudad Universitaria s/n, 28040 Madrid, Spain

cif@gsi.dit.upm.es

And

Andres Escobero

Sun Microsystems Ib�erica S.A.

Torre Picasso - Planta 27, 28020 Madrid, Spain

Andres.Escobero@Spain.Sun.COM

Abstract

The de�nition of an agent architecture at the know-

ledge level makes emphasis on the knowledge role

played by the data interchanged between the agent

components and makes explicit this data interchange.

This makes easier the reuse of these knowledge struc-

tures independently of the implementation.

This article de�nes a generic task model of an agent

architecture and re�nes some of these tasks using in-

ference diagrams.

Finally, a operationalisation of this conceptual model

using the rule-oriented language Jess [5] is shown.

Keywords: Agent Oriented Software Engineering,

knowledge level, agent architecture, knowledge engin-

eering

1. Introduction

This article deals with knowledge modelling of a

generic agent architecture. The purpose of this work

is to apply a principled approach to the de�nition of

a generic conceptual agent architecture.

This work is part of a general framework, the agent-

oriented methodology MAS-CommonKADS [7], [9].

In particular, this article deals with the Expertise

Model of the methodology.

The remainder of the paper is organised as follows:

Section 2 presents a short introduction to the Know-

ledge Model of CommonKADS, that is used for de-

�ning a generic agent architecture at the knowledge

level. Section 3 presents a task decomposition model

of generic agent architecture. Sections 4, 5 and 6

presents a constructive approach to de�ne inference

structures for the previously presented task model,

showing how this framework is general and extensible

for de�ning agent architectures. Section 7 describes

how this conceptual model can be operationalised us-

ing the rule oriented language Jess.

2. Introduction to Knowledge Modelling

with CommonKADS

The CommonKADS knowledge model [16]

1

is used

for modelling the reasoning capabilities of the agents

to carry out their tasks and achieve their goals. Usu-

ally, several instances of the expertise model should

be developed: modelling inferences on the domain

(i.e. how to identify a situation); modelling the reas-

oning of the agent (i.e. problem solving methods to

achieve a task, character of the agent, etc.) and mod-

elling the inferences of the environment (how an agent

can interpret the event it receives from other agents

or from the world).

The knowledge model has three parts: domain know-

ledge, inference knowledge and task knowledge.

Domain knowledge represents the static domain-speci�c

knowledge of the problem, modelled as a set of con-

cepts, properties, expressions and relationships, sim-

ilar to the object model of UML (Uni�ed Modelling

Language) [10].

Inference knowledge represents the basic inference steps

that we want to make using the domain knowledge. It

is represented with inference diagrams where a func-

tional decomposition is carried out. The basic pre-

de�ned knowledge functions are called inferences and

are shown as ellipses. The inputs and outputs of

these inferences are called knowledge roles, that can

be static (not modi�ed by the inferences) or dynamic,

and are shown as squared boxes.

Task knowledge represents how to achieve a goal, and

the decomposition of this goal into sub-tasks, being

the inferences the leaves of this decomposition. For

de�ning this decomposition, tasks are described and

problem solving methods (PSMs) are de�ned. The

PSMs de�ne how to decompose a task into sub-tasks

(or goals).

3. Agent Architecture Skeleton

The purpose of this analysis, based on Interrap con-

ceptual agent model [15], is to de�ne a framework for

1

Previously de�ned as expertise model [18], [12] in CommonKADS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148665974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. beliefs
management

3. situation
recognition

4. goal
activation

5. action
planning

1. stimuli
management

6. action
executing

management managementmanagement input mng revision generation actionaction output mngsending

1.2. mailbox 1.3. user 2.1. beliefs 2.2. beliefs1.1. sensors 5.2. deliberative5.1. reactive 6.3. user6.1. actuators 6.2. messages

agent control

Fig. 1. Task model of a general agent architecture

studying systematically the components of a generic

agent architecture and their relationships.

The main tasks of this task analysis [3] is shown in

�gure 1 and are described below.

Stimuli management the agent receives the stimuli

through its sensors, mailbox and user input.

Beliefs management deals with beliefs generation and

updating taking as an input the perceived stimuli.

Situation recognition the agent extract structured situ-

ation from the unstructured agent beliefs. This situ-

ation recognition allows the identi�cation of the need

to start an activity.

Goal activation determination of which goals are rel-

evant to the identi�ed situation.

Action planning determination of which actions must

be carried out to ful�l the identi�ed goals and the

order of these goals.

Action performing this task consists of executing the

planned action, and can be programmed.

The main domain concepts have been captured above

help guiding the knowledge acquisition process. The

following domains can be identi�ed:

Own agent reexive knowledge about the agent itself.

This knowledge allows the agent to reason about its

abilities and its reasoning process.

Rest of agents The agent should know what agents

it knows, their relevant characteristics and possible

inferences.

Environment In order to interpret the sensor data,

the agent must know what are the possible objects of

the environment and their characteristics.

Application The agent must know the relevant con-

cepts of the application domain.

4. Basic Reactive Agent Architecture at

the Knowledge Level

In order to follow a constructive approach, we will

start by studying a simple reactive agent that de-

cides what action to do (task 6) depending on the

observables (task 1), as shown in Figure 2. Once the

inference structure has been built, the domain model

can be completed. In this case, the observables of the

domain and the allowed actions should be identi�ed,

and the rules to match these observables into actions.

For example, for the Robocup domain [13], the

observables from the environment are the Ball, the

Goals, the Corner, etc., and the actions are Turn,

Dash, etc. The characterisation of these concepts

Observables match Actions

Fig. 2. Inference structure of a basic reactive agent

makes up the agent ontology. In order to identify

the reactive situations, the so-called reactive cases of

the UER technique [8] can be used.

This inference structure can be easily extended for

considering the transformation of observables into be-

liefs (Figure 3) or considering a basic self-conscience

of the agent (Figure 4).

Observables

match ActionsBeliefsBeliefs

abstract

Fig. 3. Inference structure of a basic reactive agent with beliefs

Observables match Actions

Agent state

Fig. 4. Inference structure of a basic reactive agent with basic

self-conscience

The transformation of observables into beliefs can

be trivial if we consider symbolic sensors, but can be

further re�ned as a complex function with situation

recognition as shown in Figure 5. This knowledge

task of situation recognition has been modelled at

the knowledge level in [2]. The agent model is a set

of relevant agent properties. These agent properties

depend on the application domain. For example, for

the Robocup domain, some of these relevant proper-

ties are the agent position and its stamina.



Situation

Situations

Recognised

Known

ActionsActionsBeliefsBeliefs

Agent state

match

match

abstract

Observables

Fig. 5. Inference structure of a basic reactive agent with beliefs

and situation recognition

5. Basic Deliberative Agent Architecture

at the Knowledge Level

While the previous section dealt with reactive agents,

this section will consider how the activation of goals

and the plani�cation task of the generic task model

(section 3).

Basic BDI agent architecture

In order to illustrate the use of the knowledge model

for specifying agent architectures at the knowledge

level, the inference process of the well-known BDI

(Belief-Desire-Intention) architecture [19] is shown in

Figure 6. In this architecture, an example of how to

perform the general tasks of Beliefs Management and

Goal Activation (section 3) is shown.

A simpler example of goal activation without con-

sidering desires is shown in Figure 7. In this example,

the agent communicationabilities have been modelled

considering the received messages from other agents.

The beliefs of the agent can be of the agent itself,

its environment other agents or application domain

concepts.

Action Planning Task

The task action planning (section 3) can be con-

sidered a KADS basic inference [17] (see Figure 8).

This knowledge task has also been decomposed through

Problem Solving Methods in [1]. A practical example

of a simple planner [11] is shown in Figure 9.

Inside the JAEN project [14], taking as a generic

model MAS-CommonKADS [7], the planning process

is de�ned through PSMs (Problem Solving Methods)

as shown in Figure 10.

The PSMs de�ne the way to decompose a goal into

subtasks. Two general types of PSMs are de�ned:

autonomous PSMs and cooperative PSMs. While the

resulting subtasks are executed by the agent itself us-

ing an autonomous PSM, some of these subtasks can

Beliefs
Current

Intentions
Current

Observables

Desires

Beliefs

generate

generate

select

Intentions match Actions

Fig. 6. Inference structure of a general bdi agent architecture

Known
Situations

Recognised
situation

select−2

Beliefs

compare

Message

MailboxObservables

select−1

Objective

abstract

Fig. 7. Simple Inference structure for goal activation

Initial State Goal State

planningWorld Model Plans

Plan

Fig. 8. Inference structure of a planning function [17]



Subactions
order

Actions
order

Plan
Emerging assemble−2

match−1 match−2

Subactionassemble−1

Objective decompose Subobjective

Action

Fig. 9. Inference structure of a basic planner [11]

PSM
Selected

Agent state Beliefs

Goal decompose Action

PSMs select

Fig. 10. Inference structure for action planning based on PSMs

be carried out in cooperation with other agents using

cooperative PSMs. For example, given a goal such

as Finding the best price of an article, depending on

its state, an agent can use an autonomous PSM such

as Go-to-all-the-shops-and-compare or a cooperative

PSM such as Subcontract-task-to-other-agent.

6. Cooperative Agents

In the previous section, cooperation has been in-

troduced through cooperative PSMs.

This section shows how two simple functions for

handling the mailbox (task 1.2, sec. 3) can be de�ned

at the knowledge level.

When an agent wants to request some service from

other agent, the agent should determine which pro-

tocol to use from the known protocols, as shown in

Figure 11.

Known

Protocols

Beliefs
Current

Goal Protocolselect

Fig. 11. Inference structure for selecting a protocol

The second function is how to decide if a service

request is attended or not. As shown in Figure 12,

it is needed to characterise the service request, the

service policy and, as a result, a commitment is done.

Agent

State

Policy
Service

Service specify Commitment

Fig. 12. Inference structure for attending a service request

7. Operationalisation of the architecture

with Jess

The previously presented generic agent model has

been operationalised using Jess as target language [14],

[6].

As a simple example, initial knowledge about the

known ontologies, protocols and knowledge represent-

ation languages is shown in Figure 13.

Goals and PSMs can also be de�ned using Jess tem-

plates, and how a PSM decomposes a goal into sub-

tasks or subgoals, as shown in Figure 14. Here, one

goal (FindArticle)is de�ned and two available PSMs

for this goal. The PSM AutonomousPSM decomposes

the goal into two tasks, go-shops and compare, while

the cooperative PSM CoopPSM decomposes it into

one task, ask-help-broker.

The �nal tasks which do not need further decom-

position are operationalised as rules. As actions, com-

municative acts of FIPA [4] can be used in a natural

way, as shown in Figure 15, where an agent sends

a request to another agent (whose name is Broker-

Agent@shop.com) asking the service FindShops.

8. Conclusions and Future Work

In the paper, we have tried to illustrate how an

agent architecture can be de�ned at the knowledge

level in an easy way.

(deffacts ExampleInializations

(known-ontologies (ontologies

(create$ fipa-agent-management

fipa-acl DefaultOntology)))

(known-protocols (protocols

(create$ fipa-request)))

(known-languages (languages

(create$ JESS))

)

Fig. 13. Example of operationalisation of knowledge about agent

capacities



(goal (name FindArticle))

(PSM (name AutonomousPSM)(goal FindArticle)

(tasks (create$ go-shops compare))

)

(PSM (name CoopPSM)(goal FindArticle)

(tasks (create$ ask-help-broker))

)

Fig. 14. Example of operationalisation of PSMs and task decom-

position

(defrule CollaborativeTask

(task (name ask-help-broker)

(goalid ?goalid)(input ?input))

=>

(request :receiver BrokerAgent@shop.com

:protocol fipa-request

:language JESS

:reply-with wanted

:content "(service

(name FindShops)

(input " ?input "))"

:goal-related ?goalid

)

)

Fig. 15. Example of operationalisation of a Task

The knowledge description of agent architectures

makes easier their acquisition and operationalisation.

Knowledge modelling determines the relationships between

the di�erent agent components and the required re-

lationships between them, i.e. temporal relationships

between goals, required knowledge for selecting emer-

gent goals, etc. The de�nition of agent components

at the knowledge level makes easier their reuse.

In addition, the knowledge description of agent ar-

chitectures makes explicit the role the domain con-

cepts play in the reasoning process and provides a

good starting point for achieving a reexive beha-

viour.

Finally, this theoretical work has been operational-

ised in an extension of the rule-based language Jess [5].

Future work will focus on extending the presented

framework for providing a library of agent architec-

ture components de�ned at the knowledge level and

operationalised. This work is complementary of our

current work in building agent-oriented CASE tools.

Acknowledgements

This research is funded in part by the Spanish Gov-

ernment under the CICYT project JAEN TEL99-

0925.

9. References

[1] V. R. Benjamins, Leliane Nunes de Barros, and

Valente Andre. Constructing planners through

problem-solving methods. In B. Gaines and

M. Musen, editors, Proceedings of the 10th

Ban� Knowledge Acquisition for Knowledge-

Based Systems Workshop, volume 1, pages 14{

1/20, Ban�, Canada, November 1996. KAW.

[2] Dolores Ca~namero. A Knowledge-Level Ap-

proach to Plan Recognition. In Proceedings of

the IJCAI'95 Workshop on Plan Recognition,

Montreal, Canada, August 1995.

[3] C. Duursma. Task model de�ntion and task ana-

lysis process. Technical Report Technical report

KADS-II/M5/VUB/TR/004/1.1b ESPRIT Pro-

ject P5248, Free University Brussels, 1993.

[4] FIPA. Foundation for Intelligent Phys-

ical Agents. Agent Communication Lan-

guage. FIPA Spec 2. Technical report, FIPA.

Foundation for Intelligent Physical Agents,

1999.

[5] Ernest J. Friedman-Hill. Jess, The Java Expert

System Shell. Distributed Computing Systems,

Sandia National Laboratiories, Livermore, CA,

version 4.1 edition, June 1998.

[6] Pablo Haya Coll. Dise~no de M�etodos de Co-

ordinaci�on entre Agentes dentro del Desarrollo

de un Sistema Personal de Informaci�on. Mas-

ter's thesis, E.T.S.I. de Telecomunicaci�on. Uni-

versidad Polit�ecnica de Madrid, September 1999.

[7] Carlos A. Iglesias. De�nition of a Methodo-

logy for the Development of Multi-Agent Sys-

tems. PhD thesis, Departamento de Publica-

ciones, E.T.S.I. Telecomunicaci�on, Universidad

Polit�ecnica de Madrid, February 1998. In Span-

ish.

[8] Carlos A. Iglesias and Mercedes Garijo. UER

Technique: Conceptualisation for Agent Ori-

ented Development. In Nagib Callaos andMichel

Torres, editors, Proceedings of the 3rd World

Multiconference on Systemics, Cybernetics and

Informatics (SCI'99) and 5th International Con-

ference on Information Systems Analysis and

Synthesis (ISAS'99), volume 5, pages 535{540,

Orlando (USA), August 1999.

[9] Carlos A. Iglesias, Mercedes Garijo, Jos�e C.

Gonz�alez, and Juan R. Velasco. Analysis

and design of multiagent systems using MAS-

CommonKADS. In M. Wooldridge, M. Singh,

and A. Rao, editors, INTELLIGENT AGENTS

IV: Agent Theories, Architectures, and Lan-

guages, volume 1365, pages 313{329. Springer-

Verlag, 1998. (A reduced version of this paper

has been published in AAAI'97 Workshop on

Agent Theories, Architectures and Languages.

[10] Ivar Jacobson, Grady Booch, and James Rum-

baugh. The Uni�ed Software Development Pro-

cess. Addison-Wesley: Reading, MA, 1999.

[11] J. K. Kingston, N. Shadbolt, and A. Tate. Com-

monKADS models for knowledge based plan-



ning. In Proceedings of AAAI-96, Portland, Ore-

gon, August 1996. AAAI.

[12] John Kingston. Building a KBS for health and

safety assessment. In Applications and Innova-

tions in Expert Systems IV, Proceedings of BCS

Expert Systems '96, pages 16{18, Cambridge,

December 1996. SBES Publications. Also pub-

lished as technical report: AIAI-TR-202, Arti�-

cial Intelligence Applications Institute, Univer-

sity of Edinburgh.

[13]

�

Alvaro Mart��nez Reol. Desarrollo de un sistema

multiagente integrando jess y java para la rob-

ocup. Master's thesis, E.T.S.I. de Telecomunic-

aci�on. Universidad de Valladolid, May 2000.

[14] Juan Luis Mulas Platero. Desarrollo de una ar-

quitectura de agente inteligente multiservicio con

la plataforma javamast. Master's thesis, E.T.S.I.

de Telecomunicaci�on. Universidad de Valladolid,

February 1999.

[15] J�org P. M�uller. An Architecture for Dynamic-

ally Interacting Agents. PhD thesis, Germain AI

Research Center (DFKI GmbH), Saarbr�ucken,

1996.

[16] A. Th. Schreiber, J. M. Akkermans, A. A. An-

jewierden, R. de Hoog, N. R. Shadbolt, W. Van

de Velde, and B. J. Wielinga. Knowledge Engin-

eering and Management: The CommonKADS

Methodology. MIT Press, 1999.

[17] A. Valente. Planning models for the com-

monkads library. ESPRIT Project P5248 KADS-

II KADS-II/M2.3/UvA/56/1.0, University of

Amsterdam, 1993.

[18] B. J. Wielinga, W. van de Velde, A. Th.

Schreiber, and H. Akkermans. Expert-

ise model de�nition document. deliver-

able DM.2a, ESPRIT Project P-5248 /KADS-

II/M2/UvA/026/1.1, University of Amsterdam,

Free University of Brussels and Netherlands En-

ergy Research Centre ECN, May 1993.

[19] Michael Wooldridge. Intelligent agents. In Ger-

hard Weiss, editor, Multiagent Systems. A Mod-

ern Approach to Distributed Arti�cial Intelli-

gence. MIT Press, 1999.


