
Gesture recognition using mobile phone’s 
inertial sensors 

Xian Wang, Paula Tarrío, Eduardo Metola, Ana M. Bernardos, José R Casar 

Data Processing and Simulation Group, ETSI. Telecomunicación 

Universidad Politécnica de Madrid, Madrid, Spain 

{wang.xian, paula, eduardo.metola, abernardos, jramon}@grpss.ssr.upm.es 

Abstract   The availability of inertial sensors embedded in mobile devices has en-
abled a new type of interaction based on the movements or “gestures” made by the 
users when holding the device. In this paper we propose a gesture recognition sys-
tem for mobile devices based on accelerometer and gyroscope measurements. The 
system is capable of recognizing a set of predefined gestures in a user-independent 
way, without the need of a training phase. Furthermore, it was designed to be exe-
cuted in real-time in resource-constrained devices, and therefore has a low compu-
tational complexity. The performance of the system is evaluated offline using a 
dataset of gestures, and also online, through some user tests with the system run-
ning in a smart phone. 

1. Introduction 

Mobile phones have become wearable computers equipped with various sen-
sors due to the advance in microelectronics [1, 2], which not only increased the 
processing power of such devices but also made possible new forms of input inter-
faces, such as touch screen devices and gesture-based user interfaces [3].  

Hand gesture is a powerful, natural means of communication between human 
beings. Now it can be a promising way to interact with computers, where gesture 
recognition is the core of such technique. Classically, hand gestures have been de-
tected and recognized using camera-based computer vision algorithms. However, 
these techniques can be slow and require a high computational power, which leads 
to a significant energy consumption [2]. A more suitable approach for resource-
constrained devices is to use their embedded sensors (such as magnetometers, gy-
roscopes, or accelerometers) to perform the recognition. Using embedded sensors 
has the advantage that the gesture recognition can be done in the own device and 
that the accuracy is not affected by lighting conditions or camera calibration. Fur-
thermore, the cost and power consumption are lower [4]. 
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There exist multiple challenges in hand gesture recognition for mobile phones, 
for example, a standardized “vocabulary” is missing, the interaction needs to be 
real time and the algorithms should be able to run on a platform highly constrained 
in terms of cost and system resources. What’s more, user acceptability is also a 
key consideration: will they feel comfortable waving arms in a public place [2]? 

Many gesture recognition systems based on accelerometers have been devel-
oped. One example is Georgia Tech Gesture Toolkit [5], that provides tools to 
support gesture recognition and has been used in several ongoing projects, such as 
an automobile gesture panel, patterned blink recognition and mobile sign language 
recognition. The work in [6], where 8 predefined gestures including translations, 
circles, and pentagram are defined and more than 98% recognition accuracy is 
achieved, provides a natural and intuitive way to control the browser application 
on a large screen. These techniques are also used in mobile gaming systems to en-
hance user experiences [2], where a set of 8 gestures such as single-circles, 
squares, triangles and double-circles are provided and an overall accuracy of 
96.25% is obtained. The authors in [7] developed the uWave algorithm, which is 
utilized in gesture-based user authentication and interaction with a three-
dimensional mobile user interface. In this work, they employ a set of 8 gestures 
identified by Nokia research study and the recognition accuracy is about 98%. 

Gesture recognition is a type of pattern recognition. Various methods could be 
utilized, such as conditional Gaussian models, support vector machines [8], 
Bayesian networks [9], dynamic time warping (DTW) and hidden Markov models 
(HMMs). DTW [2, 7] and HMMs [1-3, 5, 6, 10-13] are two of the most popular 
approaches adopted, both of which were investigated in speech recognition area.  

Only a few [2, 3, 4, 7] of the techniques mentioned above are implemented on a 
resource-constrained platform such as a mobile phone. What’s more, most of these 
proposals target at user-dependent gesture recognition because of the difficulty of 
user-independent gesture recognition and because user-independent gesture 
recognition may not be that attractive as speaker-independent speech recognition, 
as there are no standard gestures for interaction [7]. In this work, however, our 
goal is to develop a user-independent system which is light, real-time, and with 
low consumption. To this end, we define a set of simple gestures, which are intui-
tive and comfortable to perform, and recognize them in a user-independent man-
ner which is user friendly and does not require training the system.  

In summary, we make the following contributions: We define a set of rotation 
and translation gestures and develop real-time methods to recognize them with 
very low computational cost. As this is a work in progress, the recognition of rota-
tion gestures is implemented on a mobile phone and tested in real-time, whereas 
the recognition of translation gestures is implemented on a PC and tested offline 
with a dataset of gestures performed by real users. Preliminary results show a high 
recognition accuracy and low time complexities.   

The rest of the paper is organized as follows: Section 2 enumerates possible 
application scenarios of our gesture recognition system. Section 3 describes the set 
of gestures we want to recognize. Section 4 presents the architecture of the recog-



nition system. Section 5 reports the validation results of the rotation and transla-
tion gesture recognition systems with real experiments and simulations, respec-
tively. Finally, we conclude in section 6 and point out future work. 

2. Application scenarios 

Gesture recognition systems for mobile devices have a wide variety of applica-
tions in several scenarios, such as smart environments, teaching/learning, robot 
control, etc. For example, gestures performed with the user’s mobile phone can be 
used to control the equipment of a smart room in a hotel (e.g. switching off the 
light when the position of the phone changes from facing up to facing down, 
switching on the lights by making the opposite movement, raising/lowering the 
blinds by doing an up/down movement while pointing to the window, open-
ing/closing the curtains with a left/right movement, raising/lowering the room 
temperature by making an up/down movement while pointing to the air condition-
er, calling the room service by shaking the phone, etc.). Gestures can also be used 
in a teaching scenario, or even in conferences or business presentations to control 
the computer and the slides. For example, a movement to the left/right goes to the 
previous/next slide, a spiral to the left/right goes to the first/last slide, moving 
up/down the phone will control the volume of the computer if a video/audio file is 
played, shaking the phone can switch on/off the projector and once it is off, an 
up/down movement can raise/lower the screen, etc. Another practical application 
of mobile gesture recognition is to control robots, toys or vehicles: turning the 
phone to the left or right can control the direction of the robot, turning it up and 
down can control the speed and shaking the phone can switch on/off the robot. 

3. Selection of gestures 

The selection of the gesture set affects both the experience of user interaction 
and the recognition accuracy. The author of [1] argues that an extensive set of ges-
tures becomes unpractical because too many gestures have to be learned by the 
users. The recognition results in [7] highlight the importance of selecting the right 
gesture vocabulary for high accuracy. More complicated gestures provide more 
features to distinguish them, resulting in higher recognition accuracy. However, 
complicated gestures also force users to remember how to perform them and how 
they are related to functions/actions. Furthermore, in [14], user studies indicate 
that users tend to use spatial two-dimensional gestures and that utilizing all three 
dimensions in one gesture is rare. In this section, we describe the gesture set se-
lected for our recognition system, which is divided into two groups: turns and 
translations. 



 

3.1 Turn gestures  

Taking into account that there are three axes in the device, we can define six 
possible elementary turns, as we can see in Fig. 1. In our system, we target at rec-
ognizing 45º and 90º turns of the six possible types.  

   
Fig. 1. Six elementary turns around the device’s axes. 

The complete gesture will be defined by the type of turn and by the initial or fi-
nal orientation of the device. We have defined six possible orientations with re-
spect to the ground (shown in Fig. 2). 

Horizontal_Up 
 

 

Vertical_Up Left Horizontal_Down Vertical_Down Right 

Fig. 2. Main six orientations of the device. 

If we make a 90º-turn from one of the orientations in Fig. 2, we will obtain an-
other orientation of Fig. 2. In addition, if a 45º-turn is made intermediate orienta-
tions are obtained. We classify the possible orientations in three groups: 
- Type I orientations: the gravity only appears in one axis (those in Fig. 2). 
- Type II orientations: the gravity appears in two axes. This happens when, from a 
type I position, there is a 45º-turn. 
- Type III orientations: the gravity appears in all the axes. It happens when, from 
type II positions, there is a 45º-turn over the axis that has not been turned yet.  

3.2 Translation gestures 

Following the previous research [14], in our work, we have defined six simple 
translations named backward, forward, left, right, up and down. The following ta-
ble describes these gestures. The orientation of the device when doing the transla-
tions remains the same: in a ‘Vertical_Up’ orientation. 



Table 1. Description of translation gestures 

Gestures Description (performed with the same fixed pose) 
Backward Pull the mobile horizontally. 
Forward Push the mobile horizontally. 
Left Move the mobile horizontally from right to left. 
Right Move the mobile horizontally from left to right. 
Up Move the mobile vertically from low position to high. 
Down Move the mobile vertically from high position to low. 

4. System architecture 

The current system architecture consists of three different layers, a sensor layer, 
which acquires the information provided by the inertial sensors, a fusion layer, 
which includes the recognition algorithms to recognize the gestures, and a com-
munications layer, which offers the recognition result to external devices. 

4.1 Sensor layer 

The gesture detection system relies on the data provided by the gyroscope and 
the accelerometer embedded in the device. In our case, the acquisition process is 
done using a Google Nexus S smartphone running Android O.S, where data com-
munication is done by event notifications. As a result we cannot talk about a real 
sampling frequency, but we have seen that the approximate sampling rates for the 
gyroscope and the accelerometer are, respectively, 0.0096 seconds and 0.02 se-
conds per measurement. 

In the case of turn gestures, the information collected by the gyroscope allows 
us to distinguish among the six elementary turns, whereas the accelerometer gives 
us information about the orientation of the device. Fig. 3 shows some examples of 
the gyroscope and accelerometer signals for different gestures.  

Fig. 3a and 3b show the values acquired from the gyroscope (angular speed 
around each axis) and accelerometer (acceleration on each axis), for a movement 
from a ‘Horizontal_Up’ position to a ‘Vertical_Up’ position. Fig. 3c and 3d corre-
spond to a 90º-turn around the vertical axis. As it can be seen, the value of the gy-
roscope signal in the axis of rotation increases/decreases significantly, which al-
low us to recognize the type of elementary turn. The acceleration signal after the 
turn enables recognizing the final position (the axis with the gravity component is 
the one pointing to the ground).  

 



 

  

  
Fig. 3. Examples of gyroscope and accelerometer signals for rotation gestures. 

 
Fig. 4. Example of acceleration signals for a correctly performed ‘Right’ gesture 

The translation gesture is a variable force movement, starting and ending with a 
stationary state. Essentially, the 6 translation gestures are the same but moving in 
different directions. After the gesture starts, the acceleration value in the direction 
of movement increases quickly, then changes its direction, and finally returns to 
zero. So ideally, the acceleration in the axis along the movement direction should 
look like a sinusoid in one period, and the acceleration data in the other two axes 
should be close to zero (see Fig. 4). The axis where this pattern appears and the 
order of the appearance of the curve’s peak and valley indicate the direction of the 
movement. For example, Fig. 4 represents a ‘Right’ movement (sinusoid-like 
curve in the x axis, with the peak appearing earlier than the valley).  
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4.2 Fusion layer 

a. Recognition of turn gestures 
In order to detect when a turn happens, the fusion layer is permanently gather-

ing the data from the gyroscope sensor. The data obtained by the fusion layer is an 
array of three elements, each element related to one axis. If one of the elements of 
the array increases over a predefined threshold, a turn is detected on the corre-
sponding axis. By also taking into account its sign, it is possible to distinguish 
among the six types of elementary turns. The system is able to recognize 45º and 
90º turns, by comparing the initial position of the smartphone and the final posi-
tion after a turn. 

When the value in the axis that has increased, decreases under another thresh-
old (set to indicate that the turn is finishing), the accelerometer sensor is enabled 
and a fixed number of measurements are taken to estimate the final position. The-
se measurements are averaged, giving a higher weight to later positions in the se-
quence of accelerometer’s data. Then, depending on the magnitude and the sign of 
this weighted average, a final orientation of the device is selected.  

In a type I position, the gravity component relies mostly over one of the three 
axes. In a type II position, it will be spread over two of the three axes. And finally, 
a type III position has a significant component of the gravity over the three axes. 
So, analyzing the three components of the acceleration, if the lowest value is over 
3 m/s2, a type III position is estimated. Otherwise, if the second lowest value is 
over 3 m/s2, a type II position is estimated. Otherwise, mobile position is included 
in the type I group.  

For type I positions, one of the six orientations of Fig. 2 is selected (according 
to which axis has the gravity component and its sign). For type II/III positions, a 
combination of two/three type I positions is chosen, e.g. ‘Horizontal_Up-Left’. 

b. Recognition of translation gestures 
For translation gesture recognition, we have developed a method based on 

analysis of acceleration data and feature extraction. The input of the algorithm is a 
time series provided by the three-axis accelerometer. Each time sample is a vector 
of three elements corresponding to the sampled data in the three axes.  

As we said before, ideally, the curve in the axis along the movement direction 
should look like a sinusoid in one period (as in Fig. 4). But in practice, the signals 
almost never show such a clear shape because of noise and performance of the us-
ers (we should never expect the users to make gestures ideally). As a result, the si-
nusoid-like curves are distorted and appear in all axes with different amplitudes, 
as shown in Fig. 5. The algorithm of translation gesture recognition in our work 
consists of three steps, which are described next: 

A. Preprocessing 
According to our definition of gestures, the mobile phone should be held verti-

cally when doing the gesture. But in practice, a tilt of a few degrees is quite com-
mon. As gravity is a relatively large value compared to other acceleration compo-



 

nents forced by the user, a small tilt will introduce a significant acceleration com-
ponent along x and z axes, which would result in wrong recognition. In our work, 
the normalizing method provided in [1] is utilized to correct small amounts of tilt. 
Then the rectified data is passed through a Butterworth low pass filter to reduce 
the effect of noise. The signal is further smoothed by a moving average method 
where the smoothed value is the un-weighted mean of its previous n data points, 
where n is the size of the sample window. The order and cutoff frequency of the 
filter and n are all determined empirically. 

 
Fig. 5. Pattern generalization in the x direction. F, A, E, G are key points of the original recog-
nized pattern. C, A, B, D are the generalized pattern. 

B. Pattern extraction for each axis 
The key points of the typical translation pattern are the starting point, the end-

ing point, the peak and the valley of the sinusoid-like curve. Because of noise or 
the imperfect gesture performance of users, there are more than two local extrema, 
so first, all the local extrema are detected, and then we find all pairs of adjacent 
extrema with different signs. The peak and valley of the pattern should be in the 
pair with the largest absolute difference of the two elements, for example, the pair 
A-E in Fig. 5. The starting and ending point of the pattern are the two adjacent ex-
trema to peak and valley (F and G in Fig. 5).  

Considering the noisy acceleration measurement and that this method is sensi-
tive to fluctuations of the signal, an adjustment of the key points is employed: we 
look forward or backward several extrema points from the peak and valley points 
and check whether there are higher extrema (for the peak) or lower extrema (for 
the valley). This way, the method is robust to small fluctuations. In the same way, 
the starting and ending of the recognized pattern are the adjacent extrema points of 
the new peak and valley. For example, in Fig. 5, C, A, B and D are the new four 
key points of the pattern, which represent the shape of a sinusoid curve.  

C. Movement detection 
With the pattern extraction mentioned above, the sinusoid-like curve pattern in 

each axis is obtained. Then we first check the symmetry of the pattern by calculat-
ing the following ratios:  
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where A is the acceleration value at the valley, B at the peak, C at the starting 
point and D at the end. To be a “good” pattern, r1 and r2 should be both greater 
than a predefined threshold. 

Then we select the axis where there is the largest drop from peak to valley of 
the pattern and that agrees with our symmetry requirement, as the dimension 
where the movement occurred. The appearance order of peak and valley further 
determines the direction of the movement along this dimension. For example, Fig. 
5 represents a ‘Left’ gesture. 

The time complexity of Butterworth low pass filtering is O(n*logn) due to the 
Fourier transform. The rest of processing has linear time complexity. Therefore, 
the method presented above has a complexity of O(n*logn), where n is the length 
of acceleration signal. In [3], a DTW algorithm is implemented on a mobile phone 
and has time complexity of O(n*n). The researchers of that paper showed that 
DTW implementation has lower computational load than HMMs. So hopefully, 
our algorithm can run faster on a mobile phone platform. 

4.3 Communications layer 

The gesture recognition application runs autonomously in the device, but a 
communications layer has been integrated in order to transmit the detected ges-
tures to external devices (either for a more comfortable display of the recognition 
results or to take the appropriate actions corresponding to the performed gestures).  

To this end, a NetworkCommunication component is created in the main com-
ponent of the application, so that when a gesture is detected, the information is 
sent through a previously created socket. This information can be gathered from 
an external element, like a PC, by listening to the data on an already-known IP ad-
dress and port. In this way, the gesture can be shown in the screen or used to per-
form the appropriate action.  

5. Validation 

This section presents some preliminary results of the validation of the gesture 
recognition system. The recognition of turn gestures has been completely imple-
mented and tested in a Google Nexus S smartphone, running Android O.S, where-
as the recognition of translation gestures was implemented in Matlab and tested 
with a dataset of gestures, collected by several users with the same smartphone. 



 

5.1 Online validation of turn gestures with the mobile phone  

a. Performance statistics  
The performance of the proposed system is evaluated according to its ability to 

correctly detect the type of gesture. The speed at which the user performs the ges-
ture determines if it is detectable or not, as we have used an angular speed thresh-
old to filter out random movements. In particular, we have used a threshold of 2 
rad/s, which assures that usual wrist movements are detected (with detection prob-
ability nearly equal to 100%). Decreasing this threshold would allow detecting 
slower movements, but would increase the probability of false detections. 

Supposing that the system has detected a gesture, the system quality can be de-
scribed in terms of the probability of correctly recognizing the type of gesture and 
in terms of time delay in the recognition process. Both parameters can be tuned by 
modifying the number of accelerometer measurements that are analyzed. Longer 
data windows will increase the recognition capability, but will also increase the 
delay. Next table shows the delay (time interval between the instant in which the 
turn has finished and the instant in which the orientation is estimated) for different 
values of the window size: 

Table 2. Time delay for different window sizes 

Window size (Number of measurements) 5 10 15 20 
Interval of time 0,11 s 0,21 s 0,31 s 0,41 s 

After some tests, we have seen that using a window size of 10 is enough to cor-
rectly recognize most of the gestures (nearly 100% recognition accuracy) and still 
provides a reasonable recognition speed.  

b. Computing time 
The computing time of the algorithm has been measured for type I positions. 

Using 15 measurements from the acceleration sensor to estimate the position of 
the smartphone, the average computing time was 273µs. This time is negligible 
compared to the acquisition time (0.02 s per measurement). So we can conclude 
that the computation of gesture recognition algorithm will not slow down the en-
tire process and can be done in real time.  

If the number of measurements increases, the computing time will increase al-
most proportionally. For 150 measurements, the computing time rises to 2.26 ms. 

5.2 Offline validation of translation gestures with a dataset  

a. Description of the dataset 
To test the gesture recognition method, a dataset was collected with 14 subjects 

(8 males and 4 females), who repeated 10 times each gesture using a Google Nex-
us S smartphone. The starting and ending of each gesture was marked by pressing 



a button of the smartphone. Before collecting the gesture data, they were given a 
brief introduction about how to perform each gesture. 

b. Performance statistics 
Table 2 summarizes the recognition result of our approach over the collected 

dataset. An average of 93.2% is achieved. Most of the errors are due to the sensi-
tivity of our approach to fluctuations of the signal. In particular, the test result 
demonstrates that more than half of the errors are due to the presence of a small 
fluctuation around zero (see an example in Fig. 6). 

Table 3. Confusion matrix for the 6 translation gestures. The columns are recognized gestures 
and the rows are actual gestures. Average accuracy is 93.2%.  

 Backward Forward Left Right Up Down 
Backward 94.3 0.7 2.9 0.7 0 1.4 
Forward 0.7 94.3 1.4 2.1 0.7 0.7 

Left 3.6 2.9 93.6 0 0 0 
Right 3.6 0 0.7 94.3 0.7 0.7 

Up 5.0 1.4 0 0 93.6 0 
Right 0.7 5.0 4.3 0 0.7 89.3 

 

 
Fig. 6. Failure of pattern recognition due to fluctuation around zero between the real peak and 
valley (B and A are detected as peak and valley, instead of C and A)  

6. Conclusion and future work 

We focus on resource-constrained mobile phones and present algorithms to 
recognize turning and translation gestures in a user-independent manner. Our 
method utilizes embedded accelerometers and gyroscopes, which are commercial-
ly available in many mobile devices. The evaluation experiments of the turning 
gestures recognition system indicate that the time spent in the recognition process 
could be negligible compared with data sensing. The translation gesture recogni-
tion system has theoretically lower computational complexity than previous pro-
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posals implemented on mobile phones. The preliminary validation of both types of 
gesture recognition has shown a high recognition accuracy.  

In order to further improve the recognition accuracy, we are currently making 
the translation gesture recognition more robust to fluctuations of the signals. Then 
it will be implemented on the mobile phone platform, to test its performance in re-
al-time. As further work we are also planning to add some more gestures to our set 
(circles and spirals) to finally test the complete system with real users and get 
some feedback about the usability, accuracy, delay and energy consumption in re-
al situations. Another possibility is to add some feedback to enhance user experi-
ence (adding sound, vibration or graphics). 
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