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s Abstract

0 This paper presents a new methodology to build parametric models to estimate global solar

w0 irradiation adjusted to specific on-site characteristics based on the evaluation of variable im-
1 portance. Thus, those variables higly correlated to solar irradiation on a site are implemented
1z in the model and therefore, different models might be proposed under different climates. This
1z methodology is applied in a study case in La Rioja region (northern Spain). A new model is
1« proposed and evaluated on stability and accuracy against a review of twenty-two already exist-
15 ing parametric models based on temperatures and rainfall in seventeen meteorological stations
1 in La Rioja. The methodology of model evaluation is based on bootstrapping, which leads to
1z achieve a high level of confidence in model calibration and validation from short time series (in
s this case five years, from 2007 to 2011).

19 The model proposed improves the estimates of the other twenty-two models with average
20 mean absolute error (MAE) of 2.195 MJ/m?day and average confidence interval width (95%
2 CI.,n=100) of 0.261 MJ/m?day. 41.65% of the daily residuals in the case of SIAR and 20.12% in
22 that of SOS Rioja fall within the uncertainty tolerance of the pyranometers of the two networks
23 (10% and 5%, respectively). Relative differences between measured and estimated irradiation
24 on an annual cumulative basis are below 4.82%. Thus, the proposed model might be useful
= to estimate annual sums of global solar irradiation, reaching insignificant differences between
2 measurements from pyranometers.

2z Keywords: Solar global irradiation, empirical models, time series, evapotranspiration

22 Nomenclature

20 BC Bristow & Campbell model

0 AT Daily range of maximum and minimum temperatures

21 AT, Average AT of the calibration dataset

sz AT;_1 Daily range of maximum and minimum temperatures on day i-1
s AT, Monthly average of AT

sa AT, Average AT of the testing dataset

s h Elevation above sea level
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ss H Daily mean relative humidity

sz ] Julian day

ss M Logical variable of rainfall

s MAE;s Mean absolute error of testing

w0 MAE,,; Mean absolute error of validation

2 MAE,, Average MAE,, for the whole set of stations
.2 n Length in days of the validation database

.z P Rainfall

s P. Yearly average rainfall in mm for the calibration dataset
as P Yearly rainfall in mm for the testing dataset

ss  Psat |Tmax] Vapor saturation pressure at Tyqy

sz R? Coefficient of determination

as R, Extraterrestrial irradiation

as R, ; 30 Extraterrestrial irradiation on day i-30

so R Daily global solar irradiation

s R; Monthly mean of daily global irradiation

s2 R, Average R; for the calibration period

53 Rgest Daily estimated irradiation

sa R mess Daily measured irradiation

ss Rs; Average R, for the testing period

ss  RpAE a1 Average confidence interval width of MAE
s7 Rrmseea Average confidence interval width of RMSE
ss  RMSE,, Average RMSE,, for the whole set of stations
ss RMSEs Root mean square error of testing

oo Tspe Daily average air temperature

61 Ty Daily maximum temperature

o2 Tyip Daily minimum temperature

es 0 Julian angle

e« W Daily mean wind speed
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1. Introduction

Solar irradiation research is a field of rising interest due to its many applications, such as
the study of evapotranspiration [1] and optimization of water demand in irrigation, crop fore-
casting [2] from near-to-present measurements and estimates, the development and reduction
of uncertainties in solar energy technologies (generation and internal rate of return) [3], the ad-
justment of energy policies to promote solar energies, and research on climate change [4]. The
high cost of measuring solar irradiation with pyranometers and the scarcity of long, reliable
datasets for specific locations has propitiated the progress in estimators such as the analysis
of satellite images [4, 5], artificial neural networks (ANN) [6, 7] and empirically-based para-
metric models [8-10]; the latter estimating daily global horizontal irradiation (Rs) from other
meteorological variables.

Satellite-based R estimates are only provided with high resolution for specific areas in the
planet, for example, 705-70N, 70W-70E in the Satellite Application Facility for Climate Moni-
toring (CM SAF) [11], Helioclim1 and Helioclim3 from SODA [12]. In other areas, resolution
from satellite-based estimates is low, such as in some regions of South America and South-East
Asia (INPE [13] and the National Renewable Energy Laboratory (NREL) [14] with 40x40km res-
olution). The NASA Surface meteorology and Solar Energy (SSE) [15] coverage is global but
resolution is very low (1x1°). Due to the effect of local microclimatic events on R, daily and an-
nual divergence within a 40x40km or 1°x1° cell might be significant [16]. In addition, satellite-
based daily estimates are not generally freely accesible in the near present. For instance, the
SODA provides R from Helioclim1 for the period 1985-2005, Helioclim3 for the year 2005 and
from the SSE database for the period 1983-2005. These near-to-present estimates are necessary
in different applications such as the estimation of evapotranspiration of previous days to fore-
cast irrigation. As a result, the empirically-based parametric models stand out because of their
high simplicity in estimating near-to-present Rs; from measurements of commonly registered
variables, generally registered with a higher distribution than the satellite resolution.

[17] and [18] developed the first parametric models to estimate Rs out of sunshine records
and introduced the concept of the atmospheric transmittance that affects incoming extraterres-
trial irradiation (R;). The common figure of most parametric models is that they account for
latitude, solar declination, the Julian day (J), and day length by including R, [19]. [20] included
mean daily cloud coverage to explain R;. [21] introduced relative humidity and maximum tem-
perature to estimate the monthly mean of the daily irradiation (R;). However, the scarcity of
sunshine and cloud cover records limits the usage of these methods to the location of validation.

[9], [22], and [8] developed the first models in which R; is estimated through the daily range
of maximum and minimum temperatures (AT). Note that in these models AT behaves as an
indicator of atmospheric transmittance, providing information about cloud cover. The higher
emissivity of clouds than clear sky makes the maximum air temperature decrease and the min-
imum temperature increase, and as a result the AT decreases [23].

[24] studied the [9] model with R;, distinguishing between inland and coastal locations and
obtaining higher accuracy in monthly than in daily estimates [25]. Other authors also modified
the [9] model, introducing elevation [26], or modifying the square root by a Neperian logarithm
[27] (the latter attributing it to [25]).

Rainfall (P) was introduced as an explanatory variable directly [10, 28] or as a binary variable
(M) equal to 1 in days with some rainfall (denoted as rainy days) and 0 in days without any
rainfall recorded (non-rainy days) [29-31]. According to previous papers, [30, 31] rejected using
AT in his model, considering P sufficient to explain R;. [30] also rejected R, and applied Fourier
series based on the julian angle (8), corresponding to the angle in radians of the J.

[8] (hereinafter BC) calculated AT as the difference between the maximum temperature of



the day and the average of the minimum temperatures of the current day and the following
day. [32] modified the BC model, calculating AT related to rainfall. [19] studied the influence
of AT on estimations, calculated as the difference between the maximum (T};;;) and minimum
temperatures (T,;,) and as AT as per BC and evaluated it with sixteen BC and [9] derived
models. Eventually, better estimations were achieved with AT as the difference between T,
and T;,,. The BC equation has also been modified by considering some parameters as constants
[1, 19, 33, 34]. The last of this papers attributed two new models to [33] and [35]. Additionally,
[33] concluded that [25] and BC models perform better for R than for daily values. [36] and
latter [35] (who referred it as BC) included the monthly mean of the daily AT to smooth the
results of the BC model. [36] also developed a model in which the daily average temperature
was introduced. [37, 38] also modified the BC model, introducing the R, as a function of the
atmospheric transmittance. Indeed, several papers have proved the efficacy of the BC model by
comparing it with their own models or with other models, e.g. [1, 19, 23, 28, 29, 32-35, 39-42].

Most of parametric models to estimate Rs have been derived from the [9] and the BC models
by adding other variables that were proved to achieve better estimates where validated. How-
ever, a variable which might be correlated with R; in a site, might not have such a dependency
in other site [26]. This paper proposes the evaluation of variable importance as a method to
adjust general models, i.e., the BC model. New models are then built by including important
variables, obtained by on-site specific relationships between predictors and R;.

Several papers have already evaluated models according to test errors, assessing the capac-
ity of generalization under unproven data [23, 35, 39]. Nevertheless, models might generate
low test errors for a specific time series while still being unstable under slight variations in the
calibration data [43]. This paper also proposes an evaluation including stability and accuracy
under different initial conditions as model selection criteria, and implements it on twenty-four
parametric models (including two new models built on the method of evaluation of variable
importance) in seventeen meteorological stations in La Rioja (Spain). The estimates of the best
performing model are also compared with the CMSAF SIS satellite-derived database.

Table 1 summarizes the twenty-four models studied.

2. Meteorological data

The assessment is performed in La Rioja, a 5028 km? region of Spain with significant cli-
matic differences mainly due to differences in elevation and the smoothing influence of the
Ebro River. The daily meteorological data is provided by two public agencies, SOS Rioja [44]
and SIAR (Service of Agroclimatic Information of La Rioja) [45], with records taken every fifteen
and thirty minutes respectively. R, is measured by SOS Rioja with Geonica sensors CM-6B and
EQO08, which are classed as First Class pyranometers according to the ISO9060 and by SIAR with
Kipp&Zonen CM3 and Hukseflux LP02, which are Second Class pyranometers with 5% and 10%
daily tolerance levels respectively. The impact of the horizon effect on R, has been analyzed and
not taken into account, since sky-view factors (ratio of visible sky related to the potential visible
sky) are between 0.985-0.999, substantially lower than the uncertainty of sensors and models
and therefore negligible. Tyux, T)iy, and P are recorded with tolerances of 0.1 °C and 0.1 mm by
SOS Rioja and 0.2 °C and 0.2 mm by SIAR. Additionally, average wind speed (W) and relative
humidity (H) are recorded with 0.3 ¥ and 3% tolerance respectively. Eventually, a total num-
ber of seventeen meteorological stations are selected (see Figure 1), with five complete years of
daily historical data on the aforesaid variables from 2007 to 2011. Spurious data are filtered out
according to the following limits, T,y lower than 45 °C, T,,;,, higher than —20°C, irradiance
lower than 1150 Y., R, lower than the daily R,, P lower than 40 m—}{“, W lower than 30 % and H
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lower than 100%. Spurious data account for less than 0.14% and are replaced by the average of
the previous and following measurements.

The time series of daily values from 2007 to 2011 of each station is divided into the calibration
dataset, running from 2007 to 2010 and the festing dataset, which covers 2011 alone. Table 2 pro-
vides general information about the main variables measured during the calibration and testing
periods.

Additionally, Rs from the CM SAF SIS for 2007-2011 is obtained to evaluate and compare er-
rors from the best-performing parametric model with those from this satellite-derived database.

3. Method

3.1. Methodology of model evaluation

The analysis of robustness proposed leads to the stability of models being assessed under
many different initial conditions, and it is advisable to select the most suitable model, based
not only on the lowest testing errors [46]. The evaluation is based on bootstrapping to extract a
large amount of knowledge from a short time series [47, 48]. It is performed with each model at
each station. 80% of the calibration dataset for every station (1168 days) is sampled to calibrate
the parameters of each model. The remaining 20% (292 days) is used to validate the calibration
by calculating the validation mean absolute error (M AE,,;;) and the validation root mean square
error (RMSE,,;). This process is repeated one hundred times, resampling the 80% of the calibra-
tion dataset and calculating MAE,,;; and RMSE,,; to eventually obtain the confidence intervals
of the model parameters and errors.

12
MAEWZ E Z Rs,meas - Rs,est)| (1)
i=1
12
RMSEWI E Z Rs,meus - Rs,est)2 (2)

Where, Rseqs and R est stand for daily measured irradiation and daily estimated irradiation
with the model to be validated. n stands for the length in days of the validation database (292
days).

Each model is calibrated with both spectral projected gradient methods for large-scale op-
timization [49] and a quasi-Newton algorithm known as the Broyden, Fletcher, Goldfarb and
Shanno (BFGS) method [50], which updates an approximation to the inverse Hessian along
with a point line search strategy [51]. The parameters calibrated minimize the sum of the square
residuals between the measurements (R;eqs) and the estimations (Rses¢). A combination of
square errors in model calibration, and mean absolute errors (MAE) is chosen as indicators of
model performance to reduce the impact of outliers in the evaluation [52].

The stability and accuracy of each model are assessed at the set of stations as a whole with
the mean confidence interval width of MAE (RpjaF va1) and the mean MAE (MAE,,;). The un-
paired t — test is also evaluated to determine if MAE,,;; means are statistically different between
pairs of models within each station. The ¢ is calculated with Equation 3 and then the p — value
of the null hypothesis is derived.

Q)

n

where X; and ¥; are the mean MAE,;; by bootstrapping with 100 samples of model i and j, s;
and s; the standard deviations and # the number of samples.



The capacity of generalization for non-common values is assessed with the confidence in-
terval width of RMSE (RgssE ve1) and the mean RMSE (RMSE,,;), as a result of the amplifying
property of this statistic with outliers.

The capability for generalization under unproven continuous data [53] is assessed within
the festing dataset with the testing MAE (MAE;.). The figures for the model parameters are
obtained from the median of the bootstrapping distributions.

The analysis described in this paper has been implemented using the free software envi-
ronment R [54] and several contributed packages: gstat [55] and sp [56] for the geostatistical
analysis, optimx [57] for the calibration of models, solaR [58] for the solar geometry, raster
[59] for spatial data manipulation and analysis, and rasterVis [60] for spatial data visualiza-
tion methods.

3.2. Methodology of model development

The evaluation of variable importance leads to improve the performance of a general model
with specific relationships between predictors and outcomes of the site to be assessed. This
evaluation is performed by means of a loess smoother fit model, also known as locally weighted
polynomial regression, which is fitted between the outcome and the predictors [61]. Each point
(x) of the dataset is fitted with a low-degree polynomial. The polynomial is adjusted with
weighted least squares, giving more weight to points near the point whose response is being
estimated and less weight to points further away. The weights are determined by their distance
from x with the tricubic weight function (Equation 3).

w(x) = (1= %)) @

Eventually, the R? is calculated for this model against the intercept only null model. The R?
is returned as a relative measure of variable importance.

The evaluation is performed with typically used variables such as P, M and AT and other
two non-commonly used variables W and H of the study day (i) and of three days, two days
and the day before (i —3,i — 2, i — 1) and after (i + 3, i 4 2, i + 1). Those variables with high R?
are useful to improve the estimation of Ry within a classic model, such as the BC. As a result,
new BC-derived models are built according to Equations 5 & 6 with those important variables
and then evaluated according to Section 3.1.

Ri=a(l—exp(=b-AT))Rs- A+ pni1 (5)
n

Azl—i—zip]-m]- (6)
]:

Where, A is the adjustment of the BC model according to the evaluation of variable impor-
tance, p is the parameter related to the variable v and # is the number of variables of adjustment.

4. Results and discussion

4.1. Model building

The evaluation of variable importance for La Rioja is collated in Table 3. AT, H, and M
show values of R? higher than 0.15. Throughout the analysis of variable importance it might
be proved that rainfall in this region should be explained with M instead of P (0.153 vs. 0.056),
which however, is implemented in models 6 and 7. As a result, P is rejected as a variable



to explain R;. Equation 6 might be fitted with different combinations of variables (p;) and
therefore, different models might be built and then evaluated as per Section 3.1. Two different
sets of models are built regarding inputs used. The first set of models, constituted by 9 models,
is built considering commonly registered meteorological variables (Tyax, Tyin and M). The
second set of models also integrates W and H and is composed by 3 different models. Since
AT is already considered within the BC model, only AT, are considered in A. Eventually,
only p; and pj1; are relevant in R, showing lower errors in the evaluation. M;, Mj11, AT; and
ATj4 provide information about the cloud coverage [23] and W and H refine the sky clearness.
However, H;; and Wj; reduce the robustness of models and increase errors. M, M; 1 and
M; 1 were already implemented in the [29] models (models 18 and 19). Equations 6 and 7 show
the final models proposed for both afore-mentioned sets.

Rs:Ra'a(l—eXp(—b-ATc)) ~(1+d-M]-_1+e-Mj+f-Mj+1+g-ATj+1+h-ATj_1)—|—l
@)

Rs=Rg-a(l—exp(=b-AT)) - (14+d-Mj_y+e-Mj+f-Mj1+8 AT 1 +h-ATj_1 +1-W;+m-H;) +n

®)

4.2. Evaluation of parametric models

The results of the robustness assessment are collated in Figure 2, showing the 95% confi-
dence intervals (95% C.I., n=100) of the MAE,,;; obtained by bootstrapping and also the test
errors (M AE.s). Narrow confidence intervals and low values of MAE,,;; imply both stability
and accuracy in models, and low MAE;s means high capacity for generalization within the
testing period. Several models, such as 12 and 13 at station 1, 12-14 at station 8, 10 and 12 at
the station 12, and 1-5, 7-10, 12 and 20 at the station 17 among others, generate wide confi-
dence intervals and high values of MAE,,;; and at the same time low MAE;;. In spite of the
high capacity for generalization of the afore-mentioned models within the festing period, the
methodology proposed leads to their selection being avoided. For instance, stable and accurate
models such as 24 should be selected at station 17 instead of model 20, although the latter gen-
erates lower MAE,;. The robustness assessment is found useful when only short and biased
time series are available to evaluate models.

The stability of models is assessed through the Ry;ar , of the model for the whole set of
stations (Table 4). The proposed models (models 23 and 24) improve the results of [29] (models
18 and 19) with Rpj4E par of 0.360 and 0.261 M]/m?day and 0.387 and 0.385 MJ /m?day, respec-
tively. Therefore, model 23 is considered the most stable for this region by means of rainfall and
daily range of temperatures. However, a significant improvement in stability is achieved intro-
ducing W and H in addition to AT and M, as seen with model 24. Models 1-10, 15, 20 and 22
generate similar Ry14E 1 between [0.42-0.45] M]/ mzday, and models 12-14, 17 and 21 between
[0.48-0.53] MJ/m?day. The low stability of models 11 and 16, with Ry AE,val Of 0.761 and 0.764
MJ/m?2day, might be explained by the inclusion of R, ; 3 and the lack of R,, respectively.

Model accuracy is assessed via the average of MAE,,; for the whole set of stations (MAE,).
The highest accuracy in predictions is also achieved with models 24, 23 and 18 with MAE,,;; of
2.195, 2.247 and 2.317 MJ/m?day (Table 4). In addition, model 23 and 24 obtain the lowest
values of MAE,, of 1.886 + 0.161 and 1.887 + 0.090 (95% C.I., n=100) MJ/m?day (Figure 2)
at station 11 (Calahorra). According to the t — test the MAE,,;; mean is statistically lower in
model 24 than any other model in all stations, except in station 9, in which models 18, 19 and
23 have lower MAE,,;; mean (Table 5). From this test, it can also be deduced that model 23 has
statistically lower MAE,,;; than models 18 and 19 in all stations.




The original BC model (model 8) achieves lower MAE,,; (2.617 MJ/m?day) than other BC-
derived models such as 10-14 and 20-21. Models 3, 5 and 6, derived from [9] (model 1), obtain
lower MAE,; than the initial model. [10] (model 7), derived from [22] (model 15) improves
the MAE,,;; from 2.719 MJ/m2day (model 15) to 2.534 MJ/m?day (model 7). [30] and [31]
models (models 16 and 17), in which AT is not considered, achieve MAE,,; of 6.315 M]/m?day
and 3.405 MJ/m?2day. [38] (model 11) generates a MAE,,; of 4.426 MJ/m?day, due to its high
dependency on the R, ;_3p.

The capacity of generalization of models to non-common days is assessed through the RMSE,;
and RgpssE a1 in Table 4. The model proposed (model 24) behaves with lower RMSE,,;; (2.879
M]/ mzday) than the other models analyzed and also with a lower R sk var (0.361 MJ/ mzday).
This model generates lower median of RMSE,,; in all stations, except in station 9, in which is
lower in models 18, 19 and 23.

Eventually, the models 24 (model proposed by means of AT, M, W and H) and model 23
(model proposed by means of AT and M) are considered the most suitable models for estimat-
ing Rs in La Rioja. Notwithstanding, the model evaluation is focused on model 24 due to its
superior stability and accuracy. 41.65% of the daily residuals in the case of SIAR and 20.12% in
that of SOS Rioja fall within the uncertainty tolerance of the pyranometers of the two networks
(10% and 5%, respectively). However, smaller differences between Rg eqs and Rs s are found
in Figure 4 when considering yearly sums of Rs. Yearly sums of Ry fall within the uncertainty
tolerance of the pyranometers in all estations during the five years (2007-2011) with a higher
divergence of 4.823% in 2011. Regarding the relative differences between measured and esti-
mated monthly sums of R, in 2011, 91.7% and 45.8% of the cases in SIAR and SOS Rioja stand
within the tolerance of pyranometers.

The performance of the whole set of models is related to elevation, as shown in Figure 5,
with higher MAE,,;; being produced at higher altitudes, as evidenced at stations over 1000
m. A suitable explanation of this behabiour might be because there is more meteorological
variability in the mountainous areas of La Rioja, than in the lowlands [26]. A slight correlation
with elevation is found in models 10, 14 18-20, 23 and 24, not as marked as with other models.

Figure 6 shows the parameters calibrated on model 24 to estimate R in Wh/m?day. High
variability between stations is found within the non explanatory constant (parameter 7). This
variability was also reported by [29] and might be explained by the strong site dependency de-
scribed by [26, 62]. [23] and [19] described correlations between the parameters and the distance
between stations or latitude and longitude. Nevertheless, no correlation between the values of
the parameters and latitude, longitude, elevation or distance between stations is found in model
24.

The effect of rain in model 24 is shown in Figure 7, in which the MAE of non-rainy days
is on average 11.3% lower than that of rainy days for the whole set of stations. This is also
widely found in the rest of the models, and is explained by the fact that solar irradiation is more
complex on rainy and overcast days [10]. 2011 was an especially dry year in La Rioja, with 19.7%
less rainfall than the average for the calibration period 2007-2010 (Table 2), so the M AE;, figures
are significantly low in comparison with the confidence intervals of the MAE,,; in Figure 2.
However, this tendency is broken with some models at station 14 (Moncalvillo), where the
MAE;,s are higher than the MAE,,;;. More cloud cover in the festing period, evidenced by AT;
being lower that the AT, seen in Table 2 at station 18, might explain this finding [23].

4.3. Evaluation compared with CM SAF

The mean MAE registered by CM SAF related to R jyeqs is 1.983 MJ/ mzday with a standard
deviation of 0.517 M]J/ mzday, in average 10.7% lower than MAE,;; from model 24, although
in stations 9, 11, 14, 16 and 17 MAEcpsar is higher than the confidence interval (95% C.I.,




n=100). The RMSEcsar is 3.207 MJ/m?day with a standard deviation of 0.449 MJ/m?day,
being higher than the confidence interval (95% C.I., n=100) in stations 6, 7, 9, 12, 14, 16 and 17.
Table 6 shows the errors of testing (testing dataset) for the model 24 and CM SAF. It might be
deduced that CM SAF generally performs with lower errors than model 24 except in stations
9,11, 14, 16 and 17 (same stations with lower MAE,,;; and RMSE,,;; than CM SAF), in which
model 24 is superior.

Figure 3 shows the performance of model 24 with new data from the testing database. This
model achieves coefficients of determination (R?) with linear regression of [0.87-0.91] and [0.79-
0.87] for stations below and above 1000 m respectively. The coefficients of determination from
CM SAF against R eas (R% Msap) are significantly higher than R2, but also showing a relation
with elevation, being lower at higher elevation.

The annual irradiation estimated by CM SAF is significantly higher than the R; 45, which
was also found in Spain by [63]. Stations 11, 14, 16 and 17 present relative differences substan-
tially above the tolerance of pyranometers reaching 22.95% in station 14 in year 2011. Thus, the
model proposed (model 24) is able to estimate more accurately annual irradiation in this region
than the CM SAF during years 2007-2011.

It could be argued that, because the CM SAF estimations show higher R? values, their worse
results in the RMSE and MAE indicators may be improved with a local calibration. This ap-
proach was developed in [63] with a geostatistical interpolation (kriging with external drift) us-
ing data from a network of 301 ground stations and also CM SAF. A more simplified approach
is to use a parametric model as Equation 9,

Ry = Ry (a- 2m ) ©)
Rq

where the CMSAF estimations are normalized with the extraterrestial radiation and cali-
brated with the on-ground radiation measurements. This approach has been analyzed achiev-
ing MAE,;; and RMSE,; of 1.913 and 2.987 M]/mzday with Ryag par and Rrprsg e Of 0.422
and 0.886 MJ/m?day, respectively. The R? in this parametrization is also lowered respect the
actual R? of CM SAF. This means that it is only improved the MAE,,; respect to the model 24
while getting the other indicators worse. However, this re-calibration of CM SAF leads to lower
errors in annual sums of global irradiation with CM SAF (in 15 stations the error is within the
5% and a 5.7% maximum error). The Table 7 shows parameters of Equation 9, where ayeq1,
Diean, 054, by are the average and standard deviations of a and b.

5. Conclusions

The methodology proposed of model development of adjusting a general model with the on-
site peculiarities based on the evaluation of variable importance is proved appropiated within
the case study of La Rioja region (northern Spain). The high site dependency of R; related to
the meteorological trends suggests the adjustment of general parametric models (such as the
BC and [9] models) with those variables that show higher correlation with R;. By means of this
methodology, different models might be proposed in locations with different climates. The new
model includes M, M;_1, M1, AT;_1, AT; 11, W, H as explanatory variables (derived from the
evaluation of variable importance) that adjust the BC model in La Rioja.

The methodology proposed of model evaluation is based on bootstrapping and proves use-
ful in selecting models according to stability and accuracy and not only based on test errors. The
proposed model is evaluated with this methodology against a review of twenty-two already ex-
isting parametric models at seventeen meteorological stations within La Rioja. The new model
improves the estimates of the other twenty-two models with MAE,,; of 2.195 MJ/m?day and
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RptAE,pal 0f 0.261 M]/ m?day. However, several BC derived models (10-14, 20-21) fail to improve
the estimates of the original model. This might be explained because these models include vari-
ables that do not show high correlation with R, (such as P) within La Rioja. In addition, sig-
nificant differences in stability between models and meteorological stations are recorded with
these models. The performance of the model proposed is compared with R cpsar, obtaining
lower confidence interval (95% C.I., n=100) of MAE,,;; than MAEcps4F in 5 stations and for
RMSE,,;; in 7 stations.

Rainfall and elevation are shown to influence the accuracy of model performance (gener-
ating higher errors in rainy days and also at higher stations). The fact that the testing dataset
(year 2011) was significantly drier than the calibration dataset (years 2007-2010) explains the low
MAE;,s recorded.

The residuals of estimates are found to have yearly periodicity, with higher relative residuals
when meteorological variability is greater. 41.65% of the daily residuals in the case of SIAR and
20.12% in that of SOS Rioja fall within the uncertainty tolerance of the pyranometers of the two
networks (10% and 5%, respectively). However, the annual relative differences between Rs eas
and R; .5 are lower than 4.82%, which means that estimates are within the confidence interval
of pyranometers.

The analysis of parametric models against the CM SAF satellite-derived irradiation data
shows that the mean MAEcpsar is in average 10.7% lower than MAE,,;, but also that in 5 sta-
tions the MAE,, is significantly lower than the one of CM SAF. This tendence is also common
with the RMSE, which is generally lower with CM SAF, but not always (7 stations). Never-
theless, attending to the annual irradiation it has been proved that the model proposed (model
24) achieves significantly better estimates that the CM SAF, which over-estimates solar irradi-
ation within the region studied. The possibility of shades on the positions of stations over the
CM SAF estimates has been previously analyzed and rejected. As a result, the proposed model
might be useful to estimate annual sums of R;, reaching insignificant differences with Ry from
pyranometers and also to be used on a daily basis when correctly calibrated with on-ground
data.
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no.
1 a [9]

Rs =aVv ATR,

2 a [26]
Ri=a (1 4+27-1075. h) VATR,
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Model Equation Parameters Authors
no.

3 a, b [27]
Rs = (a\/ﬁ—i- b) R,

4 a,b [27]
Rs = (a-In(AT)+b)R,

5 a,b [28]
Rs = aV/ATR, + b

6 a,b,c,d e [28]

Rs=aVATR, +b-Tygy +c-P+d-P>+e

7 a,b,c d [10]
Re=a-R,-AT" (1+c~P—|—d~P2)

8 a,b,c [8]
Ri=a(l—exp(—b-AT"))R,

? a,b,cd [28]
Rs = a-R, (1 —exp (—b\/E—C-AT—d-ATZ))

10 - a,b,c [37]
Rs=a (1 —exp (—b R, )) R,
11 a,b,c [38]
AT®
Ri=a(l—exp|—D R,
Rg,i-30
12 b [33]

Rs =07 (1 — exp (—b : AT“)) R,

13 b [19]
Rs =075 (1 — exp (—b : ATZ)) R,

Continued on next page

15



Model Equation Parameters Authors
no.
14 , b [19]
AT
15 a,b [22]
Ry = (a : ATb) R,
16 a,b,c,d e [30]
f,g,h
Rs=a+b-cos () +c-sin(0)
+d - cos (20) + e - sin (26)
+f-Mj1+g-Mj+h- M
17 a,b,c d [31]
R; :a~Ra—|—b'Mj_1 +C'Mj+d'Mj+1
18 a,bycd e [29]
fg
Rs=R;-a(l—exp(—b-AT))
. (1+d~Mj71+€-M]‘+f'M]‘+1) +g
19 a,b,cde [29]
f, g
Rs =R;-a(l—exp(—=b-AT°))
+d~Mj,1 +€-M]‘+f~Mj+1 +g
20 a,b,c [36]
Ri=a|l—exp|—b AT R
s P\ AT, )) "
21 [36]

Ry =075 (1—exp (~b-AT? - f (Turg) ) )
f (Tuvg) = 0.017 exp (exp (70.053 * Tavg - AT))
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Model Equation Parameters Authors
no.

22 a,b,cd [39]

Rs=a-Ry-AT'(1—exp (—c - psat [Tymax]))"?

23 a,b,c,d, e, Proposed model
f, g h,1
Rs =R;-a(l—exp(—b-AT°))

-(1+d-M]‘,1+€~M]'+f'Mj+1+g~AT]‘+1+h-AT];1)+Z

24 a, b, ¢, d, Proposed model
e f, g hl
Ry =R, a(l—exp(—b-AT)) m,n

(14+d-Mj_1+e-Mj+f-Mj1+8-ATj 1 +h-ATj_1+1-W;+m-H;) +n

Table 1: Summary of the twenty-three parametric models studied. AT is the difference between
Tnax and Tpin. Ry i—30 is the extraterrestrial irradiation on day i-30,  is the elevation above sea
level, Tyog is the daily average air temperature, ATy, is the monthly average of AT and psat [Timax]
is the vapor saturation pressure at Tj;qx

# Name Net. Lat.(°) Long.(®) Alt. AT, ATy P P Rse  Rsp
1 Agoncillo SIAR 4246 -2.29 342 12.3 12,6 484 318 14.7 15.3
2 Aldeanueva SIAR 4222 -1.90 390 11.1 114 405 327 154 154
3 Alfaro SIAR 4215 -1.77 315 125 129 335 364 15.3 15.2
4 Casalarreina SIAR 4253 -2.89 510 11.8 124 486 341 14.2 14.2
5 Cervera SIAR  42.00 -1.89 495 13.9 143 356 331 15.2 15.0
6 Foncea SIAR  42.60 -3.03 669 10.1 10.5 647 422 14.8 14.7
7 Leiva SIAR 4249 -3.04 595 114 115 499 379 14.5 144
8 Rincon SIAR 4225 -1.85 277 12.3 127 393 348 15.3 15.5
9 Urunuela SIAR 4246 -2.71 465 114 124 476 345 14.1 14.2
10 Aguilar SOS 4196 -1.96 752 9.3 9.7 463 236 14.5 14.7
11 Calahorra SOS 4229 -1.99 350 11.1 11.3 305 250 13.3 13.4
12 Ezcaray SOS 4233 -3.00 1000  10.3 10.7 538 381 13.6 13.6
13 Logrofio SOS 4245 -2.74 408 10.1 10.3 423 212 14.3 14.3
14 Moncalvillo  SOS 42.32  -261 1495 7.8 7.7 567 429 12.0 11.9
15 San Roman  SOS 4223 245 1094 8.2 8.2 323 332 13.9 14.2
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# Name Net. Lat.(°) Long.(°) Alt. AT. AT P: P Rse  Rsp

16 Ventrosa 50S 4217 -2.84 1565 7.4 7.7 447 412 12.2 12.1
17 Villoslada S0S 4212 -2.66 1235 9.7 9.9 499 325 12.6 12.4

Table 2: Summary of the seventeen meteorological stations. AT, and AT; are the average AT of
the calibration and testing datasets, respectively. P. is the yearly average rainfall in mm for the
calibration dataset and P is the yearly rainfall for the testing dataset. Rs. and R;; are the daily
average R; for the calibration and testing datasets, respectively

v B Pin Pig M;p My M ATy ATy ATiy ATy AT
R%Z 0.056 0.012 0.016 0.153 0.068 0.059 0.533 0.359 0.340 0.301 0.172

v ATz ATiz W; Wisi Wip H; Hiy1 Hi1 Hiy2 Hio
R%Z 0206 0.167 0.089 0.076 0.071 0.465 0.344 0251 0.251 0.199

Table 3: Summary of variable importance results related to each variable v
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Model 1 2 3 4 5 6 7 8 9 10 11 12

MAE,,;; 2814 2809 2699 2679 2797 2768 2534 2617 2613 2791 4426 2791

Rymagom 0436 0415 0426 0425 0411 0430 0420 0420 0422 0423 0.761 0.527

RMSE,; 3572 3560 3475 3448 3.541 3.488 3.409 3294 3398 3584 5873 3.825

RrmsEpar 0559 0545  0.601 0.569 0.549 0.539 0.577 0.605 0.593 0579 0996 0.745

Model 13 14 15 16 17 18 19 20 21 22 23 24

MAE,,;; 2804 2751 2719 6.273 3366 2317 2336 2678 2728 2723 2247 2.195

Rmagva 0491 0488 0444 0.764 0498 0387 0385 0.445 0498 0432 0360 0.261

RMSE,; 3798 3.708 3485 7377 4256 3.023 3.081 3.457 3.693 3.504 2995 2.879

Rrmsgpar 0715 0.691  0.583 0.802 0.649 0548 0.538 0.606 0.694 0.576 0.543 0.361

Table 4: Summary of statistics in MJ/m?day

Mod.18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
p—value 09 09 09 0.6 09 08 0.8 09 00 09 06 09 09 0.7 09 0.6 09

Mod.23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
p—ovalue 09 09 09 09 09 0.7 04 09 0.0 09 07 06 09 0.7 03 0.6 09

Table 5: Summary of p — values of t — test in the MAE,,;; of model 24 against model 18 and
model 23 (p — values greater than 0.05 imply statistically significant lower MAE,,;; in model 24)
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Figure 1: Location of the meteorological stations selected in the region of La Rioja. The color
band represents elevation (m). SIAR stations are shown by blue circles and SOS Rioja stations

by red triangles
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Figure 2: Confidence intervals (95% C.I, n=100) of MAE,,; (grey vertical lines) and MAEs
(blue crosses) (MJ/m?day). Note that some of the values of models 11, 16 and 17 lie outside the
range of the figure

21



0 10 20 30
] ] ] ] ] ] ] ] ] ] ] ]

30 Rcmsaf= -0.3 + 1e+00 -Rmeas Rcmsaf= -0.7 + 1e+00 -Rmeas Rcmsaf= -0.3 + 9.7e-01 -Rmeas, —
Rest=-0.2 + 1e+00 -Rmeas: Rest=-0.8 + 1.1e+00 -Rmeas’ Rest= -0.3 + 1e+00 -Rmeas g
20 — Recmsaf=0.98 Rzcmsaf= 0.98 Rzcmsaf= 0.98 -
R?=0.9 + R?=0.92 R2=0.91 +
10 -
0 - Station 1 Station 2 Station 3 L
—| Remsaf=-0.2 + 9.8e-01 -Rmeasq_ Rcmsaf= -0.5 + 9.9e-01 -Rmeas Rcmsaf= -0.1 + 1e+00 -Rmeas 4 — 30
Rest=-0.1 + 1e+00 -Rmea; Rest= -0.7 + 1e+00 -Rmeas+a Rest= -0.5 + 1e+00 -Rmeas.
— Recmsaf= 0.98 Rzcmsaf= 0.97 Rzcmsaf= 0.96 T — 20
R2?=0.87 R?=0.9 + +
- — 10
. Station 4 Station 5 Station 6 -0
30 Rcmsaf= -0.2 + 1e+00 -Rmeas Rcmsaf= -0.3 + 9.9e-01 -Rmeas Rcmsaf= 2.3 + 8.5e-01 -Rmeas -
Rest=-0.7 + 1.1e+00 ;Rmgas Rest=-0.2 + 1e+00 -Rmeas, Rest=0 + 1e+00‘_tqugs + -+
~~ M- K
— Recmsaf=0.98 RZcmsaf= 0.98 —
% 20 + T
S R?=0.89 R?=0.92
NE 10 + -
= 0 - Station 7 Station 8 Station 9 |
é —| Rcmsaf= 0.6 + 9e-01 -Rmeas Rcmsaf= -0.5 + 8.9e-01 -Rmeas Rcmsaf= -0.1 + 9.7e-01 -Rmeas < 30
f— Rest= 0 + 9.8e-01 -Rmeas Rest=-0.3 + 1e+00 -Rmeas 1, Rest= 0.1 + 9.7e-01 -Rmeas
8 — Recmsaf= 0.97 Rzcmsaf= 0.98 Rzcmsaf= 0.96 + — 20
E R?=0.88 R?=0.91 R?=0.87
- + -
iy 10
. Station 10 Station 11 Staton12 [ g
30 Rcmsaf= 0.4 + 9.2e-01 -Rmeas Rcmsaf= 0.1 + 8.1e-01 -Rmeas Rcmsaf= 0.3 + 9.5e-01 -Rmeas —
Rest= 0.5 + 9.4e-01 -Rmeas* Rest= 1+ 9.1e-01 -Rmeas Rest= 0.3 + 9.8e-01 -Rmeas &
20 — Recmsaf=0.97 R2cmsaf= 0.88 T R2cmsaf= 0.95 H i + -
R2?=0.87 R2=0.79 ﬁ ++ R2= 0,8‘?_ s
10 — £ + + ~
. . + .
0 - Station 13 Station 14 Station 15 [
—] Remsaf=0.1 + 8.1e-01 -Rmeas Remsaf= 0 + 8.6e-01 -Rmeas — 30
Rest= 0.3 + 9.3e-01 -Rrpeas. Rest= 0.8 + 8.9e-01 -Rmeas i+
— Recmsaf= 0.93 +. Rzcmsaf= 0.94 — 20
R2?=0.84 + o # R?=0.86
T — 10
. Station 16 Staton17 | g
T T T T T T T T
0 10 20 30

Rest (MJ/m2day)

Figure 3: Correlation between Rs eqs (M]/ mzday) and R; st of the model proposed (model 24)
with green points and Rj .5, with black crosses within the testing time series at all seventeen
stations
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Figure 4: Annual relative difference (%) between Rj eqs and R; st for the model proposed
(model 24) and CM SAF during the festing period (year 2011).
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Figure 6: Confidence intervals (95% C.I., n=100) and median of the parameters of the proposed
model (model 24)



Station MAEs24  MAEescmsar  RMSEies04  RMSEyes cmsar

1 2.18 0.91 2.85 1.20
2 1.92 0.86 2.46 1.17
3 1.95 1.05 2.55 1.33
4 2.22 1.09 3.00 1.43
5 1.99 1.12 2.65 1.60
6 2.16 1.13 2.83 1.67
7 2.16 0.95 2.89 1.29
8 1.93 0.93 2.45 1.19
9 2.12 227 2.79 3.20
10 2.03 1.37 271 1.80
11 1.74 2.35 2.28 2.74
12 2.32 1.34 2.99 1.79
13 2.15 1.30 2.93 1.65
14 2.49 3.18 3.36 4.02
15 2.28 1.32 3.07 1.87
16 2.15 2.83 2.99 3.63
17 2.18 2.28 2.90 291

Table 6: Testing errors of model 24 and CM SAF (year 2011)

Amean  Asd  Dmean bsa
0.61 005 0.09 0.04

Table 7: Summary of CM SAF re-calibration as per Equation 9
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Figure 7: Average MAE (M]/m?day) of the proposed model (model 24) for rainy days (black
dots) and non-rainy days (black crosses)
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