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Abstract8

This paper presents a new methodology to build parametric models to estimate global solar9

irradiation adjusted to specific on-site characteristics based on the evaluation of variable im-10

portance. Thus, those variables higly correlated to solar irradiation on a site are implemented11

in the model and therefore, different models might be proposed under different climates. This12

methodology is applied in a study case in La Rioja region (northern Spain). A new model is13

proposed and evaluated on stability and accuracy against a review of twenty-two already exist-14

ing parametric models based on temperatures and rainfall in seventeen meteorological stations15

in La Rioja. The methodology of model evaluation is based on bootstrapping, which leads to16

achieve a high level of confidence in model calibration and validation from short time series (in17

this case five years, from 2007 to 2011).18

The model proposed improves the estimates of the other twenty-two models with average19

mean absolute error (MAE) of 2.195 MJ/m2day and average confidence interval width (95%20

C.I., n=100) of 0.261 MJ/m2day. 41.65% of the daily residuals in the case of SIAR and 20.12% in21

that of SOS Rioja fall within the uncertainty tolerance of the pyranometers of the two networks22

(10% and 5%, respectively). Relative differences between measured and estimated irradiation23

on an annual cumulative basis are below 4.82%. Thus, the proposed model might be useful24

to estimate annual sums of global solar irradiation, reaching insignificant differences between25

measurements from pyranometers.26
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Nomenclature28

BC Bristow & Campbell model29

∆T Daily range of maximum and minimum temperatures30

∆Tc Average ∆T of the calibration dataset31

∆Ti−1 Daily range of maximum and minimum temperatures on day i-132

∆Tm Monthly average of ∆T33

∆Tt Average ∆T of the testing dataset34

h Elevation above sea level35
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H Daily mean relative humidity36

J Julian day37

M Logical variable of rainfall38

MAEtes Mean absolute error of testing39

MAEval Mean absolute error of validation40

MAEval Average MAEval for the whole set of stations41

n Length in days of the validation database42

P Rainfall43

Pc Yearly average rainfall in mm for the calibration dataset44

Pt Yearly rainfall in mm for the testing dataset45

psat [Tmax] Vapor saturation pressure at Tmax46

R2 Coefficient of determination47

Ra Extraterrestrial irradiation48

Ra,i−30 Extraterrestrial irradiation on day i-3049

Rs Daily global solar irradiation50

Rs Monthly mean of daily global irradiation51

Rs,c Average Rs for the calibration period52

Rs,est Daily estimated irradiation53

Rs,meas Daily measured irradiation54

Rs,t Average Rs for the testing period55

RMAE,val Average confidence interval width of MAE56

RRMSE,val Average confidence interval width of RMSE57

RMSEval Average RMSEval for the whole set of stations58

RMSEtes Root mean square error of testing59

Tavg Daily average air temperature60

Tmax Daily maximum temperature61

Tmin Daily minimum temperature62

θ Julian angle63

W Daily mean wind speed64
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1. Introduction65

Solar irradiation research is a field of rising interest due to its many applications, such as66

the study of evapotranspiration [1] and optimization of water demand in irrigation, crop fore-67

casting [2] from near-to-present measurements and estimates, the development and reduction68

of uncertainties in solar energy technologies (generation and internal rate of return) [3], the ad-69

justment of energy policies to promote solar energies, and research on climate change [4]. The70

high cost of measuring solar irradiation with pyranometers and the scarcity of long, reliable71

datasets for specific locations has propitiated the progress in estimators such as the analysis72

of satellite images [4, 5], artificial neural networks (ANN) [6, 7] and empirically-based para-73

metric models [8–10]; the latter estimating daily global horizontal irradiation (Rs) from other74

meteorological variables.75

Satellite-based Rs estimates are only provided with high resolution for specific areas in the76

planet, for example, 70S-70N, 70W-70E in the Satellite Application Facility for Climate Moni-77

toring (CM SAF) [11], Helioclim1 and Helioclim3 from SODA [12]. In other areas, resolution78

from satellite-based estimates is low, such as in some regions of South America and South-East79

Asia (INPE [13] and the National Renewable Energy Laboratory (NREL) [14] with 40x40km res-80

olution). The NASA Surface meteorology and Solar Energy (SSE) [15] coverage is global but81

resolution is very low (1x1o). Due to the effect of local microclimatic events on Rs, daily and an-82

nual divergence within a 40x40km or 1ox1o cell might be significant [16]. In addition, satellite-83

based daily estimates are not generally freely accesible in the near present. For instance, the84

SODA provides Rs from Helioclim1 for the period 1985-2005, Helioclim3 for the year 2005 and85

from the SSE database for the period 1983-2005. These near-to-present estimates are necessary86

in different applications such as the estimation of evapotranspiration of previous days to fore-87

cast irrigation. As a result, the empirically-based parametric models stand out because of their88

high simplicity in estimating near-to-present Rs from measurements of commonly registered89

variables, generally registered with a higher distribution than the satellite resolution.90

[17] and [18] developed the first parametric models to estimate Rs out of sunshine records91

and introduced the concept of the atmospheric transmittance that affects incoming extraterres-92

trial irradiation (Ra). The common figure of most parametric models is that they account for93

latitude, solar declination, the Julian day (J), and day length by including Ra [19]. [20] included94

mean daily cloud coverage to explain Rs. [21] introduced relative humidity and maximum tem-95

perature to estimate the monthly mean of the daily irradiation (Rs). However, the scarcity of96

sunshine and cloud cover records limits the usage of these methods to the location of validation.97

[9], [22], and [8] developed the first models in which Rs is estimated through the daily range98

of maximum and minimum temperatures (∆T). Note that in these models ∆T behaves as an99

indicator of atmospheric transmittance, providing information about cloud cover. The higher100

emissivity of clouds than clear sky makes the maximum air temperature decrease and the min-101

imum temperature increase, and as a result the ∆T decreases [23].102

[24] studied the [9] model with Rs, distinguishing between inland and coastal locations and103

obtaining higher accuracy in monthly than in daily estimates [25]. Other authors also modified104

the [9] model, introducing elevation [26], or modifying the square root by a Neperian logarithm105

[27] (the latter attributing it to [25]).106

Rainfall (P) was introduced as an explanatory variable directly [10, 28] or as a binary variable107

(M) equal to 1 in days with some rainfall (denoted as rainy days) and 0 in days without any108

rainfall recorded (non-rainy days) [29–31]. According to previous papers, [30, 31] rejected using109

∆T in his model, considering P sufficient to explain Rs. [30] also rejected Ra and applied Fourier110

series based on the julian angle (θ), corresponding to the angle in radians of the J.111

[8] (hereinafter BC) calculated ∆T as the difference between the maximum temperature of112
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the day and the average of the minimum temperatures of the current day and the following113

day. [32] modified the BC model, calculating ∆T related to rainfall. [19] studied the influence114

of ∆T on estimations, calculated as the difference between the maximum (Tmax) and minimum115

temperatures (Tmin) and as ∆T as per BC and evaluated it with sixteen BC and [9] derived116

models. Eventually, better estimations were achieved with ∆T as the difference between Tmax117

and Tmin. The BC equation has also been modified by considering some parameters as constants118

[1, 19, 33, 34]. The last of this papers attributed two new models to [33] and [35]. Additionally,119

[33] concluded that [25] and BC models perform better for Rs than for daily values. [36] and120

latter [35] (who referred it as BC) included the monthly mean of the daily ∆T to smooth the121

results of the BC model. [36] also developed a model in which the daily average temperature122

was introduced. [37, 38] also modified the BC model, introducing the Ra as a function of the123

atmospheric transmittance. Indeed, several papers have proved the efficacy of the BC model by124

comparing it with their own models or with other models, e.g. [1, 19, 23, 28, 29, 32–35, 39–42].125

Most of parametric models to estimate Rs have been derived from the [9] and the BC models126

by adding other variables that were proved to achieve better estimates where validated. How-127

ever, a variable which might be correlated with Rs in a site, might not have such a dependency128

in other site [26]. This paper proposes the evaluation of variable importance as a method to129

adjust general models, i.e., the BC model. New models are then built by including important130

variables, obtained by on-site specific relationships between predictors and Rs.131

Several papers have already evaluated models according to test errors, assessing the capac-132

ity of generalization under unproven data [23, 35, 39]. Nevertheless, models might generate133

low test errors for a specific time series while still being unstable under slight variations in the134

calibration data [43]. This paper also proposes an evaluation including stability and accuracy135

under different initial conditions as model selection criteria, and implements it on twenty-four136

parametric models (including two new models built on the method of evaluation of variable137

importance) in seventeen meteorological stations in La Rioja (Spain). The estimates of the best138

performing model are also compared with the CMSAF SIS satellite-derived database.139

Table 1 summarizes the twenty-four models studied.140

2. Meteorological data141

The assessment is performed in La Rioja, a 5028 km2 region of Spain with significant cli-142

matic differences mainly due to differences in elevation and the smoothing influence of the143

Ebro River. The daily meteorological data is provided by two public agencies, SOS Rioja [44]144

and SIAR (Service of Agroclimatic Information of La Rioja) [45], with records taken every fifteen145

and thirty minutes respectively. Rs is measured by SOS Rioja with Geonica sensors CM-6B and146

EQ08, which are classed as First Class pyranometers according to the ISO9060 and by SIAR with147

Kipp&Zonen CM3 and Hukseflux LP02, which are Second Class pyranometers with 5% and 10%148

daily tolerance levels respectively. The impact of the horizon effect on Rs has been analyzed and149

not taken into account, since sky-view factors (ratio of visible sky related to the potential visible150

sky) are between 0.985-0.999, substantially lower than the uncertainty of sensors and models151

and therefore negligible. Tmax, Tmin and P are recorded with tolerances of 0.1 ◦C and 0.1 mm by152

SOS Rioja and 0.2 ◦C and 0.2 mm by SIAR. Additionally, average wind speed (W) and relative153

humidity (H) are recorded with 0.3 m
s and 3% tolerance respectively. Eventually, a total num-154

ber of seventeen meteorological stations are selected (see Figure 1), with five complete years of155

daily historical data on the aforesaid variables from 2007 to 2011. Spurious data are filtered out156

according to the following limits, Tmax lower than 45 ◦C, Tmin higher than −20 ◦C, irradiance157

lower than 1150 W
m2 , Rs lower than the daily Ra, P lower than 40 mm

h , W lower than 30 m
s and H158
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lower than 100%. Spurious data account for less than 0.14% and are replaced by the average of159

the previous and following measurements.160

The time series of daily values from 2007 to 2011 of each station is divided into the calibration161

dataset, running from 2007 to 2010 and the testing dataset, which covers 2011 alone. Table 2 pro-162

vides general information about the main variables measured during the calibration and testing163

periods.164

Additionally, Rs from the CM SAF SIS for 2007-2011 is obtained to evaluate and compare er-165

rors from the best-performing parametric model with those from this satellite-derived database.166

3. Method167

3.1. Methodology of model evaluation168

The analysis of robustness proposed leads to the stability of models being assessed under169

many different initial conditions, and it is advisable to select the most suitable model, based170

not only on the lowest testing errors [46]. The evaluation is based on bootstrapping to extract a171

large amount of knowledge from a short time series [47, 48]. It is performed with each model at172

each station. 80% of the calibration dataset for every station (1168 days) is sampled to calibrate173

the parameters of each model. The remaining 20% (292 days) is used to validate the calibration174

by calculating the validation mean absolute error (MAEval) and the validation root mean square175

error (RMSEval). This process is repeated one hundred times, resampling the 80% of the calibra-176

tion dataset and calculating MAEval and RMSEval to eventually obtain the confidence intervals177

of the model parameters and errors.178

MAEval =
1
n

n

∑
i=1
|(Rs,meas − Rs,est)| (1)

RMSEval =

√
1
n

n

∑
i=1

(Rs,meas − Rs,est)2 (2)

Where, Rs,meas and Rs,est stand for daily measured irradiation and daily estimated irradiation179

with the model to be validated. n stands for the length in days of the validation database (292180

days).181

Each model is calibrated with both spectral projected gradient methods for large-scale op-182

timization [49] and a quasi-Newton algorithm known as the Broyden, Fletcher, Goldfarb and183

Shanno (BFGS) method [50], which updates an approximation to the inverse Hessian along184

with a point line search strategy [51]. The parameters calibrated minimize the sum of the square185

residuals between the measurements (Rs,meas) and the estimations (Rs,est). A combination of186

square errors in model calibration, and mean absolute errors (MAE) is chosen as indicators of187

model performance to reduce the impact of outliers in the evaluation [52].188

The stability and accuracy of each model are assessed at the set of stations as a whole with189

the mean confidence interval width of MAE (RMAE,val) and the mean MAE (MAEval). The un-190

paired t− test is also evaluated to determine if MAEval means are statistically different between191

pairs of models within each station. The t is calculated with Equation 3 and then the p− value192

of the null hypothesis is derived.193

t =
xi − xj√

s2
i−s2

j
n

(3)

where xi and xj are the mean MAEval by bootstrapping with 100 samples of model i and j, si194

and sj the standard deviations and n the number of samples.195
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The capacity of generalization for non-common values is assessed with the confidence in-196

terval width of RMSE (RRMSE,val) and the mean RMSE (RMSEval), as a result of the amplifying197

property of this statistic with outliers.198

The capability for generalization under unproven continuous data [53] is assessed within199

the testing dataset with the testing MAE (MAEtes). The figures for the model parameters are200

obtained from the median of the bootstrapping distributions.201

The analysis described in this paper has been implemented using the free software envi-202

ronment R [54] and several contributed packages: gstat [55] and sp [56] for the geostatistical203

analysis, optimx [57] for the calibration of models, solaR [58] for the solar geometry, raster204

[59] for spatial data manipulation and analysis, and rasterVis [60] for spatial data visualiza-205

tion methods.206

3.2. Methodology of model development207

The evaluation of variable importance leads to improve the performance of a general model208

with specific relationships between predictors and outcomes of the site to be assessed. This209

evaluation is performed by means of a loess smoother fit model, also known as locally weighted210

polynomial regression, which is fitted between the outcome and the predictors [61]. Each point211

(x) of the dataset is fitted with a low-degree polynomial. The polynomial is adjusted with212

weighted least squares, giving more weight to points near the point whose response is being213

estimated and less weight to points further away. The weights are determined by their distance214

from x with the tricubic weight function (Equation 3).215

ω(x) = (1−
∣∣∣x3
∣∣∣) (4)

Eventually, the R2 is calculated for this model against the intercept only null model. The R2
216

is returned as a relative measure of variable importance.217

The evaluation is performed with typically used variables such as P, M and ∆T and other218

two non-commonly used variables W and H of the study day (i) and of three days, two days219

and the day before (i− 3, i− 2, i− 1) and after (i + 3, i + 2, i + 1). Those variables with high R2
220

are useful to improve the estimation of Rs within a classic model, such as the BC. As a result,221

new BC-derived models are built according to Equations 5 & 6 with those important variables222

and then evaluated according to Section 3.1.223

Rs = a (1− exp (−b · ∆Tc)) Ra · A + pn+1 (5)

A = 1 +
n

∑
j=1

pj · vj (6)

Where, A is the adjustment of the BC model according to the evaluation of variable impor-224

tance, p is the parameter related to the variable v and n is the number of variables of adjustment.225

4. Results and discussion226

4.1. Model building227

The evaluation of variable importance for La Rioja is collated in Table 3. ∆T, H, and M228

show values of R2 higher than 0.15. Throughout the analysis of variable importance it might229

be proved that rainfall in this region should be explained with M instead of P (0.153 vs. 0.056),230

which however, is implemented in models 6 and 7. As a result, P is rejected as a variable231
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to explain Rs. Equation 6 might be fitted with different combinations of variables (pj) and232

therefore, different models might be built and then evaluated as per Section 3.1. Two different233

sets of models are built regarding inputs used. The first set of models, constituted by 9 models,234

is built considering commonly registered meteorological variables (Tmax, Tmin and M). The235

second set of models also integrates W and H and is composed by 3 different models. Since236

∆T is already considered within the BC model, only ∆Tj 6=1 are considered in A. Eventually,237

only pj and pj±1 are relevant in Rs, showing lower errors in the evaluation. Mj, Mj±1, ∆Tj and238

∆Tj±1 provide information about the cloud coverage [23] and W and H refine the sky clearness.239

However, Hj 6=1 and Wj 6=1 reduce the robustness of models and increase errors. M, Mi−1 and240

Mi+1 were already implemented in the [29] models (models 18 and 19). Equations 6 and 7 show241

the final models proposed for both afore-mentioned sets.242

Rs = Ra · a (1− exp (−b · ∆Tc)) ·
(
1 + d ·Mj−1 + e ·Mj + f ·Mj+1 + g · ∆Tj+1 + h · ∆Tj−1

)
+ l

(7)

Rs = Ra · a (1− exp (−b · ∆Tc)) ·
(
1 + d ·Mj−1 + e ·Mj + f ·Mj+1 + g · ∆Tj+1 + h · ∆Tj−1 + l ·Wj + m · Hj

)
+n

(8)

4.2. Evaluation of parametric models243

The results of the robustness assessment are collated in Figure 2, showing the 95% confi-244

dence intervals (95% C.I., n=100) of the MAEval obtained by bootstrapping and also the test245

errors (MAEtes). Narrow confidence intervals and low values of MAEval imply both stability246

and accuracy in models, and low MAEtes means high capacity for generalization within the247

testing period. Several models, such as 12 and 13 at station 1, 12-14 at station 8, 10 and 12 at248

the station 12, and 1-5, 7-10, 12 and 20 at the station 17 among others, generate wide confi-249

dence intervals and high values of MAEval and at the same time low MAEtes. In spite of the250

high capacity for generalization of the afore-mentioned models within the testing period, the251

methodology proposed leads to their selection being avoided. For instance, stable and accurate252

models such as 24 should be selected at station 17 instead of model 20, although the latter gen-253

erates lower MAEtes. The robustness assessment is found useful when only short and biased254

time series are available to evaluate models.255

The stability of models is assessed through the RMAE,val of the model for the whole set of256

stations (Table 4). The proposed models (models 23 and 24) improve the results of [29] (models257

18 and 19) with RMAE,val of 0.360 and 0.261 MJ/m2day and 0.387 and 0.385 MJ/m2day, respec-258

tively. Therefore, model 23 is considered the most stable for this region by means of rainfall and259

daily range of temperatures. However, a significant improvement in stability is achieved intro-260

ducing W and H in addition to ∆T and M, as seen with model 24. Models 1-10, 15, 20 and 22261

generate similar RMAE,val between [0.42-0.45] MJ/m2day, and models 12-14, 17 and 21 between262

[0.48-0.53] MJ/m2day. The low stability of models 11 and 16, with RMAE,val of 0.761 and 0.764263

MJ/m2day, might be explained by the inclusion of Ra,i−30 and the lack of Ra, respectively.264

Model accuracy is assessed via the average of MAEval for the whole set of stations (MAEval).265

The highest accuracy in predictions is also achieved with models 24, 23 and 18 with MAEval of266

2.195, 2.247 and 2.317 MJ/m2day (Table 4). In addition, model 23 and 24 obtain the lowest267

values of MAEval of 1.886 ± 0.161 and 1.887 ± 0.090 (95% C.I., n=100) MJ/m2day (Figure 2)268

at station 11 (Calahorra). According to the t − test the MAEval mean is statistically lower in269

model 24 than any other model in all stations, except in station 9, in which models 18, 19 and270

23 have lower MAEval mean (Table 5). From this test, it can also be deduced that model 23 has271

statistically lower MAEval than models 18 and 19 in all stations.272
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The original BC model (model 8) achieves lower MAEval (2.617 MJ/m2day) than other BC-273

derived models such as 10-14 and 20-21. Models 3, 5 and 6, derived from [9] (model 1), obtain274

lower MAEval than the initial model. [10] (model 7), derived from [22] (model 15) improves275

the MAEval from 2.719 MJ/m2day (model 15) to 2.534 MJ/m2day (model 7). [30] and [31]276

models (models 16 and 17), in which ∆T is not considered, achieve MAEval of 6.315 MJ/m2day277

and 3.405 MJ/m2day. [38] (model 11) generates a MAEval of 4.426 MJ/m2day, due to its high278

dependency on the Ra,i−30.279

The capacity of generalization of models to non-common days is assessed through the RMSEval280

and RRMSE,val in Table 4. The model proposed (model 24) behaves with lower RMSEval (2.879281

MJ/m2day) than the other models analyzed and also with a lower RRMSE,val (0.361 MJ/m2day).282

This model generates lower median of RMSEval in all stations, except in station 9, in which is283

lower in models 18, 19 and 23.284

Eventually, the models 24 (model proposed by means of ∆T, M, W and H) and model 23285

(model proposed by means of ∆T and M) are considered the most suitable models for estimat-286

ing Rs in La Rioja. Notwithstanding, the model evaluation is focused on model 24 due to its287

superior stability and accuracy. 41.65% of the daily residuals in the case of SIAR and 20.12% in288

that of SOS Rioja fall within the uncertainty tolerance of the pyranometers of the two networks289

(10% and 5%, respectively). However, smaller differences between Rs,meas and Rs,est are found290

in Figure 4 when considering yearly sums of Rs. Yearly sums of Rs fall within the uncertainty291

tolerance of the pyranometers in all estations during the five years (2007-2011) with a higher292

divergence of 4.823% in 2011. Regarding the relative differences between measured and esti-293

mated monthly sums of Rs in 2011, 91.7% and 45.8% of the cases in SIAR and SOS Rioja stand294

within the tolerance of pyranometers.295

The performance of the whole set of models is related to elevation, as shown in Figure 5,296

with higher MAEval being produced at higher altitudes, as evidenced at stations over 1000297

m. A suitable explanation of this behabiour might be because there is more meteorological298

variability in the mountainous areas of La Rioja, than in the lowlands [26]. A slight correlation299

with elevation is found in models 10, 14 18-20, 23 and 24, not as marked as with other models.300

Figure 6 shows the parameters calibrated on model 24 to estimate Rs in Wh/m2day. High301

variability between stations is found within the non explanatory constant (parameter n). This302

variability was also reported by [29] and might be explained by the strong site dependency de-303

scribed by [26, 62]. [23] and [19] described correlations between the parameters and the distance304

between stations or latitude and longitude. Nevertheless, no correlation between the values of305

the parameters and latitude, longitude, elevation or distance between stations is found in model306

24.307

The effect of rain in model 24 is shown in Figure 7, in which the MAE of non-rainy days308

is on average 11.3% lower than that of rainy days for the whole set of stations. This is also309

widely found in the rest of the models, and is explained by the fact that solar irradiation is more310

complex on rainy and overcast days [10]. 2011 was an especially dry year in La Rioja, with 19.7%311

less rainfall than the average for the calibration period 2007-2010 (Table 2), so the MAEtes figures312

are significantly low in comparison with the confidence intervals of the MAEval in Figure 2.313

However, this tendency is broken with some models at station 14 (Moncalvillo), where the314

MAEtes are higher than the MAEval . More cloud cover in the testing period, evidenced by ∆Tt315

being lower that the ∆Tc seen in Table 2 at station 18, might explain this finding [23].316

4.3. Evaluation compared with CM SAF317

The mean MAE registered by CM SAF related to Rs,meas is 1.983 MJ/m2day with a standard318

deviation of 0.517 MJ/m2day, in average 10.7% lower than MAEval from model 24, although319

in stations 9, 11, 14, 16 and 17 MAECMSAF is higher than the confidence interval (95% C.I.,320
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n=100). The RMSECMSAF is 3.207 MJ/m2day with a standard deviation of 0.449 MJ/m2day,321

being higher than the confidence interval (95% C.I., n=100) in stations 6, 7, 9, 12, 14, 16 and 17.322

Table 6 shows the errors of testing (testing dataset) for the model 24 and CM SAF. It might be323

deduced that CM SAF generally performs with lower errors than model 24 except in stations324

9, 11, 14, 16 and 17 (same stations with lower MAEval and RMSEval than CM SAF), in which325

model 24 is superior.326

Figure 3 shows the performance of model 24 with new data from the testing database. This327

model achieves coefficients of determination (R2) with linear regression of [0.87-0.91] and [0.79-328

0.87] for stations below and above 1000 m respectively. The coefficients of determination from329

CM SAF against Rs,meas (R2
CMSAF) are significantly higher than R2, but also showing a relation330

with elevation, being lower at higher elevation.331

The annual irradiation estimated by CM SAF is significantly higher than the Rs,meas, which332

was also found in Spain by [63]. Stations 11, 14, 16 and 17 present relative differences substan-333

tially above the tolerance of pyranometers reaching 22.95% in station 14 in year 2011. Thus, the334

model proposed (model 24) is able to estimate more accurately annual irradiation in this region335

than the CM SAF during years 2007-2011.336

It could be argued that, because the CM SAF estimations show higher R2 values, their worse337

results in the RMSE and MAE indicators may be improved with a local calibration. This ap-338

proach was developed in [63] with a geostatistical interpolation (kriging with external drift) us-339

ing data from a network of 301 ground stations and also CM SAF. A more simplified approach340

is to use a parametric model as Equation 9,341

Rs = Ra · (a ·
Rs,cmsa f

Ra
+ b) (9)

where the CMSAF estimations are normalized with the extraterrestial radiation and cali-342

brated with the on-ground radiation measurements. This approach has been analyzed achiev-343

ing MAEval and RMSEval of 1.913 and 2.987 MJ/m2day with RMAE,val and RRMSE,val of 0.422344

and 0.886 MJ/m2day, respectively. The R2 in this parametrization is also lowered respect the345

actual R2 of CM SAF. This means that it is only improved the MAEval respect to the model 24346

while getting the other indicators worse. However, this re-calibration of CM SAF leads to lower347

errors in annual sums of global irradiation with CM SAF (in 15 stations the error is within the348

5% and a 5.7% maximum error). The Table 7 shows parameters of Equation 9, where amean,349

bmean, asd, bsd are the average and standard deviations of a and b.350

5. Conclusions351

The methodology proposed of model development of adjusting a general model with the on-352

site peculiarities based on the evaluation of variable importance is proved appropiated within353

the case study of La Rioja region (northern Spain). The high site dependency of Rs related to354

the meteorological trends suggests the adjustment of general parametric models (such as the355

BC and [9] models) with those variables that show higher correlation with Rs. By means of this356

methodology, different models might be proposed in locations with different climates. The new357

model includes M, Mi−1, Mi+1, ∆Ti−1, ∆Ti+1, W, H as explanatory variables (derived from the358

evaluation of variable importance) that adjust the BC model in La Rioja.359

The methodology proposed of model evaluation is based on bootstrapping and proves use-360

ful in selecting models according to stability and accuracy and not only based on test errors. The361

proposed model is evaluated with this methodology against a review of twenty-two already ex-362

isting parametric models at seventeen meteorological stations within La Rioja. The new model363

improves the estimates of the other twenty-two models with MAEval of 2.195 MJ/m2day and364

9



RMAE,val of 0.261 MJ/m2day. However, several BC derived models (10-14, 20-21) fail to improve365

the estimates of the original model. This might be explained because these models include vari-366

ables that do not show high correlation with Rs (such as P) within La Rioja. In addition, sig-367

nificant differences in stability between models and meteorological stations are recorded with368

these models. The performance of the model proposed is compared with Rs,CMSAF, obtaining369

lower confidence interval (95% C.I., n=100) of MAEval than MAECMSAF in 5 stations and for370

RMSEval in 7 stations.371

Rainfall and elevation are shown to influence the accuracy of model performance (gener-372

ating higher errors in rainy days and also at higher stations). The fact that the testing dataset373

(year 2011) was significantly drier than the calibration dataset (years 2007-2010) explains the low374

MAEtes recorded.375

The residuals of estimates are found to have yearly periodicity, with higher relative residuals376

when meteorological variability is greater. 41.65% of the daily residuals in the case of SIAR and377

20.12% in that of SOS Rioja fall within the uncertainty tolerance of the pyranometers of the two378

networks (10% and 5%, respectively). However, the annual relative differences between Rs,meas379

and Rs,est are lower than 4.82%, which means that estimates are within the confidence interval380

of pyranometers.381

The analysis of parametric models against the CM SAF satellite-derived irradiation data382

shows that the mean MAECMSAF is in average 10.7% lower than MAEval , but also that in 5 sta-383

tions the MAEval is significantly lower than the one of CM SAF. This tendence is also common384

with the RMSE, which is generally lower with CM SAF, but not always (7 stations). Never-385

theless, attending to the annual irradiation it has been proved that the model proposed (model386

24) achieves significantly better estimates that the CM SAF, which over-estimates solar irradi-387

ation within the region studied. The possibility of shades on the positions of stations over the388

CM SAF estimates has been previously analyzed and rejected. As a result, the proposed model389

might be useful to estimate annual sums of Rs, reaching insignificant differences with Rs from390

pyranometers and also to be used on a daily basis when correctly calibrated with on-ground391

data.392
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∆TRa
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2
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1 + 2.7 · 10−5 · h
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Model
no.

Equation Parameters Authors

3
Rs =

(
a
√

∆T + b
)

Ra

a, b [27]

4
Rs = (a · ln (∆T) + b) Ra

a, b [27]

5
Rs = a

√
∆TRa + b

a, b [28]

6

Rs = a
√

∆TRa + b · Tmax + c · P + d · P2 + e

a, b, c, d, e [28]

7
Rs = a · Ra · ∆Tb

(
1 + c · P + d · P2

) a, b, c, d [10]

8
Rs = a (1− exp (−b · ∆Tc)) Ra

a, b, c [8]

9

Rs = a·Ra

(
1− exp

(
−b
√

∆T − c · ∆T − d · ∆T2
)) a, b, c, d [28]

10

Rs = a
(

1− exp
(
−b

∆Tc

Ra

))
Ra

a, b, c [37]

11

Rs = a
(

1− exp
(
−b

∆Tc

Ra,i−30

))
Ra

a, b, c [38]

12
Rs = 0.7

(
1− exp

(
−b · ∆T2,4

))
Ra

b [33]

13
Rs = 0.75

(
1− exp

(
−b · ∆T2

))
Ra

b [19]

Continued on next page
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Equation Parameters Authors

14

Rs = 0.75

(
1− exp

(
−b · ∆T2

∆Tm

))
Ra

b [19]

15
Rs =

(
a · ∆Tb

)
Ra

a, b [22]

16

Rs = a + b · cos (θ) + c · sin (θ)

+ d · cos (2θ) + e · sin (2θ)

+ f ·Mj−1 + g ·Mj + h ·Mj+1

a, b, c, d, e,
f, g, h

[30]

17

Rs = a · Ra + b ·Mj−1 + c ·Mj + d ·Mj+1

a, b, c, d [31]

18

Rs = Ra · a (1− exp (−b · ∆Tc))

·
(
1 + d ·Mj−1 + e ·Mj + f ·Mj+1

)
+ g

a, b, c, d, e,
f, g

[29]

19

Rs = Ra · a (1− exp (−b · ∆Tc))

+ d ·Mj−1 + e ·Mj + f ·Mj+1 + g

a, b, c, d, e,
f, g

[29]

20

Rs = a
(

1− exp
(
−b

∆Tc

∆Tm

))
Ra

a, b, c [36]

21
Rs = 0.75

(
1− exp

(
−b · ∆T2 · f

(
Tavg

)))
f
(
Tavg

)
= 0.017 exp

(
exp

(
−0.053 · Tavg · ∆T

))
b [36]

Continued on next page
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Equation Parameters Authors

22

Rs = a · Ra · ∆Tb(1− exp (−c · psat [Tmax]))
d

a, b, c, d [39]

23

Rs = Ra · a (1− exp (−b · ∆Tc))

·
(
1 + d ·Mj−1 + e ·Mj + f ·Mj+1 + g · ∆Tj+1 + h · ∆Tj−1

)
+ l

a, b, c, d, e,
f, g, h, l

Proposed model

24

Rs = Ra · a (1− exp (−b · ∆Tc))

·
(
1 + d ·Mj−1 + e ·Mj + f ·Mj+1 + g · ∆Tj+1 + h · ∆Tj−1 + l ·Wj + m · Hj

)
+n

a, b, c, d,
e, f, g, h, l,
m,n

Proposed model

Table 1: Summary of the twenty-three parametric models studied. ∆T is the difference between
Tmax and Tmin. Ra,i−30 is the extraterrestrial irradiation on day i-30, h is the elevation above sea
level, Tavg is the daily average air temperature, ∆Tm is the monthly average of ∆T and psat [Tmax]
is the vapor saturation pressure at Tmax

# Name Net. Lat.(o) Long.(o) Alt. ∆Tc ∆Tt Pc Pt Rs,c Rs,t

1 Agoncillo SIAR 42.46 -2.29 342 12.3 12.6 484 318 14.7 15.3

2 Aldeanueva SIAR 42.22 -1.90 390 11.1 11.4 405 327 15.4 15.4

3 Alfaro SIAR 42.15 -1.77 315 12.5 12.9 335 364 15.3 15.2

4 Casalarreina SIAR 42.53 -2.89 510 11.8 12.4 486 341 14.2 14.2

5 Cervera SIAR 42.00 -1.89 495 13.9 14.3 356 331 15.2 15.0

6 Foncea SIAR 42.60 -3.03 669 10.1 10.5 647 422 14.8 14.7

7 Leiva SIAR 42.49 -3.04 595 11.4 11.5 499 379 14.5 14.4

8 Rincon SIAR 42.25 -1.85 277 12.3 12.7 393 348 15.3 15.5

9 Urunuela SIAR 42.46 -2.71 465 11.4 12.4 476 345 14.1 14.2

10 Aguilar SOS 41.96 -1.96 752 9.3 9.7 463 236 14.5 14.7

11 Calahorra SOS 42.29 -1.99 350 11.1 11.3 305 250 13.3 13.4

12 Ezcaray SOS 42.33 -3.00 1000 10.3 10.7 538 381 13.6 13.6

13 Logroño SOS 42.45 -2.74 408 10.1 10.3 423 212 14.3 14.3

14 Moncalvillo SOS 42.32 -2.61 1495 7.8 7.7 567 429 12.0 11.9

15 San Roman SOS 42.23 -2.45 1094 8.2 8.2 323 332 13.9 14.2
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# Name Net. Lat.(o) Long.(o) Alt. ∆Tc ∆Tt Pc Pt Rs,c Rs,t

16 Ventrosa SOS 42.17 -2.84 1565 7.4 7.7 447 412 12.2 12.1

17 Villoslada SOS 42.12 -2.66 1235 9.7 9.9 499 325 12.6 12.4

Table 2: Summary of the seventeen meteorological stations. ∆Tc and ∆Tt are the average ∆T of
the calibration and testing datasets, respectively. Pc is the yearly average rainfall in mm for the
calibration dataset and Pt is the yearly rainfall for the testing dataset. Rs,c and Rs,t are the daily
average Rs for the calibration and testing datasets, respectively

v Pi Pi+1 Pi−1 Mi Mi+1 Mi−1 ∆Ti ∆Ti+1 ∆Ti−1 ∆Ti+2 ∆Ti−2

R2 0.056 0.012 0.016 0.153 0.068 0.059 0.533 0.359 0.340 0.301 0.172

v ∆Ti+3 ∆Ti−3 Wi Wi+1 Wi−1 Hi Hi+1 Hi−1 Hi+2 Hi−2

R2 0.206 0.167 0.089 0.076 0.071 0.465 0.344 0.251 0.251 0.199

Table 3: Summary of variable importance results related to each variable v
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Model 1 2 3 4 5 6 7 8 9 10 11 12

MAEval 2.814 2.809 2.699 2.679 2.797 2.768 2.534 2.617 2.613 2.791 4.426 2.791

RMAE,val 0.436 0.415 0.426 0.425 0.411 0.430 0.420 0.420 0.422 0.423 0.761 0.527

RMSEval 3.572 3.560 3.475 3.448 3.541 3.488 3.409 3.294 3.398 3.584 5.873 3.825

RRMSE,val 0.559 0.545 0.601 0.569 0.549 0.539 0.577 0.605 0.593 0.579 0.996 0.745

Model 13 14 15 16 17 18 19 20 21 22 23 24

MAEval 2.804 2.751 2.719 6.273 3.366 2.317 2.336 2.678 2.728 2.723 2.247 2.195

RMAE,val 0.491 0.488 0.444 0.764 0.498 0.387 0.385 0.445 0.498 0.432 0.360 0.261

RMSEval 3.798 3.708 3.485 7.377 4.256 3.023 3.081 3.457 3.693 3.504 2.995 2.879

RRMSE,val 0.715 0.691 0.583 0.802 0.649 0.548 0.538 0.606 0.694 0.576 0.543 0.361

Table 4: Summary of statistics in MJ/m2day

Mod. 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

p− value 0.9 0.9 0.9 0.6 0.9 0.8 0.8 0.9 0.0 0.9 0.6 0.9 0.9 0.7 0.9 0.6 0.9

Mod. 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

p− value 0.9 0.9 0.9 0.9 0.9 0.7 0.4 0.9 0.0 0.9 0.7 0.6 0.9 0.7 0.3 0.6 0.9

Table 5: Summary of p − values of t − test in the MAEval of model 24 against model 18 and
model 23 (p− values greater than 0.05 imply statistically significant lower MAEval in model 24)

19



Longitude

La
tit

ud
e

42°N

42.2°N

42.4°N

42.6°N

3°W 2.5°W 2°W

●

●
●

●

●

1

2
4

7

9

●

●

3

8

●

●

5

6
10

11
12

13

14

15

16

17

500 1000 1500 2000

Figure 1: Location of the meteorological stations selected in the region of La Rioja. The color
band represents elevation (m). SIAR stations are shown by blue circles and SOS Rioja stations
by red triangles
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Figure 2: Confidence intervals (95% C.I., n=100) of MAEval (grey vertical lines) and MAEtes
(blue crosses) (MJ/m2day). Note that some of the values of models 11, 16 and 17 lie outside the
range of the figure
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Rcmsaf= −0.3 + 9.9e−01 ·Rmeas

R²cmsaf= 0.98
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Rcmsaf= 2.3 + 8.5e−01 ·Rmeas
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Rcmsaf= 0.6 + 9e−01 ·Rmeas
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Rcmsaf= −0.5 + 8.9e−01 ·Rmeas

R²cmsaf= 0.98
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Rcmsaf= −0.1 + 9.7e−01 ·Rmeas

R²cmsaf= 0.96
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Rcmsaf= 0.4 + 9.2e−01 ·Rmeas
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Rcmsaf= 0.1 + 8.1e−01 ·Rmeas

R²cmsaf= 0.88
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Station 15

Rcmsaf= 0.3 + 9.5e−01 ·Rmeas

R²cmsaf= 0.95
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Figure 3: Correlation between Rs,meas (MJ/m2day) and Rs,est of the model proposed (model 24)
with green points and Rs,cmsa f with black crosses within the testing time series at all seventeen
stations
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Figure 4: Annual relative difference (%) between Rs,meas and Rs,est for the model proposed
(model 24) and CM SAF during the testing period (year 2011).
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Figure 5: Relation between elevation (m) and median of the MAEval (MJ/m2day). Models 11,
16 and 17 are not shown due to their high MAEval
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Figure 6: Confidence intervals (95% C.I., n=100) and median of the parameters of the proposed
model (model 24)
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Station MAEtes,24 MAEtes,CMSAF RMSEtes,24 RMSEtes,CMSAF
1 2.18 0.91 2.85 1.20
2 1.92 0.86 2.46 1.17
3 1.95 1.05 2.55 1.33
4 2.22 1.09 3.00 1.43
5 1.99 1.12 2.65 1.60
6 2.16 1.13 2.83 1.67
7 2.16 0.95 2.89 1.29
8 1.93 0.93 2.45 1.19
9 2.12 2.27 2.79 3.20

10 2.03 1.37 2.71 1.80
11 1.74 2.35 2.28 2.74
12 2.32 1.34 2.99 1.79
13 2.15 1.30 2.93 1.65
14 2.49 3.18 3.36 4.02
15 2.28 1.32 3.07 1.87
16 2.15 2.83 2.99 3.63
17 2.18 2.28 2.90 2.91

Table 6: Testing errors of model 24 and CM SAF (year 2011)

amean asd bmean bsd
0.61 0.05 0.09 0.04

Table 7: Summary of CM SAF re-calibration as per Equation 9
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Figure 7: Average MAE (MJ/m2day) of the proposed model (model 24) for rainy days (black
dots) and non-rainy days (black crosses)
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