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ABSTRACT

Many problems in digital communications involve wideband
radio signals. As the most recent example, the impressive
advances in Cognitive Radio systems make even more nec-
essary the development of sampling schemes for wideband
radio signals with spectral holes. This is equivalent to consid-
ering a sparse multiband signal in the framework of Compres-
sive Sampling theory. Starting from previous results on multi-
coset sampling and recent advances in compressive sampling,
we analyze the matrix involved in the corresponding recon-
struction equation and define a new method for the design of
universal multicoset codes, that is, codes guaranteeing perfect
reconstruction of the sparse multiband signal.

Index Terms— Multicoset sampling, compressive sam-
pling, multiband sparse signal, TI-ADC, universal pattern.

1. INTRODUCTION

Recent interest in Cognitive Radio (CR) systems [1] motivate
sensing schemes for multiband sparse signals which allow the
CR to decide which channels are really occupied and, in con-
sequence, make an efficient usage of the spectrum. At the
same time, intensive work in the area of compressive sam-
pling has yielded a number of algorithms and hardware sys-
tems to obtain compressed samples from frequency-domain
sparse signals. Taking into account that CR systems need to
analyze wide frequency bands, any scheme that could acquire
the full wide band at a sampling rate lower than the corre-
sponding Nyquist rate could provide samples to an spectrum
analyzer based on compressed measurements [2, 3] with the
consequent reduction in resource usage.

Most hardware systems which have been proposed for
the acquisition of compressed samples are based on Time-
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Interleaved Analog-to-Digital Converters (TI-ADCs)1. Dif-
ferent sampling patterns to operate different TI-ADC archi-
tectures have been reported, e.g., in [5, 6, 7, 8]. All these
works assume that the wideband signal is multiband sparse
(i.e., only a small number of frequency subbands are occu-
pied) and that the locations of the occupied subbands are not
known a priori.

MUX 

Fig. 1. Block diagram of a general TI-ADC system.

Fig. 1 shows the structure of a general TI-ADC system,
where fs = 1/T denotes the Nyquist rate, Mi ∈ Z, and τi
are different delays obtained as τi = (ci/di)T , i = 1, . . . ,K
with ci, di ∈ Z. The most common usage of TI-ADCs is a
particular case of this model, with τi = (i − 1)T and equal
sampling frequencies fi = fs/K. The general structure of
Fig. 1 include the different sampling strategies proposed in
the aforementioned papers. These are briefly reviewed next.

In [5], a p-sparse multiband signal is assumed. The uni-
form sampling grid (at Nyquist rate) is divided into blocks of
L consecutive samples, and then only p out of theseL samples
are acquired. This can be implemented with only p branches
of the TI-ADC system in Fig. 1, using τi = ciT with integers
0 ≤ c0 < c1 < · · · < cp ≤ L − 1 and equal sampling fre-
quencies fi = fs/L. Only certain selections of the p output

1A noteworthy exception is the modulated wideband converter proposed
in [4].
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channels lead to the reconstruction of the original signal, al-
though the authors of [5] do not provide a design criterion for
this; the issue of finding an appropriate set {ci}pi=1 (a multi-
coset code) is stated to be a combinatorial problem.

Another TI-ADC sampling scheme was proposed in [7],
although the focus was on the reconstruction algorithm and
not on the issue of channel selection; this is accomplished as
in [9]. The same authors proposed later [6] a set of TI-ADCs
working synchronously (i.e., with τi = 0, i = 0, . . . ,K −
1), and using different sampling frequencies for each ADC
(with the sum of of these different sampling rates lower than
the Nyquist rate). Again, the focus is on the development of
a reconstruction scheme for a set of different and arbitrarily
chosen sampling frequencies; no criterion is proposed on how
to choose the sampling frequencies. Note that selecting a set
of sampling frequencies is equivalent to selecting a specific
multicoset code in the architecture of [5].

The scheme proposed in [8] can also be implemented with
the TI-ADC architecture of Fig. 1 and a multicoset sampling
scheme, with a random selection of the output channels. The
main drawback of random selection approaches is that they
require to have the K ADCs constantly working. In contrast,
fixed channel selection methods allow to reduce the number
of branches of the hardware system to the number of active
bands p, with the corresponding reduction in area size and
power consumption. Motivated by this fact, we provide an al-
gorithm for the design of universal multicoset codes, i.e., for
the selection of the parameters in the general TI-ADC sys-
tem of Fig. 1 guaranteeing perfect reconstruction of p-sparse
multiband signals. To our knowledge, this is the first sys-
tematic method proposed for this goal; previous codes were
either obtained by direct search [10] or relied on the choice of
a prime value of L, which renders every pattern universal [5].

2. PROBLEM STATEMENT

As in [5], we assume a complex-valued p−sparse multiband
signal x(t), bandlimited to [0, fs]. The number of active
bands is N , and an upper bound B for the bandwidth of each
of these bands is known. The sampling stage is implemented
as in Fig. 1 by considering K = L, τk = kT and fk = fs/L
for k = 1,. . . ,L. Only p ≥ N ADC channels are imple-
mented. Thus, for each block of L Nyquist-rate samples, p of
them are acquired, with indices 0 ≤ c1 < c2 < ...cp ≤ L−1.
This can also be seen as obtaining p different uniform sam-
pling sequences xci [n] at rates fs/L:

xci [n] =

{
x(t = nT ), n = mL+ ci for some m ∈ Z,
0, otherwise.

(1)
Following [5], we define the sampling pattern C =

{ci}pi=1. The reconstruction of the multiband signal from
the acquired samples requires the selection of L, p and C

such that X(f) can be reconstructed based on

y(f) =
1

LT
Ax(f), (2)

with

yi(f) = Xci

(
ej2πfT

)
, i = 1, . . . , p, (3)

xk(f) = X

(
f +

k

LT

)
, k = 0, . . . , L− 1, (4)

and where A is a p× L matrix with elements

aik = exp

(
j
2π

L
cik

)
. (5)

It is noted in [5] that x(f) can be recovered from y(f) if
L ≤ fs/B, p ≥ N and A has full Kruskal-rank2, with this
rank being equal to p. For givenL and p, a sampling patternC
that results in a fully Kruskal-rank A is termed universal [5].
In the remainder several results are presented revealing cer-
tain properties of the Kruskal-rank of A, which in turn will
suggest a design method for universal sampling patterns.

3. K-RANK ANALYSIS OF VANDERMONDE
MATRICES

Let us define w = ej
2π
L and

wi = exp

(
j
2π

L
ci

)
= wci , i = 1, . . . , p. (6)

Then, from (5), one has aik = wki . Thus, the i-th row of A
contains consecutive powers of wi:

[
1, wi, w

2
i , · · · , w

L−1
i

]
.

In other words, the rows of A are extracted from those of an
L × L row-wise Vandermonde matrix. Although there is no
general criterion for the K-rank of a row-wise Vandermonde
matrices, the following result applies to column-wise Vander-
monde matrices.

Lemma 1. Consider p distinct numbers x1,. . . ,xp ∈ C. Let
V be the n× p column-wise Vandermonde matrix defined as

vij = xi−1
j , i = 1, . . . , n, j = 1, . . . , p.

Then the K-rank of V is equal to its rank, which is min (p, n).

Proof. For n = p, recall that the Vandermonde square ma-
trix of order p has full rank iff the p numbers x1,. . . ,xp are
distinct, which is the case; hence the K-rank of V equals its
rank p. If p < n, the p columns of V are linearly independent
since the we can build a p× p submatrix from the first p rows
of V ; as this square submatrix is also a column-wise Vander-
monde matrix of p distinct numbers x1,. . . ,xp, then it has full
rank p, so the K-rank of V is p.

2The Kruskal- or K-rank of a matrix is the largest value of m such that
every subset of m columns of the matrix is linearly independent.



Finally for p > n, let us consider any set of n columns of
V . These form another column-wise Vandermonde matrix,
whose entries are the powers of xm1

,. . . ,xmn . As these n
numbers are distinct, its rank is maximum (n). Hence the K-
rank of V is n.

Notice that the maximum value for the K-rank (or the
rank) of a p× n matrix is min (p, n). Hence, Lemma 1 gives
a sufficient condition for V to have maximum K-rank. Let us
prove that it is also necessary.

Corollary 2. Let V be a n × p column-wise Vandermonde
matrix whose columns are the powers of x1,. . . ,xp ∈ C. Then

K-rank of V is maximum ⇐⇒ x1, . . . , xp are distinct.

Proof. On one hand, if xi = xk then the i-th and k-th
columns of V coincide, so its K-rank is 1 (not maximum
since p, n > 1). On the other hand, if all the numbers
x1, ..., xp are distinct, Lemma 1 ensures that the K-rank of V
is maximum.

4. DESIGN OF UNIVERSAL MULTICOSET CODES

From the previous results it is possible to provide conditions
on c1, c2,. . . ,cp under which A has maximum K-rank (p).

Theorem 3. Let c1, c2, ..., cp (p ≤ L) constitute an arith-
metic progression of difference d 6= 0 (i.e., ci = c1 +
(i− 1) d). Let A be the p×L row-wise Vandermonde matrix
defined by (5). Then

A has maximum K-rank (p) ⇐⇒ d and L are coprime.

Proof. Matrix A can be written as

A =


1 w1 w2

1 · · · wL−1
1

1 w2 w2
2 · · · wL−1

2
...

... · · ·
...

1 wp w2
p · · · wL−1

p

 .

Now we use that ci = c1 + (i− 1) d. Each wi = wci =
wc1+(i−1)d = w1w

(i−1)d. Hence A takes the form
1 w1 w2

1 · · · wL−1
1

1 w1w
d w2

1w
2d · · · wL−1

1 w(L−1)d

...
... · · ·

...
1 w1w

(p−1)d w2
1w

2(p−1)d · · · wL−1
1 w(L−1)(p−1)d

 .

By extracting the factorwj−1
1 from the j-th column, A is seen

to have the same K-rank as the matrix
1 1 1 · · · 1
1 wd w2d · · · w(L−1)d

...
... · · ·

...
1 w(p−1)d w2(p−1)d · · · w(L−1)(p−1)d



which is indeed a p × L column-wiseVandermonde matrix
of numbers 1, wd, w2d, · · · , w(L−1)d. As p ≤ L, Corollary 2
states that its K-rank is maximum (p) iff all those L numbers
are distinct. Let us show that two of these numbers are equal
iff d and L are not coprime. Indeed, there exist 0 ≤ a <
b < L such that wad = wbd, or equivalently w(b−a)d = 1, iff
(b− a) d = cL for some integer c. This amounts to saying
that d and L are not coprime. The claim follows.

The following sufficient condition now follows.

Corollary 4. Any set of consecutive p numbers c1, . . . , cp
(with p ≤ L), yield a matrix A of maximum K-rank (p).

Proof. Consecutive numbers form an arithmetic progression
of difference d = 1, which is always coprime with L. So the
claim follows from Theorem 3.

Remark 5. Note that the difference d can be either positive
or negative, and smaller or greater than L. The proof does not
make use of the assumption 0 < d < L. Hence, the numbers
c1, c2,. . . ,cp need not be in increasing order (as stated in [5]).
Moreover, they can even be greater than L; in that case they
would be replaced by cj mod L. That would yield differ-
ent sets of numbers c1, c2,. . . ,cp with no order at all (neither
increasing nor decreasing).

4.1. Examples

• For L = 12, difference d = 5 yields, for c1 = 0, the
arithmetic progression 0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 0, . . .
(cyclic repetition of length 12) where we have substi-
tuted cj by cj mod 12 where necessary. Theorem 3
ensures that every subset of p ≤ 12 consecutive num-
bers of this sequence would yield maximum K-rank.
For instance, (5, 10, 3) or its permutation (3, 5, 10) or
its shifts, such as (0, 2, 7) , which is equivalent to its
permutation (2, 7, 0) which is the end of that length-12
cycle.

• For L = 12, difference d = 7 yields, for c1 = 0, the
arithmetic progression 0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, . . .
which is the reversed version of the sequence in the
previous example. For c1 = 2 we would obtain
2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7 which is a shifted arith-
metic sequence.

• For L = 12, the sequence (1, 3, 8) yields maximum K-
rank since it appears as 3, 8, 1 in the previous sequence
of difference d = 5.

To conclude this section let us recall the meaning of the
designed universal patterns in terms of the parameters of the
TI-ADC system in Fig. 1: for a TI-ADC architecture working
with equal sampling frequencies fk = fs/L, selecting ci as
proposed in Theorem 3 means selecting the p output branches
with τi = ciT , i = 1, . . . , p.
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Fig. 2. PSD estimation performance. (a) Support recovery
probability. (b) Estimator Variance for p = 128.

5. EXPERIMENTAL RESULTS IN A CR
FRAMEWORK

We illustrate the effectiveness of the proposed multicoset
sampling scheme in the context of the spectral estimation al-
gorithm for multichannel wideband signals presented in [3]3.
This algorithm reconstructs the power spectral density (psd)
of the received signal from a set of compressed measure-
ments, which are acquired by the TI-ADC scheme previously
discussed.

The psd to be estimated consists of a set of channels which
are 8 MHz wide and can be occupied by signals with flat spec-
trum with bandwidth B = 7.61 MHz. We assume that only
3 of the channels are occupied, and for simplicity in the pre-
sentation of results, they are all received with the same power
when active.

Fig. 2 shows the performance of the proposed estimator
for a range of signal-to-noise ratio (SNR) and different values
of the compression factor. Here we assume L = 1024, while
p ranges from 32 to 512, i.e. a compression factor from 1/32
to 1/2. In Fig. 2(a) we can observe a good recovery perfor-
mance for compression factors larger that 1/16, even when
the SNR presents a finite value. On the other hand, Fig. 2(b)
shows the variance of the power level estimator versus the
SNR for fixed p = 128. Comparing this figure with Fig. 2(a)
we can see that the variance is greatly reduced when the right
support is determined.

6. CONCLUSIONS

We have analyzed the Kruskal-rank of the reconstruction ma-
trix in a multicoset sampling framework, assuming an input
multiband signal and without a priori knowledge of band lo-
cations. From this analysis we have derived our main result: a
method to design universal multicoset sampling patterns, that

3Compression matrix of dimension p × L, 4 sample covariance matrix
realizations are averaged as input to the algorithm, 100 Monte Carlo realiza-
tions for each simulated point.

is, which guarantee perfect reconstruction of the multiband
signal within the framework of compressive sampling. In ad-
dition, we have presented some experimental results within a
Cogntive Radio setting, showing the effectiveness of the de-
signed sampling patterns.
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N. González-Prelcic, “Wideband spectral estimation
from compressed measurements exploiting spectral a
priori information in cognitive radio systems,” in IEEE
Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
2010.

[4] M. Mishali and Y. C. Eldar, “From theory to practice:
Sub-nyquist sampling of sparse wideband analog sig-
nals,” IEEE J. Sel. Topics Signal Process., vol. 4, pp.
375–391, Apr. 2010.

[5] M. Mishali and Y. C. Eldar, “Blind multiband signal re-
construction: Compressed sensing for analog signals,”
IEEE Trans. Signal Process., vol. 57, pp. 993–1009,
Mar. 2009.

[6] M. Fleyer, A. Linden, M. Horowitz, and A. Rosenthal,
“Multirate synchronous sampling of sparse multiband
signals,” IEEE Trans. Signal Process., vol. 58, pp.
1144–1156, Mar. 2010.

[7] A. Rosenthal, A. Linden, and M. Horowitz, “Multirate
asynchronous sampling of sparse multiband signals,” J.
Optical Soc. Amer., vol. 25, pp. 2320–2330, Sep. 2008.

[8] J. Laska et al., “Random sampling for analog to infor-
mation conversion of wideband signals,” in IEEE Dallas
Circuits Syst. Workshop (DCAS), 2006.

[9] R. Venkataramani and Y. Bresler, “Optimal sub-Nyquist
nonuniform sampling and reconstruction for multiband
signals,” IEEE Trans. Signal Process., vol. 49, pp.
2301–2313, Oct. 2001.

[10] R. Venkataramani and Y. Bresler, “Perfect reconstruc-
tion formulas and bounds on aliasing error in sub-
Nyquist nonuniform sampling of multiband signals,”
IEEE Trans. Inf. Theory, vol. 46, pp. 2173–2183, Sep.
2000.


