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Current to a cylindrical probe of arbitrary cross section is discussed. Previous results for circular
cylinders at the high bias and moderate radiusR of interest for electrodynamic bare tethers, for
which space charge may be ignored over a large neighborhood of the probe, depend in separate ways
on both R and perimeterp. These results are extended to a general convex cross section by
introducing certain equivalent radiusReq. For any concave cross section, results use a proper
equivalent perimeterpeq, in addition toReq. Finally, for the joint cross section of separate parallel
probes, certain effective perimeterpeff replacespeq. Rules to determineReq, peq, andpeff are used
to discuss collection interference among two or more parallel cylinders when brought from far away
to contact. ©2001 American Institute of Physics.@DOI: 10.1063/1.1390332#
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I. INTRODUCTION

A bare electrodynamic tether would efficiently colle
electrons over part of its length, left uninsulated.1 A theory of
cylindrical Langmuir probes at high positive bias has be
recently developed to analyze bare-tether collection,2,3 which
the experiment ProSEDS~Propulsive Small Expendable De
ployer System! will test in orbit in June 2002.4 Marshall
Space Flight Center has proposed the use of bare tether
continuous reboost of the International Space Station.5 A
point of interest is how two or more close, parallel tethe
would interfere with each other in collecting. Such an
rangement may be motivated by tether survivality,6 tether
efficiency in high thrust propulsion,7 or just tether current
with limited length. Here we study tether interference by fi
extending previous results on collection to cross secti
other than circles.

At positive bias, the electron currentI to a cylindrical
probe in an unmagnetized plasma, with electron distribut
function isotropic at infinity, and no trapped-electron pop
lation, has an upper bound@the orbital-motion-limited
~OML! current#, which is reached if the probe cross secti
is both small and convex enough. The OML current dens
is uniform over the probe surface independently of
shape;8 at the very high bias of interest for bare tethers,
current is very accurately given as

I OML~p!'~p/p!LeN`A2eFP /me}p. ~1!

Here,L, FP , andp are probe length, bias, and perimeter
its cross section, andN` is the unperturbed electron densit
We had discussed elsewhere magnetic and trapped-ele
effects2 and the anisotropy arising in the bare-tether c
from its orbital velocity.3

As we shall see, current fails to reach the OML value
the cross section is either large or nonconvex, with eit

a!Electronic mail: jrs@faia.upm.es
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type of failure relating to a quite different feature in th
potential field. We review results for circular cylinders
Sec. II and then consider separately the size effects fo
general convex cross section~Sec. III!, and effects of shape
for cross sections that are concave~Sec. IV! or made of
disjoint parts~Sec. V!. We use results in discussing interfe
ence among two or more parallel probes in Sec. VI, show
how total current decreases as distances among them
crease. The fact that the potential obeys the Laplace equa
over a large probe neighborhood proves essential for the
termination of interference effects, which are resumed
Sec. VII.

II. REVIEW OF RESULTS FOR A CIRCULAR
CYLINDER

Using high-bias approximations and the circular symm
try of this basic problem allowed solving Poisson’s equat
for the potentialF(r ), and determining the electron distr
bution function everywhere, in particular at the pro
surface. Results from Ref. 2 for the current may then
written as

I 5I OML~p! for R,Rmax, ~2!

R5p/2p, ~3!

Rmax5lDe3a function of eFP /kTe , Ti /Te , ~4!

with lDe the electron Debye length. The ratioRmax/lDe,
which was determined in Ref. 2, is about unity at conditio
of interest for tethers,Ti /Te;1, eFP /kTe;103.

WhenR is taken larger thanRmax ~or whenlDe, and thus
Rmax, decreases with growing densityN` at fixed R!, the
current drops below the OML value as a size effect related
behavior of the potential profileF(r ) far from the probe. For
R;Rmax the profile at high bias exhibits a relative minimu
of r 2F(r ) at certain faraway radius,
4 © 2001 American Institute of Physics
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r 0;RAeFP /kTe@R; ~5!

for R.Rmax, that minimum ofr 2F(r ) lies below its value
R2FP at the probe.2 Then, trajectories that hit the prob
within some range of glancing angles areunpopulated: the
probe being attractive, they come, not from the backgro
plasma, but from other points on the~nonemissive! probe,
after having turned back at distances;r 0 .

The currentI beyondRmax may be written as

I 5I OML~p!3GF R

lDe
,
eFP

kTe
,
Ti

Te
G for R.Rmax ~28!

with results for the functionG given in Ref. 3. Equations~2!
and ~28! determine the current in terms of probe radius a
perimeter, which are related by~3!. Using Eq.~4!, the func-
tion G in ~28! can also be written in terms ofR/Rmax,
eFP /kTe , andTi /Te , as shown in Fig. 1 for later use.3

An important additional result is that, because of t
very high bias, the space charge has negligible effects wi
some extended region around the probe, where the Lap
equation holds even withR;lDe, and the potentialF(r )
takes the form2,3

F/FP'12a ln~r /R!, R<r !r 0 , ~6!

1/a; ln~r 0 /R!; ln AeFP /kTe ~moderately large!.
~7!

This will allow to extend the analysis to cylinders with arb
trary cross section. We note that, with other parameters fix
a increased weakly withR ~or p!.

III. SIZE EFFECT FOR A GENERAL CONVEX CROSS
SECTION

First consider elliptical cross sections, and use ellipti
coordinatesv, w, defined in terms of Cartesian coordinat
in the cross section plane as

x5a cosv coshw, y5a sinv sinhw,

0<v,2p, 0<w,`,

with w(x,y)5const representing confocal ellipses, whi
approach circles asw increases. Any valuew5wP serves to
describe an elliptical cross section of semiaxesa coshwP and

FIG. 1. Current ratioI /I OML vs R/Rmax for a few values ofTi /Te and
eFP /kTe .
d

d

in
ce

d,

l

a sinhwP , and eccentricity 1/coshwP . Because of the high
bias, the Laplace equation is again valid within an extend
probe vicinity, which reaches wherew ellipses are near
circles,

w' ln~2r /a! for w.w* ~w* 51.5, say!. ~8!

As in Ref. 2 for the limit casewP50, it may be shown that
F(v,w) will be nearly independent ofv everywhere, al-
though the electric field will be nearly radial forw.w*
only.

The simplified Laplace equation for the probe vicini
then yields

d2F/dw2'0⇒F/FP'12a~w2wP!.

Within some limitedw-range beyondw* we have, using~8!,

F/FP'12a ln~r /Req!, ~9!

Req[~a coshwP1a sinhwP!/2, ~10!

to be compared with Eq.~6!. From the perimeter for an el
lipse we finally get

Req5p3~11tanhwP!/8E~m! ~m[1/cosh2 wP!;
~11!

hereE is the complete elliptical integral of the second kin
andm its parameter. Beyondw* , the potential behaves as i
the case of a circle of radiusReq, the coefficienta being
taken from the solution for a circle of that radius. Eccentr
ity values 1 @E(1)51, Req5p/8# and 0 @E(0)5p/2, Req

5p/2p#, correspond to thin tapes and circles.2

For any other convex cross section, characterized by
perimeterp, one can also determine an equivalent rad
Req}p, to be used in Eqs.~2!, ~2’!, ~5!, and ~6!. The OML
law will stay valid with regard to the size as long asReq

remains belowRmax, shape details being irrelevant to th
size effect. The Laplace equation, valid near the probe, fil
out to the far field all information on shape except for t
equivalent radiusReq.

Equation~9! for the elliptical cross section may be re
written as

F

FP
5

2 ln~r /r `!

ln~r ` /Req!
52a ln

r

r `
, ~12!

where the radiusr ` was defined by writing ln(r` /Req)
[1/a, thus being comparable tor 0 . To determineReq for a
general case, one solves the Laplace equation between
contour of the given cross section, whereF5FP , and a
circle of radiusr `@p, whereF50; far from the cross sec
tion the potential will take the form of Eq.~12!. This classi-
cal problem, of interest for transmission lines, relates to
determination of the capacity per unit lengthCl between two
cylinders; with the electric field nearly radial at the out
circle one readily finds, using ~12!, Cl'2pe0a
52pe0 /ln(r` /Req). This is indeed the capacity for an ellip
tical cross section when the particularReq given by ~10! is
used.9
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Conformal mapping, expansions in circular harmoni
and image methods have been used to determineCl in elec-
trostatics, and thusReq here, for a variety of cross section
For a regular polygon withn sides one has9

Req5
@G~111/n!#2

2pG~112/n!
p, ~13a!

whereG is the gamma function; this leads to

Req'p/7.11 for an equilateral triangle, ~13b!

Req'p/6.78 for a square. ~13c!

For a general convex cross section one can solve for
potential in polar coordinates by expanding in circu
harmonics.10 For cross sections with a symmetry axis o
has

F~r ,u!

FP
5b0 ln

r

r `
1 (

m51

`

bm

cosmu

r m S 12
r 2m

r `
2mD ,

having usedF(r `)50 andF~2u!5F~u!; for r @p one re-
covers~12! with a52b0 . SettingF5FP at the cross sec
tion, wherer /p will be some given function ofu, Fourier
analysis would yieldReq/p ~andbm /b0pm for m>1!. For a
right-angle isosceles triangle one numerically finds

Req'p/8.28. ~14!

We shall use these results in Sec. VI.

IV. SHAPE EFFECT FOR NONCONVEX CROSS
SECTIONS

Failure of the OML law due to shape relates to the b
havior of the potential fieldnear the probe, ultimately depen
dent on the degree of cross section convexity. For the
tape of Sec. III (wP50) we had found2

I /I OML~p!'12ga2 for Req~5p/8!,Rmax. ~15!

The calculations in Appendix C of Ref. 2 giveg(wP50)
'0.058. Although a tape thus comes out not to be con
enough, its shape failure is quite weak; witha @given by~7!#
logarithmically small for the bias of interest, the current
~15! lies less than 1% below the OML value.

The current reduction described by~15! can be under-
stood by noticing that, for any point on the tape, trajector
that would hit it within some~very narrow! range of glancing
angles are unpopulated: they would have come from o
points on the tape, having kept close to it throughout.8 This
current reduction does not relate to size; it holds no ma
how smallReq or p. On the other hand, shape is here det
minant; as wP increases and an elliptical cross secti
evolves from thin tape to circle, the coefficientg(wP) in Eq.
~15! will finally vanish at somewP , the OML current law
certainly holding in the limit case of a small circle.

We now note that the reduction of current below t
OML value for cross sections that are small can be subs
tial if they present definitely concave segments, as in the c
of Fig. 2~a!, a cross section made of two adjoining circle
Trajectories that hit a point on a concave segment would
unpopulated over a wide range of incoming angles. T
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OML law, nonetheless, may still be used to great accurac
the actual full perimeterp, here 232pc, is replaced in~1!
by the perimeterpeq of the minimum-perimeter~convex! en-
velope of the cross section, made of segments of the ac
cross section and of straight segments, shown as dashed
in Fig. 2~a!. For the case of this figure, we would havepeq

52pc14c. RegardingReq, approximating the envelope a
an ellipse and applying~10! would yieldReq'I(c12c). Ac-
tually, as recalled below, exact results for the capacity
unit length between the two-circle cylinder and a large, c
tered, circular cylinder yieldReq5pc/2,10 and

6.55Req'peq'0.82p. ~16!

To understand why Eq.~1! holds whenp is replaced by
peq note that ~i! the value of AF(r ) averaged over the
minimum-perimeter envelope would be extremely close
the valueAFP in ~1!, as it will be shown below;~ii ! all
trajectories reaching the envelope from the faraway plas
would certainly hit the probe; and~iii ! conditions in the vi-
cinity of the straight ~dashed! segments would be similar to
conditions around a tape as far as convexity is concern
resulting in current reduction that is fully negligible as in E
~15!. Note that point~ii ! would fail for any convex envelope
of larger perimeter, while point~iii ! would fail for a concave
envelope lying between the actual cross section and
minimum-perimeter envelope~trajectories reaching such
concave envelope within a sensible range of incoming an
would be unpopulated!. Introducing the valuepeq allows ac-
curate use of the OML law for nonconvex cross sections,
proves helpful in discussing interference effects on coll
tion.

To show how point~i! arises from the potential near
probe varying little in its vicinity, consider the Laplace sol
tion for the potential between the two-circle cylinder of Fig
2~a! or 2~b! and a centered cylinder of large radiusr ` at
vanishing potential,

FIG. 2. Minimum-perimeter convex envelope~dashed and half-circle seg
ments! for cross sections made of two circles of radiusc each;~a! adjoining
~Req'1.57c, peq'10.28c! and ~b! at distance twice the diameter betwee
centers~Req'2.06c, peff'11.56c!.
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F~ r̄ !5
2q

2pe0
F lnur̄ l u1 ln

ur̄ l u

ur̄ l2l1cīu

1 (
k51

`

ln
ur̄ l2l2kcīuur̄ l2l2kcīu

ur̄ l2l2k21cīuur̄ l2l2k11cīuG
2

q

2pe0
F lnur̄ r u1 ln

ur̄ r u

ur̄ r1l1cīu

1 (
k51

`

ln
ur̄ r1l2kcīuur̄ r1l2kcīu

ur̄ r1l2k21cīuur̄ r1l2k11cīuG1K,

~17!

l1[
c

d
, lk5

l1

12l1lk21
~k52,3,...!, ~18!

whered is the distance between centers,ī is the unit vector
for the x axis, andr̄ l[ r̄ 1 ī d/2, r̄ r[ r̄ 2 ī d/2. Sincer ` /c is
very large, we described the potential outside the small
inders in Figs. 2~a! and 2~b!, by means of infinite sets o
image line charges, withq the net charge per unit length i
either cylinder. Starting with theq charges at the center line
the left cylinder, say, becomes equipotential by introduc
line images2q, a distancel1c to the right of its center, and
1q, at the center~to keep the net charge!.10 Corresponding
images for the right cylinder then require two new images
the left one:1q and2q at distancesl2c andl1c from the
center. In successive image iterations the distancelk

2lk21)c between each couple of new line charges
creases, the series in~17! converging rapidly. Far away, Eq
~17! readsF'2(2q/2pe0)ln r1K to orderc2/r 2, condition
F(r `)50 thus requiring a constantK5(2q/2pe0)ln r` .

For Fig. 2~a! we havel151/2, Eq.~18! then givinglk

5k/(k11). At the origin in Fig. 2~a!, Eq. ~17! now reads

FP5
22q

2pe0
F ln c1 ln 21 ln )

k51

` H 12
1

~2k11!2J G1K

5
2q

2pe0
ln

2r `

pc
,

yielding Cl52pe0 /ln(r` /Req), with Req5pc/2 as already
noted. At point A in Fig. 2~a! the two series in~17!
converge very rapidly, yielding a potentialFA

'(2q/2pe0)ln(r`/1.71c). We then find AFA /FP'1
20.04/ln(r` /Req). With r `;r 0 as given in Sec. II, we have
AFA /FP;0.99, the average value ofAF(r ) on the envelope
differing from AFP by a small fraction of 1%.

V. SHAPE EFFECT FOR DISJOINT CROSS SECTIONS

Consider the case of Fig. 2~b!, with the centers of two
disjoint circles at a distance four times the radiusc. Here the
mere concept of a minimum-perimeter envelope proves
satisfactory, the currentI OML(peq), with peq52pc18c.2
32pc, exceeding the OML current for the full perimete
This failure relates to condition~ii ! in Sec. IV. For nonad-
joining probes such as these, not all trajectories arriving
l-

g

n

-

n-

at

the dashed segments of the envelope from the far a
plasma would hit the probe; some trajectories reach oppo
dashed segments and escape.

Although the current density at the dashed segments
have the OML value, only some fractionf will correspond to
trajectories reaching either circle. The OML law may still b
used, however, ifpeq is replaced by some effective perimete

peq→peff[2pc1432c f . ~19!

To determine the factorf consider electrons entering the e
velope in Fig. 2~b! at a pointQ between point A and the righ
circle (0,xQ,2c), and letc be the angle between the in
coming velocity and the inward normal: trajectories with
some rangec r(xQ),c,c I(xQ) will miss both probes. The
current reaching either probe from the segment to the righ
point A is proportional to the integral2

E
0

2c

dxQE
Dc~xQ!

cosc dc

2
[ f 3E

0

2c

dxQE
2p/2

p/2 cosc dc

2

52c f , ~20!

where the c integration on the left excludes the rang
c r(xQ),c,c I(xQ).

Valuesc r andc I are easily determined for each pointQ
because trajectories are approximately straight inside the
velope. To justify this, use Eq.~17! with d54c to compute
FA andFB in Fig. 2~b!. The series converge very rapidly i
both cases, yieldingFP5FB'(2q/2pe0)ln(r` /Req) with
Req'2.06c, and FA'(2q/2pe0)ln(r`/2.46c). With
AFA /FP'120.09/ln(r` /Req), the average ofAF(r ) on the
envelope would differ fromAFP by less than 1%. This re
sults in a vector velocity that is nearly constant.

We then readily findf '0.66, leading to

5.61Req'peff'0.92p. ~21!

In Eq. ~21! we usedReq'2.06c, too. Note that the simple
calculation above would fail for distance between cent
large, when trajectories between circles could not be
proximated as straight. One could still determinef, however,
by solving for trajectories in the Laplace near field.

VI. INTERFERENCE OF PARALLEL TETHERS

The interference of two or more parallel cylindric
probes as regards current collection shows mixed size
shape effects. Interference may be discussed on the bas
results for the special case of circular cross sections, as
sumed in Eqs.~1!–~7!, when extended to other cross sectio
by our introduction of equivalent radiusReq, and equivalent
perimeterpeq or effective perimeterpeff .

Consider, first, total current to two circular wires wit
full perimeter p. Equations~21! and ~16! show that OML
current (}peff) at the position of Fig. 2~b! is 8% less than
OML current collected by faraway wires, while current
wires at contact is 18% less. Shape interference is thus m
erate at most. Note, however, that these results ignore
possible size effect, which proves to vary nonmonotonica
with distance between wires. As this distance is reduced,
equivalent radius first increases from the valueReq5c at
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large distances~corresponding to the single tether!, reaches
Req'2.06c in Fig. 2~b!, and decreases toReq'1.57c at con-
tact. Figure 1 suggests size effects will be small ifc is less
thanRmax, whereas they can be large forc.Rmax.

Consider now a large numberN of circular wires regu-
larly spaced in a straight row, with full perimeterN32pc.
When bringing the wires from large distances to cont
(peq'4Nc), shape effects decrease the current by a fa
2/p, a reduction of 36%. Size effects could be dramatic: w
Nc@c, the row of wires at contact would haveReq'peq/8
'Nc/2@c ~we approximated the row envelope as a th
tape!. For N2 wires regularly spaced in a square array, w
full perimeterN232pc, both shape and size effects can
dramatic. As next-neighbor distance goes from large to v
ishing (peq'8Nc), OML current decreases by a facto
4/pN, while Req increases fromc to a valueReq'peq/6.78
'1.18Nc @we approximated the envelope for the square
ray at contact as a square cross section, and used Eq.~13c!#.

For thin tapes, relative orientation as well as distan
affect interference. For two tapes of widthl ~full perimeter
4l ! brought from far away to contact, shape effects incre
while any size effects roughly decrease, for the sequenc
orientations shown in Figs. 3~a!–3~c! and Fig. 4~a!. For Fig.
3~a! shape interference arises solely from the very smag
terms in Eq. ~15!, current decreasing by the factor@1
2ga2(2l )#/@12ga2( l )#,1; the effect is thus negligible
For Figs. 3~b!, 3~c!, and 4~a!, ignoring theg terms,peq, and

FIG. 3. Equivalent radius and perimeter for different orientations of t
adjoining tapes of widthl each: ~a! Req50.5l , peq54l ; ~b! Req'0.41l ,
peq'3.41l ; ~c! Req'0.42l , peq53l .

FIG. 4. Radius and perimeter of adjoining and close tapes at a partic
orientation:~a! Req50.25l , peq52l ; ~b! Req'0.59l , peff'3.17l .
t
or

n-

r-

e

e
of

thus OML current, is reduced by factors~11A2!/2A2'0.85,
3/4, and 0.5, respectively. Regarding size effects, the inve
figure sequence, Figs. 4~a! and 3~c!–3~a!, hasReq increased
from the valuel /4, corresponding to the single tape, by fa
tors 1, 1.69, 1.65, and 2, respectively; for Figs. 3~c! and 3~b!
we used Eqs.~13b! and ~14!.

Concerning the effects of distance, consider Figs. 4~a!
and 4~b!. For Fig. 4~b!, with peq5p54l , we can proceed as
in the case of Fig. 2~b!. Writing peq→peff52l12l3f, we find
f 522A2 exactly. Also, using Eq.~13c! for a square, we
haveReq'peq/6.78, yielding

5.38Req'peff'0.79p. ~22!

As the tapes approach each other keeping the dispositio
Figs. 4~a! and 4~b!, Req increases from the value 0.25l at
large distances, reachesReq'0.59l in Fig. 4~b!, and falls
back to 0.25l for Fig. 4~a!. The OML current for Fig. 4~b! is
down by 21% from the OML current to far away tapes, wh
the current at contact is cut by one-half.

VII. DISCUSSION OF RESULTS

The current to a cylindrical probe of circular cross se
tion had proved to be a product of two functions of perime
p, and radiusR, respectively, as given by Eqs.~1! and~2! and
~28! with Rmax given in ~4!. Here we have extended results
arbitrary cross sections. For any convex cross section, ce
solution of the two-dimensional Laplace equation served
determine an equivalent radiusReq for use in the current law;
for circle, square, equilateral triangle, and tape cross s
tions, the ratiop/Req takes values 2p, 6.78, 7.11, and 8,
respectively. ForR ~or Req! .Rmax current drops below the
OML value I OML(p) as a size effect related to behavior
the potential profileF(r ) far from the probe.

For concave cross sections,p had to be replaced by a
value peq,p, corresponding to the minimum-perimete
~convex! envelope of the cross section. The current drop
low the OML value now relates to behavior of the potent
near the probe. For the joint cross section of separate pro
peq was further replaced by a lower effective valuepeff,p,
so as to take into account that not all trajectories entering
minimum-perimeter envelope reach either probe; for not
distant probespeff is easily determined because trajector
are then approximately straight within the envelope. Valu
for Req, peq, and peff for a variety of cross sections ar
shown in Figs. 2~a!, 2~b!, 3~a!–3~c!, 4~a! and 4~b!.

These results will allow to determine interference amo
parallel tethers under general conditions; this should pr
useful in tether design. Interference between tapes is de
mined by both distance and relative orientation. For two te
ers, maximum interference as regards shape occurs in
4~a!, with OML current reduced by one-half from the join
current collected by the tapes if far from each other; note t
a 50% reduction means that adding a second tape is us
as regards collection. For the tethers of Figs. 2~a!, 2~b!, 3~a!–
3~c!, and 4~b!, OML current is reduced by factors 0.82, 0.9
1, 0.85, 0.75, and 0.79, respectively, from the full current
distant tethers. ForN(@1) round tethers in contact with eac

lar
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other in a straight row, the reduction factor is 0.64; forN2

(@1) round tethers in contact in a square array, curren
dramatically reduced by a factor 4p/N!1.

Size effects, if any, can be determined using Fig. 1.
round tethers, if distant from each other, the proper value
Req is the radiusc of a single tether. For the two-tether o
Figs. 2~a! and 2~b!, Req is 1.57c and 2.06c, respectively; for
N tethers in contact with each other in a straight row andN2

tethers in contact in a square array (N@1), Req is 0.5Nc and
1.18Nc, respectively. For distant tapes,Req is one-fourth of
the width l of a single tape; for the two-tether of Figs. 3~a!–
3~c! and 4~b! Req is greater by a factor 2, 1.65, 1.69, 1, a
2.36, respectively.
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