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Abstract 

Several methods to improve multiple distant microphone 

(MDM) speaker diarization based on Time Delay of Arrival 

(TDOA) features are evaluated in this paper. All of them avoid 

the use of a single reference channel to calculate the TDOA 

values and, based on different criteria, select among all 

possible pairs of microphones a set of pairs that will be used to 

estimate the TDOA’s. The evaluated methods have been 

named the “Dynamic Margin” (DM), the “Extreme Regions” 

(ER), the “Most Common” (MC), the “Cross Correlation” 

(XCorr) and the “Principle Component Analysis” (PCA). It is 

shown that all methods improve the baseline results for the 

development set and four of them improve also the results for 

the evaluation set. Improvements of 3.49% and 10.77% DER 

relative are obtained for DM and ER respectively for the test 

set. The XCorr and PCA methods achieve an improvement of 

36.72% and 30.82% DER relative for the test set. Moreover, 

the computational cost for the XCorr method is 20% less than 

the baseline.  
Index Terms: Speaker diarization, speaker localization, 

speaker identification, speaker segmentation 

1. Introduction 

Speaker diarization is the task of identifying the number of 

participants in a meeting and creating a list of speech time 

intervals for each participant. Speaker diarization can be used 

as a first step in the speech transcription of meetings in which 

each sentence has to be associated with a specific speaker. The 

diarization task is carried out without any previous knowledge 

about the position, number or characteristics of the speakers, 

the position or quality of the microphones or the 

characteristics of the room where the recording has taken 

place. When the recording has been done with more than one 

distant microphone we speak of diarization with Multiple 

Distant Microphones (MDM). 

Most MDM systems use acoustic features as Mel-

Frequency Cepstral Coefficients (MFCC) and localization 

features as the Time Delay Of Arrival (TDOA) values [1]. 

Other features used in some systems are the normalized energy 

of the channels [2] or the prosodic parameters [3] [4]. 

The goal of this work is to improve the results of the 

diarization by improving or optimizing the TDOA values used 

in the segmentation and clustering. In [5] the baseline method 

to calculate TDOAs that is used in our system is described. It 

starts selecting one of the channels as the reference one (the 

channel with highest cross-correlations with the other 

channels) and estimating the TDOAs between this channel and 

the rest of them. The set of TDOAs from each microphone 

with the reference channel will form what we call the TDOA 

vector [tdoa] which, therefore, will have a dimension equal to 

the number of microphones minus one. This vector is used 

together with the MFCC vector in the subsequent segmenting 

and clustering procedure. 

The aim of this work is to develop new methods to 

calculate the TDOA vector. In the current situation we are 

losing the possible information that the TDOA between any 

two microphones not selected could provide. The baseline 

system is using these two microphones to calculate the delay 

between each one of them with the reference microphone but 

not between themselves. We have tested five algorithms to 

select the microphones that we will use to calculate the TDOA 

vector. We have named these algorithms the “Dynamic 

Margin” (DM), the “Extreme Regions” (ER), the “Most 

Common” (MC), the Cross Correlation (XCorr) and the 

Principle Component Analysis (PCA). The explanation and 

the results of applying each method will be included in this 

work in the section with the same name.  
Some works have already been carried out in this topic. In 

[6] all microphone pairs are used for computing correlation 

features. In [7] it has been presented a method to select the 

microphone pairs used to calculate TDOA’s and the use of 

these TDOA’s as the first stage of the segmentation and 

clustering module. Other alternative methods to select 

microphone pairs are presented in [8], [9], [10] and [11]. 

2. Database 

In this work we have used a subset of 12 meetings extracted 

from NIST Rich Transcription 2002-2005 sets (named devel06 

in [1]) and the RT06 and RT07 sets (from NIST Rich 

Transcription of years 2006 and 2007 respectively) to form our 

development set of 28 meetings that will be named ALL0607 

from now on. The evaluation set will be the RT09 set, from 

the NIST Rich Transcription Evaluation of 2009. 
The segments defined by NIST for the official evaluations 

have been used to measure the performance of the systems 

described in this work. In this paper we use the scored speaker 

time. These parts consist of 15,484.34 seconds (1,548,434  

frames of 10 ms) evaluated for the ALL0607 set, and 5,932.88 

seconds (593,288 frames of 10ms) for the RT09 set. 

3. Baseline system 

The input coming from several different microphones is first 

Wiener filtered in order to reduce the background noise. Then, 

in order to estimate the TDOA between two segments from 

two microphones, we use the Generalized Cross Correlation 

with Phase Transform” (GCC-PHAT). First, one of the 

channels is selected as the reference channel using the average 

cross-correlation between any pair of channels [12]. Then a 

TDOA value will be calculated every 250 ms for all the 

microphones with the reference one. For more detailed 

information see [5]. The set of TDOAs from each microphone 

to the reference microphone will form the TDOA vector 

[tdoa]. Once the [tdoa] vector is calculated, a weighted delay-
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and-sum algorithm is applied in the acoustic fusion module, 

where the input signals are delayed and added together to 

generate a new composed signal. The composed signal is then 

processed by the MFCC estimation module, where MFCC 

vectors of 19 components [mfcc] are calculated every 10 ms 

with a window of 30ms. The composed signal is also 

processed by the Voice Activity Detector (VAD) module 

which is a hybrid energy-based detector and model-based 

decoder. The [tdoa] vector is also used in the subsequent 

module for clusters modeling but this time it is recalculated 

with a frame rate of 10ms in order to have the same number of 

data as the MFCC vector. 

The algorithms presented in this paper modify this TDOA 

vector, thus, they affect the module for clusters modeling, but 

none of them are used to create the delayed and added signal 

necessary to extract the MFCC vector. That signal will be still 

calculated as in the baseline system and, consequently, 

MFCCs will remain unchanged in all the experiments. 
The following module is the segmentation and 

agglomerative clustering process which consists of an 

initialization part and an iterative segmentation and merging 

process. The initialization process segments the speech into K 

blocks (equivalent to an initial hypothesis of K speakers or 

clusters) uniformly distributed. Every cluster is modeled using 

a gaussian mixture model (GMM) initially containing a 

number of components that has to be specified (we use 5 for 

[mfcc] and 1 for [tdoa] streams). After the initial segmentation 

a set of training and re-segmenting steps is carried out using 

Viterbi decoding. Then the merging step takes place. 
When a merging takes place, the GMM for the new cluster 

is retrained with the data now assigned to it and the number of 

parameters (mixtures) of the merged model is the sum of the 

number of mixtures of the component models. The 

segmentation and clustering steps are repeated until a stopping 

criterion is reached. To decide which clusters to merge, and 

when to stop the merging, the BIC criterion has been used. 

When all possible merge pairs give a negative BIC, the 

merging is stopped. A frame purification algorithm is also 

applied before computing the BIC distance, see [12]. More 

information about the baseline system can be consulted in [1]. 

4. Methods for selecting delay features 

4.1. Dynamic Margin  

This method creates a histogram of delays for each possible 

pair of channels. These delays are calculated every 250ms 

along the whole recording. The histograms of TDOA values 

are generated ignoring the bins of the histogram with less than 

25 samples. We use a bin width of 5ms. Then we select the 

subset of pairs with the highest dynamic range (highest 

difference between the maximum and the minimum delay). 

This method is very similar to the one presented in [7] 

although, in that paper, no details about the performance of the 

method were presented. 

The optimum number of pairs has been chosen empirically 

after carrying out experiments from 1 to 10 pairs. The best 

performance was obtained for 3 pairs. Therefore, the method 

of selection will choose the 3 pairs with the highest dynamic 

range and then it will calculate the TDOA values for each 

frame of 10 ms, as it is done in the original method. 

The DER obtained for the development set when using this 

method is shown in Figure 2 where values are given across 

different weights for the two streams of data: MFCC and 

TDOA. For most of the weights, the DER obtained with the 

DM method is better than the one with the baseline method. It 

is noticeable that one of the few points with worse 

performance is when only TDOA features are used (weight of 

MFCC stream equal to 0 in Figure 2). However, we do not 

intend to improve results in that point but in the area of lowest 

DER (around the baseline working point (MFCC 

weight=0.9)). The best result for DM method is obtained with 

the weight 0.85 for the MFCC stream and 0.15 for the TDOA 

stream. The baseline method obtains its best results with the 

weight 0.9 for the MFCC stream and 0.1 for the TDOA 

stream. Both values are shown in Table 1 where a slight but 

significant relative improvement can be seen for this method. 

4.2. Extreme Regions 

As it occurred with the DM method, the Extreme Regions 

method (ER) will begin calculating delays among all the 

different channels every 250ms. For each pair of microphones, 

all the bins with less than 25 appearances will be discarded. As 

in the previous method, we use a bin size of 5ms. Once this 

estimation has been carried out, the algorithm will make a 

histogram using all the values calculated from all the pairs of 

channels. 
At this point some positions of the histogram are discarded. 

It has been decided to discard the most extreme positions that 

form 0.5% of the total number of delays calculated. This 

procedure aims to avoid some very high delays that are 

considered outliers. Straight afterwards two margins are set 

up, one in the positive part of the histogram and one in the 

negative part. These two margins define two regions which 

will contain 40% of the total number of delays calculated. In 

Figure 1 a hypothetical example of a histogram with the 

regions discarded (region A) and the regions with 40% of 

values (region B) is represented for better understanding. 

Once defined the target region the system will check which 

of the pairs have more values in that area. As it happened in 

the dynamic range method, we chose only a subset of the total 

possible combinations. After carrying out experiments 

selecting a number of pairs from 1 to 10, the best performance 

has been obtained for only 2 combinations. The TDOA vector 

therefore, will have a dimension of 2. Once selected the 2 pairs 

the execution continues as usual, using these pairs to estimate 

the delay values for each frame of 10ms. 

The DER obtained for the development set when using this 

method across different weights is shown in Figure 2. In this 

case the behavior of the ER method is worse than the baseline 

until the weight of MFCC streams turns higher than 0.4 when 

it starts to keep always below the baseline. As in the previous 

method, the best results have been obtained for a combination 

of weights of 0.85 for the MFCC stream and 0.15 for the 

TDOA stream. Results are shown in Table 1. 

 

Figure 1: Hypothetical example of the regions 

defined in the histogram of delays in the ER method. 

Region A is discarded (contains 0.5% of the total 

number of delays). Region B is target region (contains 

the 40% of the remaining number of delay values). 



4.3. Most Common  

The third method presented in this paper will select first the 

most common TDOA values. Then, those pairs of 

microphones that have more TDOA values among those most 

common TDOA’s, are the ones used in the final stage of 

clustering and segmentation. 

This method starts, like the ER, calculating delays values 

for all the possible microphone pair combinations. All the 

information is joined in a histogram where each bin will 

correspond to a range of delay values. The bin width has been 

set to 5ms. The bins with highest values are selected as the 

most commons and the microphone pairs with the highest 

contribution to those bins are chosen. 

To determine the best number of microphone pair 

combinations some experiments have been carried out.  The 

results give the best performance for a number of 

combinations equal to 8. After the selection process the 

procedure is similar to those in previous sections. 

The DER obtained for the development set when using this 

method is shown in Figure 2. The best numerical results 

obtained compared to the baseline are presented in Table 1. 

For this technique the best performance is obtained with the 

same weights than the best baseline system. This is MFCC 

weight equal to 0.9 and TDOA weight equal to 0.1. 

4.4. Cross Correlation  

As it was mentioned before, the baseline system selects one of 

the channels of the recording as the reference one. The system 

computes the average cross-correlation for all possible channel 

combinations for a block of duration 1s. This process is 

repeated for M=200 blocks linearly spaced along the 

recording. Then, it singles out the channel with the highest 

cross-correlation [12]. This channel has proved to be the most 

reliable channel to compute the delay with the other 

microphones. Using this kind of information we can select not 

one channel but several pairs of them. Using only pairs of 

channels with high cross correlation may avoid some bad 

estimation of delays and could lead to better performance of 

the system. For each pair of channels the cross-correlation is 

computed as: 

 

         
 

 
              

                               (2) 

 

Where M is the number of blocks used (M=200), and 

xcorr(i,j;m) indicates a standard cross-correlation measure 

between channels i and j for each block m. 

The number of pairs finally selected, and therefore the 

dimension of the TDOA vector, has been set empirically to 4. 

For this method and using 4 pairs to calculate TDOA 

values, we can see in Figure 2 that the DER keeps below the 

baseline for any MFCC weight. The lowest one, shown in 

Table 1, is obtained with a combination of weights for the 

MFCC and TDOA feature of 0.85 and 0.15 respectively. 

4.5. Principle component analysis 

With this method we try to take advantage of any information 

which can be held in any delay computed between any pair of 

channels. We intend to get as much information as possible of 

the delays. That would mean the computation of TDOA 

feature for every possible pair of channels. Then, we would 

perform a PCA to reduce dimensionality. However, some 

meetings have up to 24 microphones which means more than 

250 combinations and a considerable increase in the 

computational time. To reduce this effect we have decided to 

use the cross correlation information we talked about in 

previous section. Now we are going to choose 50 pairs of 

channels using the XCorr method. Once the TDOAs between 

each pair have been found out, we will reduce dimensionality 

computing PCA.  

Optimal final dimension of TDOA vector has been set 

empirically to 8. As it happened with the XCorr method the 

performance of the system is generally better than the baseline 

(see Figure 2). The best performance of this method is shown 

in Table 1. With this method, and weights for MFCC and 

TDOA features of 0.85 and 0.15 respectively, we obtained the 

lowest DER of all the methods implemented, although the 

difference between the Xcorr and PCA methods is small. 

It is worth to mention that when using only TDOA features 

the results for the best methods, Xcorr and PCA, are better 

than the baseline (MFCC_weight equal to 0 in Figure 2), 

indicating that the TDOA information is more robust. This fact 

is also demonstrated at the optimum point in which the MFCC 

weight is 0.85 instead of 0.9 as in the baseline. 

5. Evaluation 

We mentioned in previous paragraphs optimization 

experiments to define the working point for each method. In 

Table 1 we included the best DER obtained for all the systems 

developed using the optimum parameters for the development 

set (ALL0607). The dimension of the TDOA vector calculated 

is included beside the name of each method. Weights for 

MFCC and TDOA features are 0.9 and 0.1 respectively for the 

baseline and the MC and 0.85 and 0.15 for the rest of them. 

Figure 2: DER of new methods for the development set (ALL0607), with their optimal dimension of the TDOA vector, 

using MFCC and TDOA features. Results are shown in compare to weight applied to the MFCC stream. 
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ALL0607 
Improvement 

Baseline 12.93 ± 0.05  

DM (Dim 3) 12.24 ± 0.05 5.34% 

ER (Dim 2) 12.36 ± 0.05 4.41% 

MC (Dim 8) 12.65 ± 0.05 2.17% 

XCorr (Dim 4) 11.55 ± 0.05 10.67% 

PCA (Dim 8) 11.32 ± 0.05 12.45% 

Table 1: DER for the set ALL0607 using MFCC 

and TDOA streams. Weight of MFCC stream for 

baseline and MC method is 0.9. Weight of MFCC 

stream for DM, ER, XCorr and PCA method is 

0.85.TDOA stream weight is 1-MFCC weight. 

 DER for RT09 Improvement 

Baseline  26.09 ± 0.11  

DM (Dim 3) 25.18 ± 0.11 3.49% 

ER (Dim 2) 23.28 ± 0.11 10.77% 

MC (Dim 8) 26.65 ± 0.11 -2.15% 

XCorr (Dim 4) 16.51 ± 0.09 36.72% 

PCA (Dim 8) 18.05 ± 0.1 30.82% 

Table 2: DER for the set RT09 using MFCC and 

TDOA streams. Weight of MFCC stream for baseline 

and MC method is 0.9. Weight of MFCC stream for 

DM, ER, XCorr and PCA method is 0.85.TDOA 

stream weight is 1-MFCC weight. 

In order to prove that the methods work properly for other 

sets of meetings we have evaluated the results with a new set 

of meetings: the RT09 set (7 meetings) using the parameters 

optimized for the development set. DER values for RT09 set 

are presented in Table 2. 

While MC has not achieved any improvement for the test 

set, it can be seen that the results obtained for the evaluation 

set improve the baseline system for the DM, ER, XCorr and 

PCA methods. The XCorr and PCA methods clearly 

outperform the other two methods. In this case (with the test 

set) the improvement of the XCorr method is higher than the 

improvement obtained with the PCA method, and this time, 

the difference, is higher than what occurred with development 

set. 

Finally we calculated the computational cost of all the 

systems developed. The results are shown in Table 3. Methods 

with the highest dimensions do not obtain any savings in time 

while those with lowest dimension reduce the computational 

time in about 20%. The PCA and XCorr methods are the best 

ones in DER for both the development and the test set. On 

average the XCorr has slightly better results than the PCA 

method but also, PCA method is much more costly due to the 

necessity of calculation of TDOAs for 50 pair of channels 

previous to the PCA dimensionality reduction. The XCorr 

method obtains both a great improvement in performance and 

a high reduction in computational time. 

 

 Computational time of RT09 

DM (Dim 3) 0.77 *Baseline time 

ER (Dim 2) 0.82 *Baseline time 

MC (Dim 8) 1.07 *Baseline time 

XCorr (Dim 4) 0.8 *Baseline time 

PCA (Dim 8) 1.24 *Baseline time 

Table 3: Computational time for the set RT09 using 

MFCC and TDOA streams relative to computational 

time of baseline system. 

6. Conclusions 

It has been shown that much better performance can be 

obtained using only a reduced set of values of TDOA when 

these have been selected properly. This paper has shown four 

ways of selection that achieve a relative improvement, over 

the test set, of 3.49% for the DM method, 10.77% for the ER, 

and 36.72% and 30.82% for XCorr and PCA methods 

respectively. The fifth method, MC method, worked well for 

the development set but not for the test set. Also, the 

computational cost is reduced around 20% with the three 

methods which use a TDOA vector of low dimension (DM, 

ER and XCorr). Computing TDOAs for a high number of 

channel combinations is computationally expensive, as it has 

been shown with PCA or MC method. Although, PCA has 

similar performance than XCorr method for the development 

set and the test set, the reduction in 20% in the execution time 

for the XCorr and the increase in 24% of this time for the PCA 

method, makes the XCorr the best option. 
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