
A Platform for Real-Time Control
Education with LEGO MINDSTORMS

Peter J. Bradley* Juan A. de la Puente* Juan Zamorano*
Daniel Brosnan*

* Universidad Politecnica de Madrid (UPM), Spain.
e-mail: {pbradley, jzamora, dbrosnan}@ datsi.fi. upm.es,

jpuente @dit. upm. es

Abstract: A set of software development tools for building real-time control systems on a
simple robotics platform is described in the paper. The tools are being used in a real-time
systems course as a basis for student projects. The development platform is a low-cost PC
running GNU/Linux, and the target system is LEGO MINDSTORMS NXT, thus keeping the
cost of the laboratory low. Real-time control software is developed using a mixed paradigm.
Functional code for control algorithms is automatically generated in C from Simulink models.
This code is then integrated into a concurrent, real-time software architecture based on a set
of components written in Ada. This approach enables the students to take advantage of the
high-level, model-oriented features that Simulink offers for designing control algorithms, and
the comprehensive support for concurrency and real-time constructs provided by Ada.

Keywords: Control education, real-time systems, embedded systems, LEGO MINDSTORMS,
Simulink, robot programming, Ada tasking programs.

1. INTRODUCTION

Acquiring skills in real-time embedded systems program­
ming is a fundamental component in the education of
control engineers. Indeed, most control systems are imple­
mented as real-time embedded computer systems. Progress
in microprocessor technology has made it possible to em­
bed real-time control systems into all kinds of systems,
from industrial equipment to cars, trains, aircraft, and
consumer electronics.

Model-based software development, e.g. as implemented
by the Matlab® /Simulink® code generation facilities, have
made it easier to develop program code for control algo­
rithms, and are now commonplace in all control engineer­
ing curricula. Modelling tools allow control engineers to
design and test sophisticated control algorithms using a
high-level, simulation-based approach, and then generate
implementation code in some programming language (C
is most common) that can run on an embedded computer
platform. However, control algorithms are only a part of a
complete embedded software system. Even comparatively
simple embedded systems require some kind of operat­
ing system support for device input/output, concurrency
and real-time control, and user interface, among others.
Moreover, the interaction between real-time behaviour and
control performance may give rise to unexpected problems
when the final system is implemented (Crespo et al., 2006).

Therefore, we believe that a course in real-time pro­
gramming, including such classical topics as concurrency,
real-time scheduling and schedulability analysis, and in­
put/output device programming (see e.g. Burns and

Wellings, 2009) is still needed as part of the control cur­
riculum. We have been teaching such a course at UPM for
many years, using Ada (ALRM05) as the main program­
ming language. We chose Ada because of the comprehen­
sive support for reliable software engineering and native
concurrency available.

An important aspect of real-time programming courses
is laboratory work. Finding real-time control applica­
tions that are at the same realistic enough and easy
to use by students is not a simple task. Recently,
LEGO®MINDSTORMS®has gained wide acceptance in
different kinds of control-related laboratories (see e.g.
Grega and Pilat, 2008; Kim, 2011), due to its versatility
and availability as a low-cost robotics platform. In this
paper we describe a programming environment for this
platform that can be used to support a real-time embedded
control systems course, including all critical concurrency
and real-time scheduling aspects, while still being compat­
ible with high-level control algorithm design using Matlab
and Simulink. The rest of the paper is organised as follows:
section 2 introduces the LEGO MINDSTORMS NXT ar­
chitecture. Section 3 describes how to combine Ada and
Simulink to develop real-time systems lab projects. The
embedded software development toolchain is described in
section 4. Section 5 describes an example of a student
project for controlling the speed of a toy vehicle. Finally,
some conclusions are drawn and plans for future work are
sketched in section 6.

2. LEGO MINDSTORMS NXT

The LEGO MINDSTORMS NXT (from now on NXT)
brings together the LEGO world with the digital world. It
offers all kinds of LEGO bricks, gears and various other

http://datsi.fi
http://upm.es

parts together with a wide spectrum of sensors, motors,
linear actuators, etc. The brain of the NXT is an embedded
system, also called "Intelligent Brick". Figure 1 shows its
block diagram.

Power
supply

Bluetooth"
Bluecore™ 4.0

Display < 1 SPl-Bus

O
ut

pu
t

ci
rc

ui
t

++>

USB

u ART-BUS 1

'

Main Processor
AtmeP ARM7

* *

Buttons +1
T

Sound

i *

>

* * •

1 l2C-Bus

T
Co-Processor
AtmeP AVR

-

_J

1
I

LEGO Group©

Fig. 1. NXT block diagram.

The Intelligent Brick is made up of a 32-bit ARM main
processor (AT91SAM7S256) with 64 KB of RAM and 256
KB Flash memory that runs at 48 MHz. The ARM proces­
sor benefits from an 8-bit AVR co-processor (ATmega48)
that handles low-level tasks like A/D conversion of the
inputs and PWM generation for the output ports. The
communication between the two microcontrollers is set up
as two memory regions that are updated by both micro­
controllers periodically. Notice that this communication
period determines to a large extent the behaviour of the
NXT.

As for the software part of the Intelligent Brick, LEGO
has released the NXT firmware as open source. Avail­
ability of the firmware code and hardware schematics has
encouraged developers to release their own programming
environments. Therefore, the NXT can be programmed
from a host computer using languages such as C/C++,
Java, Python, Ada, MATLAB, and many more. Also,
development environments like Lab VIEW, Simulink and
Microsoft Robotics Studio offer a model-based approach
to program the NXT.

3. ADA, SIMULINK AND THE NXT

The purpose of this paper is to demonstrate how to
fully develop the software of an embedded system so
that students have a chance to experience the whole
development process. This is, a feedback control system
design, tuning and programming together with a real­
time software architecture that will support the concurrent
execution of the controller on the NXT.

As for the first part of the process, the feedback con­
trol system, the MATLAB/Simulink environment is used.
There are many advantages when using this programming
environment in control theory. A given controller can be
modelled using the extensive block library and then tuned

and tested. Furthermore, Simulink can discretise the con­
tinuous controller and generate its C code algorithm for
embedded environments.

For the second part of the process, the real-time software
architecture, Ada is used instead of C.

Although C is commonly used in embedded systems pro­
gramming, we consider that is not a good programming
language to teach concurrency concepts. C relies on ex­
ternal system calls to a real-time operating system to
provide concurrency and real-time features. The low-level
nature of these operating system primitives diminishes
concurrency concepts. There is also a large list of known C
vulnerabilities (see WG23-N0304) that may be critical in
high-integrity systems. Finally, C syntax can be confusing
and error prone.

On the other hand, the Ada programming language
presents ideal features for embedded real-time program­
ming. Concurrency and real-time are part of the language,
no external calls are required. These features enable using
high-level concurrency abstractions like tasks, protected
objects and synchronous message passing that ease pro­
gramming and avoid common pitfalls. It offers mechanisms
to handle interrupts in a simple manner and also provides
a clean and efficient way to interact with I/O registers and
memory. Also, Ada's strong typing and run-time checking
significantly reduces programming errors.

Ada offers mechanisms to interface with other languages.
The controller C code generated by Simulink can be in­
cluded in the Ada software architecture using standard
compiler directives and libraries. This is shown in sec­
tion 5.5.

Predictable behaviour of systems is one of the key goals
of real-time development. This property is binding to
ensure a hard real-time system meets its deadlines. By
enforcing the Ravenscar Profile (Burns et al., 2004) on
NXT applications, we can be certain that the outcome of
any NXT application is predictable and a schedulability
analysis can be performed.

The Ravenscar profile is a collection of restrictions to
the Ada tasking model. This profile is restricted to a
fixed priority and pre-emptive scheduling, i.e. the run-time
scheduler ensures that at any given time, the processor
executes the highest priority task of all those tasks that
are currently ready to be executed. Also, the Immediate
Ceiling Priority Protocol (ICPP) (Sha et al., 1990) is
enforced by the Ravenscar profile. This means that when
a task locks a resource, its priority is temporarily raised so
that no task that may lock the resource can be scheduled.
Thus, priority inversion due to task communication is
minimized and bounded. More information can be found
in ALRM05, Annex D.

4. ENVIRONMENT DESCRIPTION

4-1 Overview

The embedded software for the NXT is developed on a
GNU/Linux x86 host computer. The set of tools required
and the process to build an NXT application on the host
computer is explained in this section.

init, irq Et context
assembler routines

Fig. 2. Executable generation process for NXT.

If..2 Controller Design

As established previously, Simulink is used to design a
feedback controller for the NXT. Besides the Simulink
environment, a couple of its toolboxes are used. In order
to translate the controller to C code for the ARM main
processor of the NXT the Embedded Coder is needed.

4-3 Cross-compiler toolchain

A cross-compiler toolchain is a set of tools (essentially
a compiler, an assembler and a linker) tha t generate
executable code for a platform, in this case the NXT,
other than the one on which the tools run, in this case
GNU/Linux x86. Cross-compiler tool chains are used to
compile code for a platform upon which it is not feasible
to do such compiling.

AdaCore has ported the GNAT compiler toolchain to the
ARM architecture by adapting part of the LEON-based
Open Ravenscar Real-Time Kernel, O R K + (de la Puente
et al., 2000). The result is the GNAT GPL for MIND-
STORMS cross-compiler toolchain which is available, at
the time of writing, only for Windows platforms. The 2011
version tha t has been used for this project has been ported
to a GNU/Linux x86 host by the STRAST research group
from Universidad Politecnica de Madrid . 2

4-4 Run-time system and Drivers

The GNAT GPL for LEGO MINDSTORMS NXT 2011
cross-compiler toolchain relies on a Ravenscar small foot­
print run-time system (Ravenscar SFP) . This means that
2 Available from dit.upm.es/rts/projects/mindstorms.

Ada applications for the NXT should comply with the
Ravenscar profile for tasking purposes.

The NXT drivers developed by AdaCore are completely
coded in Ada. These drivers allow Ada applications to
manage the NXT peripherals.

4-5 Compiling a program

To generate an executable NXT file from an Ada appli­
cation the GNAT cross-toolchain needs first to compile
and then link to RAM the resulting object code using
a linker script. The code tha t needs to be compiled is
the Simulink controller C code, the real-time software
architecture Ada code, the Ada NXT required drivers, the
run-time system which includes Ada, C and assembly code
and the elaboration code generated by the GNAT binder,
see Fig. 2.

To accomplish all of this, a GNU make script is in charge
of calling the different tools of the GNAT GPL for MIND-
STORMS 2011 toolchain.

4-6 Debugging a program

A remote debugger is an extremely useful tool for an
embedded system developer. It can drastically decrease
development time. There is a way, described in Bradley
et al. (2011), to remotely debug A d a / C programs for the
NXT using the GNU debugger (GDB) and the ARM Em-
beddedlCE (In-circuit Emulator) technology. The ARM
EmbeddedlCE is a JTAG-based debugging channel avail­
able on the NXT.

http://dit.upm.es/rts/projects/mindstorms

5. VEHICLE PROTOTYPE

As proof of concept, a wired controlled vehicle based
on Bradley et al. (2010) with added speed control is
designed.

5.1 Vehicle overview

The first task is to establish the functionality of the model,
in this wired control vehicle with speed control.
This vehicle prototype has a front castor wheel to ease
turns and provide stability. It also has two back wheels,
each driven by an independent motor. Speed control of
these two motors guarantees the adequate motion of the
vehicle. To control the vehicle, a hardwired joystick, made
with a touch sensor to start/stop motion and a motor to
use its encoder to control turns, is used. Depending on the
angle of the joystick encoder, different speed commands
are sent to the back motors, thus controlling vehicle
motion, see Fig. 3.

touch
sensor

270°

back drive
wheels

Fig. 3. Wired controlled vehicle prototype.

5.2 Controller design

The purpose of adding a speed control feedback system is
to make the NXT able to follow a straight path. To do so,
a PID is designed and implemented for both of the back
motors. The NXT motor needs first to be characterised in
order to study the PID's behaviour on Simulink.

Transfer function According to Franklin et al. (2002) a
DC motor's transfer function between the voltage input
and the output speed, considering the relative effect of the
inductance negligible to the mechanical motion, has the
following equation:

n(s) _ K
V{S) TS+1

where K equals (2) and T equals (3). Being Kt the
torque constant, Ke the electric constant, R the electric

resistance, b the rotor's viscous friction coefficient and J
the rotor's inertia.

K
K =

bR + KtKe

RJ
bR + KtKK

(2)

(3)

The values used in this work (see Table 1) have been taken
from Ryo Watanabe & Philippe E. Hurbain (h t tp : //www.
philohome.com/nxtmotor/nxtmotor.htm) except for the
rotor's inertia that has been taken from Sanchez et al.
(2009).

Table 1. NXT motor values

Kt = 0.31739
Ke = 0.46839
R= 6.8562
b= 1.1278 X K T 3

J = 0.842 X 10-3

N - m / A
V•s / r ad

Q

N • m • s / r a d
Kg • m2

Note that, although the LEGO motors exhibit a slight
overshoot (Kim, 2011), for the purpose of this work it will
not be considered.

Simulink model A PID, actually a PI, control feedback
mechanism is used to control the motors speed. This closed
loop is implemented in Simulink to tune the PI and later
generate the functional C code for each of the back motors.
Figure 4 shows the Simulink model used. The PI receives
the difference between the desired voltage (represented by
a step function) and the actual voltage that is calculated
by multiplying the motor speed in rad/s (output of the
transfer function) by 57.2958 to obtain degrees/s and
then dividing the result by 116. This value, 116, has
proven to be the best approximation to obtain volts from
degrees/s on the NXT. The way the NXT determines the
speed of a motor is by dividing the difference between
two consecutive readings from the motor encoder by the
elapsed time between these consecutive readings. The
elapsed time will be close to the period of the task in charge
of executing the PI as long as deadlines are generally met.

voltage
step

Pl(s).
2.029

• -

0.037S+1

NXT Motor

Transfer Fen

voltage

Fig. 4. Speed control loop for NXT motor.

5.3 Real-time software architecture

(1) The vehicle application needs to address the following:

Control the speed of the two back motors using the
designed controller. Note that two controllers are
needed, one for each motor.

— Periodically read the encoder value of each back
motor to calculate the speed of the motors to feed
it back to the controllers.

— Periodically read the battery status to determine the
maximum speed in order to feed the controller the
correct input voltage.

— Periodically check the status of the joystick motor
encoder and touch sensor to determine the commands
to the motors.

— Periodically display updated information of the vehi­
cle's status on the LCD screen.

— Manage the communications between processor and
co-processor.

— Periodically check the status of the power button to
power-off the system.

These activities can be distributed in the following tasks:

— Control Task: This task is in charge of the speed
controllers and the vehicle commands given by the
joystick. It will basically start/stop motion, change
motor speeds to achieve turns and control the speed.
This task has to be executed periodically. To deter­
mine the period of the task some issues need to be
taken into consideration. For example, the period has
to be short enough to detect a human activated joy­
stick. If its too long not all start/stop drive orders will
be captured. At the same time, the period must be
long enough so that task deadlines are generally met.
Also, since the PI controller needs to be discretised
to work in an embedded environment it is important
to sample the motor speed quick enough to have a
correct response. A tenth of the transfer function's
time constant is used. Since T = 0.037, 4 ms are
initially used. This task will have a high priority.

— Co-processor Task: The co-processor task handles the
communication scheme between the ARM and the
AVR. This task must have, at the most, the period
of Control Task so that the speed controllers receive
feedback data on time (2 ms are initially used). This
task will have the highest priority.

— Status Task: This task gathers data to monitor the
controllers and displays it on screen every 500 ms.
This task has a low priority.

5.4 PI code generation

Once the controller has been discretised, tuned and sta­
bilised with the desired settling time (approx. 400 ms is
used with almost no overshoot) a new model with only the
discretised tuned PI, the voltage inputs and voltage output
of the PI is created (see Fig. 5). The feedback process is
handled outside this algorithm because the Ada drivers
API needs to be used to read the motors encoders and the
battery voltage. The C code is generated using this model.

Both input ports (input-voltage and reaLvoltage) and the
output port (corrected voltage) are declared as C external
variables. The way of integrating the C functional code
with the Ada applications is by means of these variables.
Therefore, they are defined in Ada and exported to C.

There are several issues when directing the Simulink
environment for code generation that are out of the scope
of this paper. However, it must be noticed that only the

nput_voltage 9 PI(z)T

PI Controller
corrected voltage

real_voltage

Fig. 5. Simulink model for code generation.

functional code of the controller is needed. The periodic
execution of this code is performed by an Ada task. No
tasking or sampling should happen inside the generated
code.

Note also that the NXT hardware does not include a
Floating-Point Unit (FPU). As a result, floating-point
operations are software emulated which is much slower
than integer operations. The use of floating-point numbers
should be kept to a minimum when designing Simulink
models for the NXT.

5.5 Software implementation

The Simulink code generation process outputs three files:
r twtypes.h which include specific ARM7 type definitions
and generic type definitions, funct ional . c which includes
the model step function functionaLstep (), and the asso­
ciated header file funct ional . h.

To implement the real-time architecture proposed in 5.3
three Ada compilation units are used: The main proce­
dure (vehicle.adb), a package declaration (tasks.ads) ,
and its body (tasks.adb). The Tasks package includes
two tasks (ControLTask, which calls functionaLstep , and
Display.Task), as well as some auxiliary functions. The
periodic task in charge of the co-processor communication
is part of the Ada NXT drivers and is declared in the NXT.
AVR package. This package must always be imported even
if its functions are not required. Therefore, an Ada with
clause to import NXT.AVR is added to the main program
to guarantee the execution of this task.

Listing 1 shows a fragment of t a s k s . ads containing the
declaration of tasks. When declaring a task, besides using
pragma Priority to establish the static priority, pragma
Storage_Size is used. The NXT has only 64 KB of RAM
memory and this pragma allows the programmer to allo­
cate the memory needed for the task stacks.

Listing 1. Specification of tasks.

task ControLTask is
pragma Priority

(System. Priority ' First + 2)
pragma Storage_Size (4096);

end ControLTask;

task Display_Task is
pragma Priority

(System. Priority ' First + 1)
pragma Storage_Size (4096);

end Display.Task;

As stated in 5.4, inputjvoltage, reaLvoltage and corrected
voltage are declared as external C variables. They must
be defined as Ada variables and made visible for the C
code. This is achieved using the compiler directive pragma
Export. Also, the C functionaLstep function must be made
visible so tha t ControLTask is able to call it periodically.
This is achieved using the compiler directive pragma
Import. Listing 2 shows how the above is accomplished.

Listing 2. Interface between Ada and C code.

Import functionaLstep from Simulink generated code

procedure PID;
pragma Import (C, PID, " func t ionaLs tep") ;

— Export inputs to Simulink generated code

type Externallnputs.functional is
record

lnput_Voltage : Float;
ReaLVoltage : Float;

end record;

FunctionaLU : Externallnputs_functional ;
pragma Export (C, FunctionaLU, " f unc t i onaLU") ;

— Export output to Simulink generated code

type ExternalOutputs.functional is
record

correctedvoltage : Float;
end record;

FunctionaLY : ExternalOutputs_functional ;
pragma Export (C, FunctionaLY, " f u n c t i o n a L Y ") ;

6. CONCLUSION & F U T U R E WORK

The real-time control platform described in the paper has
proved to be very useful for real-time control students.
The possibility of separating control design using Simulink
and concurrency and real-time aspects of a system, which
are best described using Ada, makes it simpler to carry
out laboratory projects, and has resulted in a shorter
learning time for the students. The platform is made
of comparatively low-cost components, which makes it
affordable for the academic environment.

Planned future developments include integrating schedu-
lability analysis tools, and providing feedback to Simulink
via Bluetooth in order to be able to analyse on-line the
performance of the designed control system. The MAT-
LAB/Simulink environment was used because our Univer­
sity has a corporative license but we also plan to study
other solutions with code generation capabilities.

The entire environment is intended to be use in the mat ter
of Real Time Systems of the new Computer Science Master
in compliance with the European Higher Education Area.
The students have not previous acknowledge in control
theory and we think tha t the use of this environment may

contribute to the integration of both fields in order to
properly build embedded systems.

REFERENCES
ALRM05 (2007). Ada Reference Manual ISO/IEC

8652:1995(E)/TC1(2000)/AMD1(2007). Available on
h t t p : / / w w w . a d a i c . c o m / s t a n d a r d s / a d a 0 5 . h t m l .

Bradley, P.J., de la Puente, J.A., and Zamorano, J. (2010).
Real-time system development in Ada using LEGO
MINDSTORMS NXT. Ada Letters, XXX(3), 37-40.
doi:http://doi.acm.org/10.1145/1879063.1879077. URL
h t t p : / / d o i . a c m . o r g / 1 0 . 1 1 4 5 / 1 8 7 9 0 6 3 . 1 8 7 9 0 7 7 .

Bradley, P.J., de la Puente, J.A., and Zamorano, J. (2011).
Ada user guide for LEGO MINDSTORMS NXT. Ada
User Journal, 32(3).

Burns, A., Dobbing, B., and Vardanega, T. (2004). Guide
for the use of the Ada Ravenscar profile in high integrity
systems. Ada Letters, XXIV, 1-74. doi :ht tp: / /doi .acm.
org/10.1145/997119.997120. URL h t t p : / / d o i . a c m .
o rg /10 .1145 /997119 .997120 .

Burns, A. and Wellings, A. (2009). Real-Time Systems and
Programming Languages. Addison-Wesley, 4th edition.

Crespo, A., Albertos, P., Balbastre, P., Valles, M.,
Lluesma, M., and Simo, J. (2006). Schedulability is­
sues in complex embedded control systems. In Com­
puter Aided Control System Design, 2006 IEEE Interna­
tional Conference on Control Applications, 2006 IEEE
International Symposium on Intelligent Control, 2006
IEEE, 1200 -1205. doi:10.1109/CACSD-CCA-ISIC.
2006.4776813.

de la Puente, J.A., Ruiz, J .F. , and Zamorano, J. (2000).
An open Ravenscar real-time kernel for GNAT. In H.B.
Keller and E. Plodereder (eds.), Reliable Software Tech­
nologies — Ada-Europe 2000, number 1845 in LNCS,
5-15. Springer-Verlag.

Franklin, G.F., Powell, J.D., and Emani-Naeini, A. (2002).
Feedback Control of Dynamic Systems. Prentice Hall,
Upper Saddle River, NJ, fourth edition.

Grega, W. and Pilat, A. (2008). Real-time control teaching
using LEGO MINDSTORMS NXT robot. In Computer-
Science and Information Technology, 2008. IMCSIT
2008. International Multiconference on, 625 -628. doi:
10.1109/IMCSIT.2008.4747308.

Kim, Y. (2011). Control systems lab using a LEGO
Mindstorms NXT motor system. IEEE Tr. Education,
54(3), 452 - 4 6 1 . doi:10.1109/TE.2010.2076284.

Sha, L., Rajkumar, R., and Lehoczky, J.P. (1990). Pri­
ority inheritance protocols: An approach to real-time
synchronization. IEEE Tr. on Computers, 39(9).

Sanchez, S., Rodriguez, O., and Arribas, T. (2009). Uti­
lization de LEGO NXT en docencia universitaria. Tech­
nical report, Universidad de Alcala. [in Spanish],

WG23-N0304 (2011). Vulnerability descriptions for the
language C ISO/ IEC J T C 1/SC 22 /WG 23 Program­
ming Language Vulnerabilities.

http://www.adaic.com/standards/ada05.html
http://doi.acm.org/10.1145/1879063.1879077
http://doi.acm.org/10.1145/1879063.1879077
http://doi.acm
http://doi.acm

