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Abstract: A set of software development tools for building real-time control systems on a 
simple robotics platform is described in the paper. The tools are being used in a real-time 
systems course as a basis for student projects. The development platform is a low-cost PC 
running GNU/Linux, and the target system is LEGO MINDSTORMS NXT, thus keeping the 
cost of the laboratory low. Real-time control software is developed using a mixed paradigm. 
Functional code for control algorithms is automatically generated in C from Simulink models. 
This code is then integrated into a concurrent, real-time software architecture based on a set 
of components written in Ada. This approach enables the students to take advantage of the 
high-level, model-oriented features that Simulink offers for designing control algorithms, and 
the comprehensive support for concurrency and real-time constructs provided by Ada. 
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1. INTRODUCTION 

Acquiring skills in real-time embedded systems program­
ming is a fundamental component in the education of 
control engineers. Indeed, most control systems are imple­
mented as real-time embedded computer systems. Progress 
in microprocessor technology has made it possible to em­
bed real-time control systems into all kinds of systems, 
from industrial equipment to cars, trains, aircraft, and 
consumer electronics. 

Model-based software development, e.g. as implemented 
by the Matlab® /Simulink® code generation facilities, have 
made it easier to develop program code for control algo­
rithms, and are now commonplace in all control engineer­
ing curricula. Modelling tools allow control engineers to 
design and test sophisticated control algorithms using a 
high-level, simulation-based approach, and then generate 
implementation code in some programming language (C 
is most common) that can run on an embedded computer 
platform. However, control algorithms are only a part of a 
complete embedded software system. Even comparatively 
simple embedded systems require some kind of operat­
ing system support for device input/output, concurrency 
and real-time control, and user interface, among others. 
Moreover, the interaction between real-time behaviour and 
control performance may give rise to unexpected problems 
when the final system is implemented (Crespo et al., 2006). 

Therefore, we believe that a course in real-time pro­
gramming, including such classical topics as concurrency, 
real-time scheduling and schedulability analysis, and in­
put/output device programming (see e.g. Burns and 

Wellings, 2009) is still needed as part of the control cur­
riculum. We have been teaching such a course at UPM for 
many years, using Ada (ALRM05) as the main program­
ming language. We chose Ada because of the comprehen­
sive support for reliable software engineering and native 
concurrency available. 

An important aspect of real-time programming courses 
is laboratory work. Finding real-time control applica­
tions that are at the same realistic enough and easy 
to use by students is not a simple task. Recently, 
LEGO®MINDSTORMS®has gained wide acceptance in 
different kinds of control-related laboratories (see e.g. 
Grega and Pilat, 2008; Kim, 2011), due to its versatility 
and availability as a low-cost robotics platform. In this 
paper we describe a programming environment for this 
platform that can be used to support a real-time embedded 
control systems course, including all critical concurrency 
and real-time scheduling aspects, while still being compat­
ible with high-level control algorithm design using Matlab 
and Simulink. The rest of the paper is organised as follows: 
section 2 introduces the LEGO MINDSTORMS NXT ar­
chitecture. Section 3 describes how to combine Ada and 
Simulink to develop real-time systems lab projects. The 
embedded software development toolchain is described in 
section 4. Section 5 describes an example of a student 
project for controlling the speed of a toy vehicle. Finally, 
some conclusions are drawn and plans for future work are 
sketched in section 6. 

2. LEGO MINDSTORMS NXT 

The LEGO MINDSTORMS NXT (from now on NXT) 
brings together the LEGO world with the digital world. It 
offers all kinds of LEGO bricks, gears and various other 
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parts together with a wide spectrum of sensors, motors, 
linear actuators, etc. The brain of the NXT is an embedded 
system, also called "Intelligent Brick". Figure 1 shows its 
block diagram. 
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Fig. 1. NXT block diagram. 

The Intelligent Brick is made up of a 32-bit ARM main 
processor (AT91SAM7S256) with 64 KB of RAM and 256 
KB Flash memory that runs at 48 MHz. The ARM proces­
sor benefits from an 8-bit AVR co-processor (ATmega48) 
that handles low-level tasks like A/D conversion of the 
inputs and PWM generation for the output ports. The 
communication between the two microcontrollers is set up 
as two memory regions that are updated by both micro­
controllers periodically. Notice that this communication 
period determines to a large extent the behaviour of the 
NXT. 

As for the software part of the Intelligent Brick, LEGO 
has released the NXT firmware as open source. Avail­
ability of the firmware code and hardware schematics has 
encouraged developers to release their own programming 
environments. Therefore, the NXT can be programmed 
from a host computer using languages such as C/C++, 
Java, Python, Ada, MATLAB, and many more. Also, 
development environments like Lab VIEW, Simulink and 
Microsoft Robotics Studio offer a model-based approach 
to program the NXT. 

3. ADA, SIMULINK AND THE NXT 

The purpose of this paper is to demonstrate how to 
fully develop the software of an embedded system so 
that students have a chance to experience the whole 
development process. This is, a feedback control system 
design, tuning and programming together with a real­
time software architecture that will support the concurrent 
execution of the controller on the NXT. 

As for the first part of the process, the feedback con­
trol system, the MATLAB/Simulink environment is used. 
There are many advantages when using this programming 
environment in control theory. A given controller can be 
modelled using the extensive block library and then tuned 

and tested. Furthermore, Simulink can discretise the con­
tinuous controller and generate its C code algorithm for 
embedded environments. 

For the second part of the process, the real-time software 
architecture, Ada is used instead of C. 

Although C is commonly used in embedded systems pro­
gramming, we consider that is not a good programming 
language to teach concurrency concepts. C relies on ex­
ternal system calls to a real-time operating system to 
provide concurrency and real-time features. The low-level 
nature of these operating system primitives diminishes 
concurrency concepts. There is also a large list of known C 
vulnerabilities (see WG23-N0304) that may be critical in 
high-integrity systems. Finally, C syntax can be confusing 
and error prone. 

On the other hand, the Ada programming language 
presents ideal features for embedded real-time program­
ming. Concurrency and real-time are part of the language, 
no external calls are required. These features enable using 
high-level concurrency abstractions like tasks, protected 
objects and synchronous message passing that ease pro­
gramming and avoid common pitfalls. It offers mechanisms 
to handle interrupts in a simple manner and also provides 
a clean and efficient way to interact with I/O registers and 
memory. Also, Ada's strong typing and run-time checking 
significantly reduces programming errors. 

Ada offers mechanisms to interface with other languages. 
The controller C code generated by Simulink can be in­
cluded in the Ada software architecture using standard 
compiler directives and libraries. This is shown in sec­
tion 5.5. 

Predictable behaviour of systems is one of the key goals 
of real-time development. This property is binding to 
ensure a hard real-time system meets its deadlines. By 
enforcing the Ravenscar Profile (Burns et al., 2004) on 
NXT applications, we can be certain that the outcome of 
any NXT application is predictable and a schedulability 
analysis can be performed. 

The Ravenscar profile is a collection of restrictions to 
the Ada tasking model. This profile is restricted to a 
fixed priority and pre-emptive scheduling, i.e. the run-time 
scheduler ensures that at any given time, the processor 
executes the highest priority task of all those tasks that 
are currently ready to be executed. Also, the Immediate 
Ceiling Priority Protocol (ICPP) (Sha et al., 1990) is 
enforced by the Ravenscar profile. This means that when 
a task locks a resource, its priority is temporarily raised so 
that no task that may lock the resource can be scheduled. 
Thus, priority inversion due to task communication is 
minimized and bounded. More information can be found 
in ALRM05, Annex D. 

4. ENVIRONMENT DESCRIPTION 

4-1 Overview 

The embedded software for the NXT is developed on a 
GNU/Linux x86 host computer. The set of tools required 
and the process to build an NXT application on the host 
computer is explained in this section. 
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Fig. 2. Executable generation process for NXT. 

If..2 Controller Design 

As established previously, Simulink is used to design a 
feedback controller for the NXT. Besides the Simulink 
environment, a couple of its toolboxes are used. In order 
to translate the controller to C code for the ARM main 
processor of the NXT the Embedded Coder is needed. 

4-3 Cross-compiler toolchain 

A cross-compiler toolchain is a set of tools (essentially 
a compiler, an assembler and a linker) tha t generate 
executable code for a platform, in this case the NXT, 
other than the one on which the tools run, in this case 
GNU/Linux x86. Cross-compiler tool chains are used to 
compile code for a platform upon which it is not feasible 
to do such compiling. 

AdaCore has ported the GNAT compiler toolchain to the 
ARM architecture by adapting part of the LEON-based 
Open Ravenscar Real-Time Kernel, O R K + (de la Puente 
et al., 2000). The result is the GNAT GPL for MIND-
STORMS cross-compiler toolchain which is available, at 
the time of writing, only for Windows platforms. The 2011 
version tha t has been used for this project has been ported 
to a GNU/Linux x86 host by the STRAST research group 
from Universidad Politecnica de Madrid . 2 

4-4 Run-time system and Drivers 

The GNAT GPL for LEGO MINDSTORMS NXT 2011 
cross-compiler toolchain relies on a Ravenscar small foot­
print run-time system (Ravenscar SFP) . This means that 
2 Available from dit.upm.es/rts/projects/mindstorms. 

Ada applications for the NXT should comply with the 
Ravenscar profile for tasking purposes. 

The NXT drivers developed by AdaCore are completely 
coded in Ada. These drivers allow Ada applications to 
manage the NXT peripherals. 

4-5 Compiling a program 

To generate an executable NXT file from an Ada appli­
cation the GNAT cross-toolchain needs first to compile 
and then link to RAM the resulting object code using 
a linker script. The code tha t needs to be compiled is 
the Simulink controller C code, the real-time software 
architecture Ada code, the Ada NXT required drivers, the 
run-time system which includes Ada, C and assembly code 
and the elaboration code generated by the GNAT binder, 
see Fig. 2. 

To accomplish all of this, a GNU make script is in charge 
of calling the different tools of the GNAT GPL for MIND-
STORMS 2011 toolchain. 

4-6 Debugging a program 

A remote debugger is an extremely useful tool for an 
embedded system developer. It can drastically decrease 
development time. There is a way, described in Bradley 
et al. (2011), to remotely debug A d a / C programs for the 
NXT using the GNU debugger (GDB) and the ARM Em-
beddedlCE (In-circuit Emulator) technology. The ARM 
EmbeddedlCE is a JTAG-based debugging channel avail­
able on the NXT. 

http://dit.upm.es/rts/projects/mindstorms


5. VEHICLE PROTOTYPE 

As proof of concept, a wired controlled vehicle based 
on Bradley et al. (2010) with added speed control is 
designed. 

5.1 Vehicle overview 

The first task is to establish the functionality of the model, 
in this wired control vehicle with speed control. 
This vehicle prototype has a front castor wheel to ease 
turns and provide stability. It also has two back wheels, 
each driven by an independent motor. Speed control of 
these two motors guarantees the adequate motion of the 
vehicle. To control the vehicle, a hardwired joystick, made 
with a touch sensor to start/stop motion and a motor to 
use its encoder to control turns, is used. Depending on the 
angle of the joystick encoder, different speed commands 
are sent to the back motors, thus controlling vehicle 
motion, see Fig. 3. 
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Fig. 3. Wired controlled vehicle prototype. 

5.2 Controller design 

The purpose of adding a speed control feedback system is 
to make the NXT able to follow a straight path. To do so, 
a PID is designed and implemented for both of the back 
motors. The NXT motor needs first to be characterised in 
order to study the PID's behaviour on Simulink. 

Transfer function According to Franklin et al. (2002) a 
DC motor's transfer function between the voltage input 
and the output speed, considering the relative effect of the 
inductance negligible to the mechanical motion, has the 
following equation: 

n(s) _ K 
V{S) TS+1 

where K equals (2) and T equals (3). Being Kt the 
torque constant, Ke the electric constant, R the electric 

resistance, b the rotor's viscous friction coefficient and J 
the rotor's inertia. 

K 
K = 

bR + KtKe 

RJ 
bR + KtKK 

(2) 

(3) 

The values used in this work (see Table 1) have been taken 
from Ryo Watanabe & Philippe E. Hurbain (h t tp : //www. 
philohome.com/nxtmotor/nxtmotor.htm) except for the 
rotor's inertia that has been taken from Sanchez et al. 
(2009). 

Table 1. NXT motor values 

Kt = 0.31739 
Ke = 0.46839 
R= 6.8562 
b= 1.1278 X K T 3 

J = 0.842 X 10-3 

N - m / A 
V•s / r ad 

Q 

N • m • s / r a d 
Kg • m2 

Note that, although the LEGO motors exhibit a slight 
overshoot (Kim, 2011), for the purpose of this work it will 
not be considered. 

Simulink model A PID, actually a PI, control feedback 
mechanism is used to control the motors speed. This closed 
loop is implemented in Simulink to tune the PI and later 
generate the functional C code for each of the back motors. 
Figure 4 shows the Simulink model used. The PI receives 
the difference between the desired voltage (represented by 
a step function) and the actual voltage that is calculated 
by multiplying the motor speed in rad/s (output of the 
transfer function) by 57.2958 to obtain degrees/s and 
then dividing the result by 116. This value, 116, has 
proven to be the best approximation to obtain volts from 
degrees/s on the NXT. The way the NXT determines the 
speed of a motor is by dividing the difference between 
two consecutive readings from the motor encoder by the 
elapsed time between these consecutive readings. The 
elapsed time will be close to the period of the task in charge 
of executing the PI as long as deadlines are generally met. 
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Fig. 4. Speed control loop for NXT motor. 

5.3 Real-time software architecture 

(1) The vehicle application needs to address the following: 

Control the speed of the two back motors using the 
designed controller. Note that two controllers are 
needed, one for each motor. 



— Periodically read the encoder value of each back 
motor to calculate the speed of the motors to feed 
it back to the controllers. 

— Periodically read the battery status to determine the 
maximum speed in order to feed the controller the 
correct input voltage. 

— Periodically check the status of the joystick motor 
encoder and touch sensor to determine the commands 
to the motors. 

— Periodically display updated information of the vehi­
cle's status on the LCD screen. 

— Manage the communications between processor and 
co-processor. 

— Periodically check the status of the power button to 
power-off the system. 

These activities can be distributed in the following tasks: 

— Control Task: This task is in charge of the speed 
controllers and the vehicle commands given by the 
joystick. It will basically start/stop motion, change 
motor speeds to achieve turns and control the speed. 
This task has to be executed periodically. To deter­
mine the period of the task some issues need to be 
taken into consideration. For example, the period has 
to be short enough to detect a human activated joy­
stick. If its too long not all start/stop drive orders will 
be captured. At the same time, the period must be 
long enough so that task deadlines are generally met. 
Also, since the PI controller needs to be discretised 
to work in an embedded environment it is important 
to sample the motor speed quick enough to have a 
correct response. A tenth of the transfer function's 
time constant is used. Since T = 0.037, 4 ms are 
initially used. This task will have a high priority. 

— Co-processor Task: The co-processor task handles the 
communication scheme between the ARM and the 
AVR. This task must have, at the most, the period 
of Control Task so that the speed controllers receive 
feedback data on time (2 ms are initially used). This 
task will have the highest priority. 

— Status Task: This task gathers data to monitor the 
controllers and displays it on screen every 500 ms. 
This task has a low priority. 

5.4 PI code generation 

Once the controller has been discretised, tuned and sta­
bilised with the desired settling time (approx. 400 ms is 
used with almost no overshoot) a new model with only the 
discretised tuned PI, the voltage inputs and voltage output 
of the PI is created (see Fig. 5). The feedback process is 
handled outside this algorithm because the Ada drivers 
API needs to be used to read the motors encoders and the 
battery voltage. The C code is generated using this model. 

Both input ports (input-voltage and reaLvoltage) and the 
output port (corrected voltage) are declared as C external 
variables. The way of integrating the C functional code 
with the Ada applications is by means of these variables. 
Therefore, they are defined in Ada and exported to C. 

There are several issues when directing the Simulink 
environment for code generation that are out of the scope 
of this paper. However, it must be noticed that only the 

nput_voltage 9 PI(z)T 

PI Controller 
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real_voltage 

Fig. 5. Simulink model for code generation. 

functional code of the controller is needed. The periodic 
execution of this code is performed by an Ada task. No 
tasking or sampling should happen inside the generated 
code. 

Note also that the NXT hardware does not include a 
Floating-Point Unit (FPU). As a result, floating-point 
operations are software emulated which is much slower 
than integer operations. The use of floating-point numbers 
should be kept to a minimum when designing Simulink 
models for the NXT. 

5.5 Software implementation 

The Simulink code generation process outputs three files: 
r twtypes.h which include specific ARM7 type definitions 
and generic type definitions, funct ional . c which includes 
the model step function functionaLstep (), and the asso­
ciated header file funct ional . h. 

To implement the real-time architecture proposed in 5.3 
three Ada compilation units are used: The main proce­
dure (vehicle.adb), a package declaration ( tasks.ads) , 
and its body (tasks.adb). The Tasks package includes 
two tasks (ControLTask, which calls functionaLstep , and 
Display.Task), as well as some auxiliary functions. The 
periodic task in charge of the co-processor communication 
is part of the Ada NXT drivers and is declared in the NXT. 
AVR package. This package must always be imported even 
if its functions are not required. Therefore, an Ada with 
clause to import NXT.AVR is added to the main program 
to guarantee the execution of this task. 

Listing 1 shows a fragment of t a s k s . ads containing the 
declaration of tasks. When declaring a task, besides using 
pragma Priority to establish the static priority, pragma 
Storage_Size is used. The NXT has only 64 KB of RAM 
memory and this pragma allows the programmer to allo­
cate the memory needed for the task stacks. 

Listing 1. Specification of tasks. 

task ControLTask is 
pragma Priority 

(System. Priority ' First + 2) 
pragma Storage_Size (4096); 

end ControLTask; 

task Display_Task is 
pragma Priority 

(System. Priority ' First + 1) 
pragma Storage_Size (4096); 

end Display.Task; 



As stated in 5.4, inputjvoltage, reaLvoltage and corrected 
voltage are declared as external C variables. They must 
be defined as Ada variables and made visible for the C 
code. This is achieved using the compiler directive pragma 
Export. Also, the C functionaLstep function must be made 
visible so tha t ControLTask is able to call it periodically. 
This is achieved using the compiler directive pragma 
Import. Listing 2 shows how the above is accomplished. 

Listing 2. Interface between Ada and C code. 

Import functionaLstep from Simulink generated code 

procedure PID; 
pragma Import (C, PID, " func t ionaLs tep" ) ; 

— Export inputs to Simulink generated code 

type Externallnputs.functional is 
record 

lnput_Voltage : Float; 
ReaLVoltage : Float; 

end record; 

FunctionaLU : Externallnputs_functional ; 
pragma Export (C, FunctionaLU, " f unc t i onaLU" ) ; 

— Export output to Simulink generated code 

type ExternalOutputs.functional is 
record 

correctedvoltage : Float; 
end record; 

FunctionaLY : ExternalOutputs_functional ; 
pragma Export (C, FunctionaLY, " f u n c t i o n a L Y " ) ; 

6. CONCLUSION & F U T U R E WORK 

The real-time control platform described in the paper has 
proved to be very useful for real-time control students. 
The possibility of separating control design using Simulink 
and concurrency and real-time aspects of a system, which 
are best described using Ada, makes it simpler to carry 
out laboratory projects, and has resulted in a shorter 
learning time for the students. The platform is made 
of comparatively low-cost components, which makes it 
affordable for the academic environment. 

Planned future developments include integrating schedu-
lability analysis tools, and providing feedback to Simulink 
via Bluetooth in order to be able to analyse on-line the 
performance of the designed control system. The MAT-
LAB/Simulink environment was used because our Univer­
sity has a corporative license but we also plan to study 
other solutions with code generation capabilities. 

The entire environment is intended to be use in the mat ter 
of Real Time Systems of the new Computer Science Master 
in compliance with the European Higher Education Area. 
The students have not previous acknowledge in control 
theory and we think tha t the use of this environment may 

contribute to the integration of both fields in order to 
properly build embedded systems. 
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