

Imdea

MaterialsImage: Constraint of the constra

I. Martin-Bragado¹, A. Rivera², G. Valles², MJ Caturla³

¹ Institute IMDEA Materials, Madrid, Spain

² Instituto de Fusión Nuclear (UPM), Madrid, Spain

³ Universidad de Alicante, Alicante, Spain

www.materials.imdea.org

Outline

- Why new code?
- The KMC algorithm & Object KMC: Rates
- - Implementation
 - Physical mechanisms

 - - Isochronal annealing of a-Fe
 - Annealing of implanted defects in Si
 - Evolution of damage in W
 - Conclusions

indea materials Why developing new code?

- Kinetic models must reach high irradiation doses for very complex systems
 - Point defects and impurities
 - Extended defects, dislocations
 - Clusters (with helium, carbon...)
- So far there are no easy available "standard" KMC simulators.
- There is a need for efficiency and flexibility.

ignacio.martin@imdea.org

imdea.org

materials.

dea

Object KMC: Rates

- All different rates are assume to be produced by a prefactor and an activation energy
- The activation energy is computed as the difference in formation energies between final and initial states plus a barrier (typically a migration energy)

 $E_{ij} = E_j^f - E_i^f + E_{ij}^b$ $r_{ij} = P_{ij} \times \exp(-E_{ij}/k_B T)$

dea

Development ideas

- Modular: Possibility for Object KMC, Lattice KMC and maybe others.
- Versatile and flexible: Build on top of Tcl scripting language.
- Efficient and modern: Written using Object Oriented Methodologies in C++
- Professional development, debugging, profiling and testing
- User oriented: Customizable through input files rather than code changes.

MMonCa: Implementation

- Four main areas: space, time, user interfaces and defects
- Defects belong to 5 categories: Extended Defects (ED), Mobile Particles (MP), Multi Clusters (MC), IV Damage (IV) and Interfaces (Int).

OKMC mechanisms

Diffusion

dea

- I, V, C, He, ...
- He_nV_m, ...
- I_n, V_m, ...
- Cluster emission
 - $He_nV_m \leftrightarrow He_{n-1}V_{m-1} + HeV$
 - $He_nV_m \leftrightarrow He_{n-1}V_m + He$
 - $He_nV_m \leftrightarrow He_nV_{m-1} + V$
 - $He_nV_m \leftrightarrow He_{n-1}V_{m+1} + I$
- Very complex clusters
 - $He_nC_mV_0 \leftrightarrow He_nC_{m-1}V_0 + C$

Extended defects

- $|_{n} \leftrightarrow |_{n-1} + |$
- $I_n(A) \leftrightarrow I_n(B)$
- I_n + Trap (mobile) ↔ I_n Trapped (immobile)
- Damage
 - $I_n V_m \rightarrow I_{n-1} V_{m-1}$
- Interfaces
 - $MP^A + A/B \leftrightarrow MP(A/B) \leftrightarrow MP^B +$ A/B
 - MP + A/B \leftrightarrow A/B
 - ED + A/B ↔ A/B
 - MC + A/B ↔ A/B
 - Int \rightarrow Int + I COSIRES 2012. June 29th

Flexibility in MMonCa

IDEA: The **tcl** language is used to allow flexibility.

- User defined:

User defined:
The material structure (full 3D)
All the clusters and extended defect rates
Reactions, using wildcards
Default parameters can be overwritten in the input file: self-contained

9

```
array<string,string> interactions {
 He*+Hei true
 He*+V true
 He*+Gas true
 C*I*+I true
 C*V*+V true
```

```
proc migrate { size } {
 if { $size == 2 } { return "8.2e-3 0.42" }
 if { $size == 3 } { return "8.2e-3 0.43" }
 if { $size == 4 } { return "8.2e-3 0.43" }
 set pref [expr 3.5e-4+1.7e-3/pow($size,1.7)]
 set ener [expr 0.06+ 0.11/pow($size,1.6)]
 return "$pref $ener"
```

```
proc material { x y z } {
    if { $x < 0 } { return "Copper" }
    return "Niobium"
```

	a																	
Period	als	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be							/				5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg						_					13 Al	14	15	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co		29	30	31 Ga	2 Ge	33 As		35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh		47 Ag	48 Cd	49 In	50 Sn	SD Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	7X Ir		79 Au	80 Hg	81 Tl	Pb	83	4 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
	La	nthan	ides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		Actin	ides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Isochronal annealing of α -Fe

institute

The and resistivity Defects and resistivity recovery during α-Fe annealing

ndea.org

materials.

- Simulated isochronal annealing of 2e-4 dpa irradiated Fe.
- Excellent agreement with experiments¹ and simulations.^{2,3}

 ¹ Takaki et al. Radiation Effects 79, 87 (1983)
 ² Fu et al. Nature materials 4, 68 (2005)
 ³ Ortiz and Caturla. Phys. Rev. B 75, 1884101 (2007)

COSIRES 2012. June 29th

indea Defect population evolution during annealing of α -Fe

a) 107 K

imdea.org

www.materials.

c) 186 K

d) 277 K

15

20

25

30

b) 146 K

12

COSIRES 2012. June 29th

 $-10^{15202530}$

Annealing of implanted defects in silicon

dea

materials

Interstitial evolution in damaged Si

- Interstitial supersaturation [I]/[I*] after a 40 keV, 2e13 cm-2 Si into Si implant annealed at different temperatures.
- Excellent agreement with experimental¹ results and previous simulations.²

¹ Cowern et al. Phys. Rev. Lett. 82, 4460 (1999)
² Martin-Bragado et al. Solid-State Electronics 52, 1430 (2008)

COSIRES 2012. June 29th

macroup a	- 8-	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg											13	14 Si	15 P	16	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	Co	28 Ni		30 Zn	/ /	32 Ge	33 As	4 5e	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	À	48 Cd	9 In	9	51 S	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hç	81 Tl	,		84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	·	113 Uut	11 Fl	5 	116 Lv	117 Uus	118 Uuo
										·1								<u> </u>
	Lar	nthan	ides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		Actin	ides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
	E	Ξv	0\	lu	ti	0	1	O	F (Sc	n	าอ	a	e	ir	ר		

Evolution of damage in tungsten

MMonCa parametrization¹

	Particle	es	Clusters	•	Clusters	
Mobile	He V		Hen Va		• Po	
			In		• En	
Immobile			HenVm		• Mig	
	C (as tr	rans for V I)	HenIn CVn CIn		• Mię	
	0 (43 1			٠	The par calculat	
		Нез		ouround		
Epot		-2.39 eV				
Emission p	oref.	9.9856e-4 c				
(He3 → He2	2+He)			1 с	Rocanar	
Emig		0.05 eV		403, 75 (2		
Migration p	oref.	9.9856e-6 c	² M. Hou 89 (2010)			

- Clusters defined by:
 - Potential energy
 - Emission prefactor
 - Migration prefactor
 - Migration energy
- The particle-cluster binding energy is calculated by MmonCa

Becquart et al. J. Nucl. Mater. 403, 75 (2010) M. Hou et al. J. Nucl. Mater. 403, 39 (2010)

MMonCa simulation¹

- Two implantations:
 - Sub-threshold at 400 eV (only He implantation)
 - Above-threshold at 3 KeV (He and FP implantation)
 - Irradiated at 5K
 - We followed the Marlowe implantation carried out by Becquart et al.
- Isochronal annealing for 60 s every 2K
- Simulation box: 317x126x126 nm³

 ¹ Becquart et al. J. Nucl. Mater. 403, 75 (2010)
 ² M. Hou et al. J. Nucl. Mater. 403, 89 (2010)

MMonCa simulations Under-threshold

MMonCa simulations Above-threshold

In the simulations:

- Interstitial/interstitial clusters move in 3D
- Capture radii not depends on the object

ignacio.martin@imdea.org

COSIRES 2012. June 29th

mdea.org 5 5 materi WWW.