
Introducing Usability in a Conceptual Modeling-Based 
Software Development Process 

Jose Ignacio Panach Navarrete1, Natalia Juristo Juzgado2, and Oscar Pastor3 

1 Universitat de Valencia 
Escola Tecnica Superior d'Enginyeria, Departament d'Informatica 

Vicent Andres Estelles, s/n 46100 Burjassot, Valencia, Spain 
j oigpana@uv.es 

2 Universidad Politecnica de Madrid 
Campus de Montegancedo, 28660 Boadilla del Monte, Madrid, Spain 

natalia@fi.upm.es 
Universitat Politecnica de Valencia 

Centro de Investigation en Metodos de Production de Software, 
Camino de Vera s/n, 46022 Valencia, Spain 

opastorSpros.upv.es 

Abstract. Usability plays an important role to satisfy users' needs. There are 
many recommendations in the HCI literature on how to improve software usa­
bility. Our research focuses on such recommendations that affect the system 
architecture rather than just the interface. However, improving software usabili­
ty in aspects that affect architecture increases the analyst's workload and devel­
opment complexity. This paper proposes a solution based on model-driven 
development. We propose representing functional usability mechanisms ab­
stractly by means of conceptual primitives. The analyst will use these primitives 
to incorporate functional usability features at the early stages of the develop­
ment process. Following the model-driven development paradigm, these fea­
tures are then automatically transformed into subsequent steps of development, 
a practice that is hidden from the analyst. 

Keywords: Model-Driven-Development, Usability, Conceptual Model. 

1 Introduction 

Historically, many SE authors have considered usability as a non-functional require­
ment. Recently, however, some authors have identified several usability features 
strongly related to functionality [4]. These features do not only affect interfaces but 
also architecture, and are hard to deal with if they are not considered from the early 
stages of development. Incorporating usability from requirements elicitation is not for 

mailto:oigpana@uv.es
mailto:natalia@fi.upm.es


free. Generating usable software has a number of unwanted collateral impacts: in­
creased complexity [4]; increased cost; increased maintenance difficulty [5]. 

To mellow these effects we propose including functional usability features in a 
model-driven development (MDD) software process. If usability is considered from 
the early stages of development, it can be included in an MDD method and benefit 
from the advantages of the MDD paradigm [11]. MDD claims that developers should 
focus their efforts on building a conceptual model, then the system is implemented by 
means of transformation rules that can be automated [8]. If we study other works in 
the literature, we find very few proposals to deal with usability features in an MDD 
method. Moreover, when it is discussed, very few precise details are given, which 
makes it difficult to understand how these approaches could work correctly in practic­
al settings. Examples of these works have been developed by Tao [12] and Raneburg-
er [10]. From our point of view, usability is as important as functional requirements, 
and therefore MDD methods should provide a mechanism to abstractly represent usa­
bility. In the following, we explain how we propose including usability features with 
functional involvement in an MDD method. 

The paper is structured as follows. Second section describes our proposal for add­
ing usability features to an MDD method. Third section discusses an experiment to 
evaluate user satisfaction improvement applying our proposal. Finally, Fourth section 
presents some conclusions. 

2 Incorporating Usability Functionalities in a Model-Driven 
Development Method 

Human-Computer Interaction literature provides many different recommendations to 
improve the usability of a software system. In [4], authors present three groups of 
recommendations: (1) Usability recommendations with impact on the user interface; 
(2) Usability recommendations with impact on the development process; (3) Usability 
recommendations with impact on the architectural design. These last recommenda­
tions involve building certain functionalities into the software to improve user-system 
interaction. This set of usability recommendations is referred to as functional usability 
features. Examples of these features are providing undo and feedback facilities. A big 
amount of rework is needed to include these features in a software system unless they 
are considered from the first stages of the software development process [1]. More­
over, their inclusion from the first steps of the development process increases the 
complexity of the software development. To minimize the problems of including 
usability features with impact on the architecture, we aim to incorporate them in an 
MDD method. This way, we benefit from the advantages of the MDD paradigm [11]. 
Our approach is divided into four steps: 

1. Identify the possible use ways of each usability functionality. 
2. Identify the properties that configure each use way. 
3. Define conceptual primitives to abstractly represent the use way properties. 
4. Describe the changes that must be made to the model compiler to generate code. 



First and second steps are based on interaction patterns and usability guidelines that 
define how to deal with functional usability features. From all the existing works in 
the literature, we have chosen a list of usability recommendations called Functional 
Usability Features (FUFs) [4] as illustrative example to apply our proposal. Each 
FUF was defined with a main objective that can be specialized into more detailed 
goals we named mechanisms. The list of FUFs and their mechanisms are shown in [4, 
7]. We focus our example on the usability mechanism called Structured Text Entry, 
which belongs to User Input Error Prevention FUF. We select this mechanism be­
cause its goal —help the user when the system only accepts inputs in a specific format-
- is simple enough to allow its presentation in a couple of pages. As MDD method to 
include Structured Text Entry, we have selected OO-Method [9]. The OO-Method has 
been successfully implemented in industry (INTEGRANOVA [1]). The analyst does 
not have to implement any code because all the code is automatically generated from 
a conceptual model by means of a model compiler. Next, we explain the steps of our 
proposal to include Structured Text Entry in OO-Method. 

2.1 Identification of Use Ways 

Each functional usability feature can achieve its goal in different means. We have 
called each such mean Use Way (UW). Each UW has a specific target to achieve as 
part of the overall goal of the usability feature. We propose deriving UWs from exist­
ing works in the literature (interaction patterns and usability guidelines), such as 
FUFs. In FUFs list, each mechanism is defined with a set of questions to identify 
usability requirements. Regarding our proposal, these questions can be used to identi­
fy UWs. If we focus on the Structured Text Entry mechanism, we identify three UWs: 

• Specify the input widget visualization type (UW1): This UW aims to specify the 
format of the input widget to help the user and it is derived from the usability me­
chanism question, Which is the format of input arguments? 

• Mask definition (UW2): This UW aims to stop the user from entering data that is 
not in a valid format and it is derived from the usability mechanism question, What 
guidance should the user receive to enter the input in the required format? 

• Default values (UW3): This UW aims to provide the user with guidance on which 
format to use to enter data and it is derived from the same question as UW2. 

2.2 Identification of Properties 

We have called the different UW configuration options to satisfy usability functionali­
ties as Properties. In this second step, we identify properties also from the questions 
used in the usability mechanism definition. Focusing on the UWs derived from Struc­
tured Text Entry, we have identified the following properties: 

• UW1 has only one property: Type of input widget (UW1_P1). This property aims 
to define how the user will visualize input arguments and it has been derived from 
the mechanism question, which is the format of input arguments? 



• UW2 has two properties: Widget selection (UW2_P1): This property aims to 
specify the widgets that need a mask and it has been derived from the mechanism 
question, which widgets require a specific format for their datal. Regular expres­
sion (UW2_P2): This property aims to define the regular expression that specifies 
the mask and it has been derived from the mechanism question, which is the re­
quired format for the widget? 

• UW3 has two properties: Widget selection (UW3_P1): This property aims to 
specify the widgets that need a default value and it has been derived from the 
mechanism question, which widgets require a default value? Definition of the de­
fault value (UW3_P2): This property aims to define the default value and it has 
been derived from the mechanism question, which is the required default value? 

2.3 Definition of Conceptual Primitives 

The conceptual model of the MDD method needs to be enriched to support the UWs. 
This step involves verifying whether or not there are already conceptual primitives in 
the MDD method that represent a property. If there is no conceptual primitive already 
to represent a property, the conceptual model needs to be expanded to ensure the re­
quired expressiveness. In order to include UW1_P1 property in OO-Method, we need 
to enrich the OO-Method conceptual model with new primitives that represent the 
different widget types. For example, a numbered list can be represented with a Com-
boBox or with a RadioButton. UW2 and UW3 are already supported by the OO-
Method conceptual model and they do not involve new conceptual primitives. 

2.4 Changes in the Model Compiler 

The changes in the model compiler aim to implement the code derived from new 
conceptual primitives. These changes involve adding new attributes, services and 
classes in the generated code. In our example, the only change to be made to the mod­
el compiler is to include Specify the input widgets visualization type (UW1). This 
change has the aim of generating the code that implements the type of widget speci­
fied by means of conceptual primitives. 

3 A Lab Evaluation 

We have carried out an empirical evaluation with 66 subjects using a Web application 
for car rental. The users of this system are the employees of offices all over the world. 
This Web application has been fully developed using INTEGRANOVA [1]. The UWs 
not supported by INTEGRANOVA were manually included in the generated code. 
We included a total of 7 UWs. The aim of this evaluation is to study whether or not 
the end-user perceives the benefits of including UWs in the system. If the answer is 
positive, the effort to include UWs in an MDD method is justified, since UWs will 
improve the end-users' approval of the software. We divided the experimental sub­
jects into two groups: subjects that interact with the system without UWs and subjects 
that interact with the system including several UWs. 



We identified the following null hypotheses: 

• Hl0: The satisfaction for the users that interact with UWs is the same as the satis­
faction for users that interact without UWs. 

• H20: The time for the users that interact with UWs is the same as the time for users 
that interact without UWs. 

There are two response variables [3] in the experiment. One variable is called user 
satisfaction level. This variable measures whether or not the user is satisfied with the 
interaction and it is measured by means of a five-point Likert-scale questionnaire. The 
other variable is time to finish the tasks. This variable measures how long it takes the 
user to perform the experimental tasks. This is measured timing the seconds needed to 
finish the tasks. There are two factors [3] in the experiment. One factor is use of UWs. 
This factor involves studying the Web application with UWs and without them. The 
other factor is previous experience of applications generated with INTEGRANOVA. 
We combined both factors across the subjects to see how they affect the response 
variables. 

We had 22 subjects with experience in INTEGRANOVA; 11 interacted with UWs 
and other 11 without UWs. We had 44 subjects without experience in 
INTEGRANOVA; 22 interacted with UWs and other 22 interacted without UWs. We 
analyzed the data using two methods: ANOVA and box and whisker plots. First, the 
ANOVA results show that the satisfaction of subjects strongly depends on using UWs 
(p-value=0,001 for most studied UWs). Moreover, the ANOVA analysis shows that 
there is no relationship between: (1) User satisfaction level and previous experience 
of applications generated with INTEGRANOVA (p-value=0.558 for most studied 
UWs); (2) Time to finish the tasks and use of UWs (p-value=0.628); (3) Time to finish 
the tasks and previous experience of applications generated with INTEGRANOVA (p-
value=0.057). Second, the box and whiskers plots illustrate the median and quartile 
for both response variables (user satisfaction level and time to finish tasks). Figure la 
shows the plot that compares user satisfaction level when using and not using the Use 
Way called Warning message (UW_W1). Figure lb shows the box and whisker plot 
for time to finish the tasks with reference to the use of UWs factor. 

Q 

?, 
i 1500-
tt 

s 
i 1000-

SATISFACTION 

Fig. 1. a) Box and whisker plot for user satisfaction level with and without UW_W1 b) Box 
and whisker plot for time to finish the tasks with and without UWs 



According to our analysis, we state that UWs generally improve user satisfaction. 
Moreover, satisfaction does not depend on experience in the use of INTEGRANOVA 
applications. So, we reject the hypothesis Hl0. With regard to the time hypothesis 
(H20), the analysis shows that time is independent of interacting with or without UWs. 
Moreover, there is no difference between the time of the experts in INTEGRANOVA 
applications and beginners. 

4 Conclusions 

In this paper, our aim is to incorporate functional usability features into an MDD 
process, benefiting from the MDD advantages and minimizing manual implementa­
tions. The method we propose can be easily applied to other MDD methods than 
OO-Method. Use ways and properties can be directly applied to other methods; while 
the conceptual primitives and the changes in the model compiler depend on a specific 
MDD method, since conceptual model and model compiler are exclusive of a MDD 
method. The difficulty of applying our proposal to other MDD methods depends on 
the expressiveness of their conceptual models. OO-Method has an Interaction Model, 
which facilitates the inclusion of new conceptual primitives to represent interaction 
features. However, MDD methods with less expressiveness to deal with interaction 
would require adding more conceptual primitives to represent UWs. 

References 

1. Bass, L., John, B.: Linking usability to software architecture patterns through general sce­
narios. The Journal of Systems and Software 66, 187-197 (2003) 

2. CARE Technologies S.A, h t t p : //www. c a r e - t . com 
3. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Springer (2001) 
4. Juristo, N., Moreno, A., Sanchez, M.I.: Analysing the impact of usability on software de­

sign. Journal of Systems and Software 80, 1506-1516 (2007) 
5. Lawrence, B., Wiegers, K., Ebert, C: The top risk of requirements engineering. IEEE 

Software 18, 62-63 (2001) 
6. List of FUFs, http: //hci . dsic .upv . es/FUF/FUFList .html 
7. Mellor, S.J., Clark, A.N., Futagami, T.: Guest Editors' Introduction: Model-Driven Devel­

opment. IEEE Software 20, 14-18 (2003) 
8. Pastor, O., Gomez, J., Insfran, E., Pelechano, V.: The OO-method approach for informa­

tion systems modeling: from object-oriented conceptual modeling to automated program­
ming. Information Systems 26, 507-534 (2001) 

9. Raneburger, D., Popp, R., Kavaldjian, S., Kaindl, H., Falb, J.: Optimized GUI Generation 
for Small Screens. In: Hussmann, H., Meixner, G., Zuehlke, D. (eds.) Model-Driven De­
velopment of Advanced User Interfaces. SCI, vol. 340, pp. 107-122. Springer, Heidelberg 
(2011) 

10. Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-
Driven Software Development. IEEE Software 20, 42^15 (2003) 

11. Tao, Y.: An Adaptive Approach to Obtaining Usability Information for Early Usability 
Evaluation. In: Proc. of IMECS (2007) 


