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Abstract—We present an analytical model for studying optical 
bistability in semiconductor lasers that exhibit a logarithmic de-
pendence of the optical gain on carrier concentration. Model re-
sults are shown for a Fabry-Perot quantum-well laser and com-
pared with the predictions of a commercial computer-aided design 
(CAD) software tool. 

Index Terms—Optical bistability, logarithmic gain, quantum-
well, optical communications, hysteresis, numerical modeling. 

I. INTRODUCTION 

OPTICAL BISTABILITY (OB) and its applications to the 
fields of optical computing and processing have received 

widespread attention in the past decades [l]-[4], Nonlinearity 
and optical feedback lie at the very core of the bistability con-
cept, which, in general terms, refers to the existence of two dif-
ferent output states for the same input over a range of input 
values [2], Depending on the nonlinearity, two types of OB 
can be distinguished: absorptive and dispersive. The nonlin-
earity responsible for absorptive bistability arises from the de-
pendence of the absorption coefficient on input light intensity in 
a laser containing a saturable absorber. This type of bistability 
was first observed in a Fabry-Perot semiconductor laser under 
external optical injection in the 1960s [1] and, decades later, 
demonstrated experimentally in a two-section distributed feed-
back (DFB) laser [5], Absorptive bistability has been proved to 
take place both in the output power/current characteristic [6] and 
in the output/input power characteristic [7], A deeper review on 
the subject of absorptive bistability in semiconductor laser am-
plifiers can be found in [8], 

Dispersive bistability, on the other hand, arises from the inten-
sity dependence of the refractive index, which causes the shift 
of the cavity frequency toward resonance with the input field. 
It was first predicted theoretically in semiconductor laser am-
plifiers (SLA) at an operating wavelength of 840 nm [9] and 
820 nm [10] in 1983. Later on, dispersive bistability was also 
demonstrated in a Fabry-Perot SLA at 1.3 //m [11] and in an 
InGaAsP Fabry-Perot Laser Amplifier at 1.5 /.im [12], [13], 

In this paper, our efforts will be concentrated on the analysis 
of dispersive OB in transparent semiconductor lasers where ab-
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sorptive bistability can be neglected. A logarithmic relation be-
tween the optical material gain and the carrier concentration will 
be employed in the laser model and the results of the analysis 
will be applied to a quantum-well laser device. As compared 
with bulk semiconductor materials, quantum wells possess su-
perior characteristics, such as low threshold current [14], [15], 
low temperature dependence [16], long-wavelength operation 
[17], and nonlinear effects [18], that justify our choice. Lastly, 
this analysis will be contrasted with the results of a well-known 
commercial photonics software tool. 

II. ANALYSIS 

The most popular methods to study the nonlinear dynamics of 
a laser with external optical injection are based on Fabry-Perot 
and rate equation approaches. Even though both models give 
identical results in the limiting case of no injected signal [19], 
their results differ increasingly with the increase of the injected 
signal level [19], [20], In [21] some modifications were intro-
duced in both methods to minimize these differences. 

The Fabry-Perot method is based on the traveling-wave equa-
tions of a semiconductor laser in a simple Fabry-Perot configu-
ration and is used to predict the spatiotemporal dynamics of the 
electromagnetic field in the laser cavity [12], [22], 

The rate equation (RE) method is based on the analysis of 
first-order differential equations for the carrier density inside the 
laser cavity [19], [23], [24], One disadvantage of this method is 
that it does not include the spectral characteristics of the cavity; 
however, it is expected to give better results for small signal 
applications and it is suitable to study the dynamic character-
istics and modulation properties of injection-locked semicon-
ductor lasers [25], 

Built on both approaches, a convenient analytical method was 
developed in [12] and [26], On the one hand, the Fabry-Perot 
method facilitates the calculation of an appropriate mean optical 
intensity, obtained by averaging the axial intensity distributions 
within the Fabry-Perot cavity, to derive relations for the input 
and output intensities. On the other hand, the nonlinear refrac-
tion is determined by the magnitude of the average internal in-
tensity via its effect on the electron concentration in the active 
medium (RE method). This model is a simple and efficient tool 
for the analysis of Fabry-Perot laser amplifiers under the ap-
proximation of a linear relation between the material gain and 
the carrier concentration [27] 

9m - aiin("- - n0) (1) 

where ann is the linear gain coefficient, n is the average carrier 
concentration in the cavity, and no is the transparency carrier 
density. 
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Fig. 1. Setup for the bistable operation of a quantum-well (QW) Fabry-Perot laser. 

However, various authors [28], [29] have pointed out that near 
threshold there exists a logarithmic relation between optical gain 
and carrier concentration, which, in a simplified form, can be 
expressed as 

9m = a i o g l n ( n / n 0 ) (2) 

where a\og is the logarithmic gain coefficient. This approxima-
tion is more accurate than the linear approximation used else-
where [30], both in bulk [31] and in small quantum well lasers 
where the carrier population of higher levels is negligible [32], 
and therefore will be used, instead of the linear relation in (1), 
in the rest of the paper. 

Let us focus on power OB in quantum-well Fabry-Perot 
lasers for which the material-gain/carrier-concentration relation 
can be represented as indicated in (2). Fig. 1 shows a schematic 
of the setup for plotting the hysteresis loops. A constant-wave 
(CW) diode laser is amplitude-modulated by a sinusoidal elec-
trical signal of several orders of magnitude lower frequency, 
and made incident upon a quantum-well Fabry-Perot laser 
with an active region of reduced transversal dimensions, biased 
below threshold by a current I = jwL, where j is the current 
density, and w and L are the active-region width and length, 
respectively. Output powers are plotted against input powers to 
observe the bistable behavior of the laser. 

The evolution in time of the carrier concentration in the 
quantum well (n) and the separate confinement heterostructure 
(SCH) layer (nSCH)> and the change in photon density (S) 
within the cavity are given by the rate equations [33] 

dnscH 
dt 

n$cn n d 
Te dsnH ' 

d n 

dS 
dt 
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ed rc 
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(3) 

photon lifetime, and N is the group effective refractive index of 
the cavity. 

For the region of interest for bistable operation, the input light 
power is much larger than the spontaneous emission power gen-
erated within the device over one mode spacing centered on the 
input wavelength [12] and, therefore, the spontaneous emission 
coefficient can be neglected. We shall also neglect the depen-
dence of the spontaneous emission rate on position z, the de-
pendence of the net gain per unit length g on position z and 
photon energy, and the dependence of the photon density on 
photon energy for the modes of interest [26]. With these as-
sumptions in place and bearing in mind that S = PN/ (Ecwd), 
the position-independent mean optical power, Pav , obtained by 
averaging the positive and negative traveling signal waves over 
a complete round trip of the cavity, and the input and output 
powers, Pin and PGut, respectively, are given by [12] 

P = 

P,. = 

(1 - Px)( 1 + R2e°L)( 1 - e-°L)[Pin/(gL)} 
(1 - V 7 h I h e 9 L ) 2 + 4 y / R J & e 9 L sin2(</>) ' 

(1 - + 4 V W l h e ^ s i n 2 ( ^ ) P c 

(1 - Ri)(l - R2)e9L 

(1 - R2)gLPaY (1 + R2egL)(l — e~gL)' 

(6) 

(J) 

(8) 

where R\ and R2 are the reflectivities at the front and back 
cavity mirrors, q is the net gain given by [26] 

gL = Y f j m L - aL (9) 

and cj) is the relative phase change of the signal as it passes 
through the cavity [34] 

dTV A JL 2^LTY = On H :—1 ( n A ni) 
d n 
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(11) 

where e is the electron charge, d is the active-region thickness, 
Tc is the carrier capture time from the SCH layer to the quantum 
well, re is the carrier escape time from the quantum well to the 
SCH layer, dscu is the thickness of one side of the SCH region, 
r is the electron lifetime, T is the quantum-well confinement 
factor, AE is the gain-curve spectral width, is the material 
gain, E is the photon energy, c is the velocity of light, rv is the 

A is the operation wavelength, and ni is the carrier concentration 
in absence of optical power injection, given by ni = jr/(ed). 

The initial phase detuning (j>0, as stated by (11), is a func-
tion of the frequency difference between the input signal and the 
nearest Fabry-Perot modes. The spectral positions of the laser 
modes vary with the bias current applied to the laser and the 
input power, the phase separation between two adjacent modes 
being 7r. AS can be seen in Fig. 2, power injection provokes a 
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that, in conjunction with (10), allows writing (14) as 

r , v d N 
-In I — (A 2lTLTP< 

and, consequently, the phase change </> of the signal as it passes 
through the cavity is finally given by 

» = ^o + 
2ir LmT dN 

A 

± 

d n 

Em 

1 + 
Em 

TtocvrP* vT 

Ta iogP ; 

2 log. 
2 

• + l ) + 2 1 n (17) 

Using (2), (10) and (15), the net gain given by (9) can be 
written as 

qL — TaioQ-Lln < — g I n0 

A 
2/KLTm 

- l 
• ^o) + 1 • aL (18) 

Fig. 2. (a) Fabry-Perot modes in a quantum-well laser in absence of power 
injection, (b) The modes shift when an optical signal is incident upon the cavity. 

displacement of the Fabry-Perot modes toward lower frequen-
cies, which results in a variation of the output signal phase in a 
quantity related to the derivative of phase ^ in (10) with respect 
to carrier concentration n 

which, after substitution of (17) into (18), results in 

Em gL = rawLln ( — \ 
W I 

Em 
rai0gP a vr 

i + 
r a i o g ^ v T 

\ 2 

+ 1 

+21n ( ! ! ! 
n0 

+ 1 — aL. (19) 

(12) It is straightforward, though somewhat tedious, to verify that 
(17) and (19), with the minus sign, reduce to the equations for 
the linear gain model 

Using the average power given by (6) and multiplying the 
addition of (3) and (4) by r , the rate equations reduce to gL = — aL 

(13) 
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which, after multiplication by (d</>) / (dn) and the use of (2), 
yield 

«<> 
where no is the transparency carrier density. 

Because the relative magnitudes of the round-trip time in the 
cavity rg and the average lifetime of the carriers r encountered 
in the semiconductors of interest are such that rg r , the 
derivative (d</>)/(dt) in (14) can be neglected [35]. Likewise, 
the natural logarithm ln(n/no) in (14) admits a Taylor series 
expansion around n « m 

(15) 

where Ps = n$hb>wd/(a\ogTr) and 
b = —47rno/(Aaiog)(diV/dn), in the limit when the 
carrier concentration tends to the transparency carrier density. 
For the sake of comparing the results obtained with the 
logarithmic model derived in this section and those given by 
the linear model in [12], Fig. 3 shows the variation of the phase 
change and the net gain in a Fabry-Perot laser analyzed with 
both gain models for increasing carrier concentrations. As was 
pointed out, an increasing divergence of both curves can be 
observed as the difference between the carrier concentration 
and the transparency carrier density increases. This divergence 
is more remarkable in the region where the curves exhibit 
a bistable behavior, which makes the logarithmic model 
described in this section more relevant for the study of OB in 
Fabry-Perot semiconductor lasers. 

Equations (6), (7), (17) and (19) will be numerically solved 
to validate our logarithmic gain model with a view to the obser-
vation of power OB in a Fabry-Perot quantum-well laser. 

III . NUMERICAL RESULTS 

Let us consider the equations in the previous section and the 
parameters listed in Table I for a Fabry-Perot quantum-well 
laser operated in transmission. The electron lifetime is given by 
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Fig. 3. (a) Phase change, (f>, and (b) net gain, gL, as a function of input power, 
Pin , for carrier concentrations in the absence of optical power, n i , (i) 1.1 x 10 24 

m~ 3 , (ii) 1.3 x 1024 m~ 3 , and (iii) 1.45 x 1024 m~ 3 , obtained using a log-
arithmic gain model (solid line) and a linear gain model (dashed line). Data: 
<fto = —0.257T, L = 400 fim, T = 1.0, a = 3000, v = 193.1 THz, 
dN/dn = - 1 x 10-26 m3, aiog = 6 x 104 m - \ r = (A + Bni + 
Crc2)"1, n0 = 1.0 x 1024 m"3 , w = 2.5 /im, d = 200 nm. In (b) an inset 
shows an enlargement for = 1.1 x 1024 m - 3 . 

r — (A + Bni + Cnf ) - 1 , where A, B and C are the linear, bi-
molecular and Auger recombination coefficients, respectively, 
whose values are shown in Table I. A difference in definition 
between a\og and a\[n is responsible for the difference in order 
of magnitude between the value reported in Table I and the usual 
values for ann [36]. In order for a\og to have a value in the same 

order of magnitude as ann, (2) must be multiplied by no, such 
that ai0g will assume an no-times lower value. 

The laser was biased at 75%, 80%, 88% and 92% of the 
threshold current, which, with the above parameters, is given 
by I t h = 188 mA, and the corresponding initial detuning was 
-0.32tt, -0.52tt, -0.80tt and -0.95tt, respectively. As illus-
trated in Fig. 4, hysteresis loops in an anticlockwise direction 
[37] in the quantum-well laser can be observed in the optical 
output-input characteristic. 

We notice that, as the dc bias is increased, the optical input 
requirement is higher in order to achieve OB. The output power 
is also higher. Likewise, the amount of hysteresis increases with 
increasing bias currents. Finally, for input powers above the 
power at which the output signal jumps from a low level to a 
high level (i.e., outside the hysteresis cycle), gain at the upper 
state is only achieved for currents 0.75 • Ith and 0.80 • Ith- This 
is a consequence of the fact that, for increasing input powers, 

T A B L E I 
QUANTUM-WELL LASER PARAMETERS 

Symbol Parameter Value Units 
L Device section length 400 fim 
w Active region width 2.5 fim 
d Active region thickness 40 //m 
A Nominal wavelength 1.5525 ^m 
N Effective index in the cavity 3.7 
R Left/right facet reflectivities 0.32 
T QW Confinement factor 0.05 

ai0g Logarithmic material gain coefficient 6x l0 4 m - 1 

dN/dn QW Differential index -1x10" 2 6 m3 

A Linear recombination coefficient 0 s - 1 

B Bimolecular recombination coefficient 2.2x10"1 6 m 3 s - 1 

C Auger recombination coefficient 5 . 24x l0 - 4 1 m 6 s - 1 

a Internal loss 3000 m - 1 

no Transparency carrier density lx lO 2 4 m - 3 

P. (mW) in v 

(a) 

0.015 

Fig. 4. Output power of the Fabry-Perot quantum-well laser for several bias 
currents. 

0.005 0.01 0.015 
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amplification is only obtained for bias currents near the laser 
threshold and for initial phase detunings |</>o| < 0.707T. 
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IV. COMPUTATIONAL MODEL 

The schematic shown in Fig. 1 was also simulated with com-
mercial software tool VPItransmissionMaker™ version 8.0 by 
VP I systems™ [38]. In VPItransmissionMaker™ lasers are ana-
lyzed using the transmission-line laser model (TLLM), whereby 
the laser cavity is divided into small longitudinal sections, each 
section being divided in turn into scattering and transmission 
nodes, connected by so-called transmission lines, which repre-
sent the waveguide propagation delay [39], [40]. 

Based on the said schematic, we selected a CW DFB laser 
(LaserCW module) with an emission frequency of 193.1 THz 
and an ideal linewidth of 0 Hz to feed an amplitude modu-
lator (modulatorAM module) whose output power follows the 
amplitude of a 0.975-MHz sine electrical signal (FuncSineEl 
module), chosen for convenience. The amplitude-modulated op-
tical signal enters the bistable laser (LaserTLM module), a trans-
mission-line model of a Fabry-Perot laser with a multi-quantum 
well structure in the active region, described by the parameters 
given in Table I. A PowerMeter module with no bandwidth-lim-
iting filter averages the light at the input and output faces of the 
laser module over time intervals of 6.4 ns and transfers both 
values to a NumericalAnalizer2D module for two-dimensional 
numerical data. After several runs of the simulation, a plot of 
the hysteresis loop of the laser can be obtained. 

To compare the results of our model presented in Section III 
with the computational model being described in this section, 
two cases have been singled out: since amplification was only 
achieved for bias currents of 0.75 • Ith and 0.80 • Ith, only 
these two situations have been retained and considered. As was 
pointed out in the previous section, the corresponding initial 
phase detuning between the external injected signal and the res-
onance of the laser are —0.327T and —0.527T, respectively. Also, 
because of the different power requirements of the Fabry-Perot 
laser for different bias currents, average powers of 3 mW and 
9 mW, respectively, have been used for each of the two cases 
mentioned above. 

As was shown in Fig. 2, the input signal incident upon the 
quantum-well laser affects the laser's response by inducing a 
change in the refractive index of the semiconductor material that 
leads to a change in the laser emission spectrum. This change 
manifests itself in a displacement of the emission modes toward 
lower frequencies. When, as a consequence of this mode shift, 
the frequency of the mode is coincident with that of the incident 
signal, there occurs a switch from a low power level to a high 
power level, or vice versa, at the output of the laser. On account 
of the fact that this switch takes place at a different power for in-
creasing and decreasing input powers, a hysteresis loop appears 
in the optical output-input characteristic. 

Fig. 5 shows the quantum-well laser output power represented 
as a function of the input power using the numerical model (a) 
and the computational model (b), for a bias current of 0.75 • Ith-
In both plots, the bistable curves jump to the ON state for input 
powers higher than 2 mW, and return to the OFF state when Pin 
descends below 0.5 mW. The output signal switches between 
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Fig. 5. (a) Numerical and (b) computational simulation for 0.75 • I th-

those two states with average powers around 5.5 mW and 1 mW. 
As we can see, there is good agreement between both models. 

Fig. 6 shows in turn the bistable curves for a bias current of 
0.80 • Ith- The curves move to the upper state at Pin = 7 mW, 
attaining a Pout = 10 mW, and drop back to the OFF state when 
Pin = 2 mW (with the model described in this paper) or 0.22 
mW (with the computational simulation). The theoretical plot 
correctly determines the switch-on input power as compared 
with the simulation results, but there is a discrepancy in the pre-
diction of the switch-off power, which is significantly lower with 
VPItransmissionMaker™. Output power results are, however, 
coincident with both models. 

V. CONCLUSION 

Existing models of semiconductor laser amplifiers, originally 
developed for studying materials with a linearly varying gain 
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Fig. 6. (a) Numerical and (b) computational simulation for 0.80 • I th-

with carrier concentration, were reviewed and a new model was 
proposed to account for a logarithmic material-gain/carrier-con-
centration relation, which has been found to be a more accu-
rate approximation in bulk and quantum-well semiconductors 
[31], [32]. Based on this analysis, dispersive OB in Fabry-Perot 
quantum-well lasers was investigated and hysteresis loops in an 
anticlockwise direction in the output-input power characteristic 
were observed. Good agreement between the results obtained 
from the theoretical model presented in this paper and com-
mercial software tool VPItransmissionMaker™ was found, both 
with regard to output power levels and with regard to switch-on 
powers. However, an increasing divergence in the determination 
of the switch-off power with increasing bias currents was also 
observed. In spite of this, the model dealt with in this paper, 
owing to its simplicity and reasonable accuracy, has proved to 

be a good tool to study OB in Fabry-Perot semiconductor lasers. 
An experimental study to assess the accuracy of the logarithmic 
model should be carried out in the future due to the lack, to the 
best of our knowledge, of published experimental results in line 
with this work. 
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