Application of High-Intensity Short-Pulse Lasers to the Mechanical and Surface Properties Improvement of High Reliability Metallic Components by Shock Processing

> J.L. Ocaña, J.A. Porro, M. Morales, M. Díaz, L. Ruiz de Lara, C. Correa, A. Gil-Santos

Centro Láser UPM.

Universidad Politécnica de Madrid. Campus Sur UPM. Ctra. de Valencia, km. 7.3. 28031 Madrid. SPAIN email: <u>ilocana@etsii.upm.es</u>

> VII international conference BT/LA-2012 September 18-21, 2012 Saint-Petersburg Russia

Application of High-Intensity Short-Pulse Lasers to the Mechanical and Surface Properties Improvement of High Reliability Metallic Components by Shock Processing

OUTLINE:

- Introduction
- Process Experimental Setup
- Experimental Procedure
- Experimental Results for Al2024-T351 and Ti6Al4V
 - Residual stresses
 - Tensile Strength
 - Fatigue Life
- Discussion and Outlook
 - Prospects for technological applications of LSP

INTRODUCTION

- S Laser Shock Processing (LSP) is being increasingly applied as a technique allowing the effective induction of residual stresses fields in metallic materials allowing a high degree of surface material protection against fatigue crack propagation, abrasive wear, chemical corrosion and other failure conditions, what makes the technique specially suitable and competitive with presently use techniques for the treatment of heavy duty components in the aeronautical, nuclear and automotive industries.
- S According to the inherent difficulty for the prediction of the shock waves generation (plasma) and evolution in treated materials, the practical implementation of LSP processes needs an effective predictive assessment capability coupled to a readily controllable experimental setup for a correct application of treatment parameters and an associate material properties characterization capability.
- § In the present communication, the practical LSP treatment and associate specimens characterization capabilities developed at CLUPM (Spain) are presented along with selected results obtained in several relevant aerospace and nuclear industry alloys.

REMINDER OF LSP PHYSICAL PRINCIPLES (1/2)

REMINDER OF LSP PHYSICAL PRINCIPLES (2/2)

PROCESS EXPERIMENTAL SETUP

Q-SWITCHED Nd:YAG LASER $\lambda = 1064 \text{ nm}; E = 2,5 \text{ J/pulse}$ t = 10 ns; f = 10 Hz $\lambda = 532 \text{ nm}; E = 1,4 \text{ J/pulse}$

PROCESS EXPERIMENTAL SETUP

LSP TREATMENT PARAMETERS

Laser wavelength (nm) ; Q-switched Nd:YAG	1064
Energy per pulse (J/pulse)	2,0
Pulse temporal width (ns)	¤ 9
Laser spot diameter (mm)	1.5
Ratio x-y pitch	1
Confining medium	Water jet ≈ 2 bar
Absorbing coating overlay	No

PROCESS EXPERIMENTAL SETUP

EXPERIMENTAL PROCEDURE

EXPERIMENTAL PROCEDURE

EXPERIMENTAL PROCEDURE

 Table I:
 Relation between overlapping pitch and equivalent number of pulses per unit surface corresponding to the defined sweeping procedure.

Overlapping pitch Y (mm)	Equivalent overlapping density (pulses/cm ²)
0.588	289
0,33	900
0.285	1225
0.2	2500
0,141	5000

Residual Stresses (According to ASTM E837-08)

CEA-XX-062UM-120

EA-XX-062RE-120

Residual Stresses (According to ASTM E837-08)

AI2024-T351

Ti6Al4V

Relatively broad difference between $$S_{max}$$ and $$S_{min}$$ in Al2024-T351

Relatively small difference between $$S_{max}$$ and $$S_{min}$$ in Ti6Al4V

Residual Stresses (According to ASTM E837-08)

AI2024-T351

Ti6Al4V

S_{max} in Al2024-T351 for different irradiation intensities

S_{max} in Ti6Al4V for different irradiation intensities

Residual Stresses (According to ASTM E837-08)

AI2024-T351

S_{max} and S_{mio} extremes reached in Al2024-T351 for different irradiation intensities

Compressively protected depth (100 MPa) reached in Al2024-T351 for different irradiation intensities

Residual Stresses (According to ASTM E837-08)

Ti6Al4V

AI2024-T3 + Ti6AI4V, λ = 1064 nm 2 J/pulse, spot diameter = 1.5 mm, water jet, no paint Protected depth 100 Mpa Al / 100-200 Mpa Ti (mm) 1.0 ximum Protected Depth Al2024 100 MPa Maximum Protected Depth Ti6AI4V 100 MPa Maximum Protected Depth Ti6AI4V 200 MPa 0,8 0,6 0,4 0,2 0.0 0 1000 2000 3000 4000 5000 6000 Density of pulses (pulses/cm²)

S_{max} and S_{mio} extremes reached in Ti6Al4V for different irradiation intensities

Compressively protected depth (100-200 MPa) reached in Ti6Al4V for different irradiation intensities

Residual Stresses (According to ASTM E837-08)

Ti6Al4V: Comparison LSP-Shot Peening

Substantial improvement in Residual Stresses Field in Ti6Al4V vs. to Shot Peening

Decisive improvement in protected depth reached in Ti6Al4V for different irradiation intensities

Residual Stresses Permanence upon Thermal Treatment

AISI 316L Steel

S_{max} permanence in AISI 316L Steel after different Thermal Treatment Temperatures for a 900 pulses/cm² LSP Treatment Intensity

CENTRO LÁSER UNIVERSIDAD POLITÉCNICA DE MADRID S_{max} permanence in AISI 316L Steel after different Thermal Treatment Temperatures for a 1600 pulses/cm² LSP Treatment Intensity

Process parameters				
Wavelength (nm)	1064			
Frecuency (Hz)	10			
Energy (J/pulse)	2.8			
Pulse width (ns)	~ 9			
Spot diameter (mm)	~ 1.5			
Overlapping (pulses/ cm^2)	900			
Ovenapping (pulses/cm ⁻)	1600			
Confining medium	Water jet			
Absorbent coating	No			

Experimental setup LSP CLUPM

I COO P/Lat

900 pulses/cm²

1600 pulses/cm²

900 pulses/cm² + Heat treat.: 500 °C, 8h

900 pul/cm²1600 pul/cm²

700 p/cm

Residual Stresses:

Tensile Tests:

Property	Base material	LSP 900	LSP 1600
Young Modulus (GPa)	177.205	182.099	185.446
Engineering elastic limit (MPa)	355.410	356.390	359.930
Maximun tensile stress (MPa)	633.608	629.700	626.870

Fatigue Tests:

	Base Material:	AISI 316L S	tainless Steel	
S _a (Mpa)	S _{Max} (Mpa)	F _{max} (kN)	F _{mean} (kN)	Cycles
280	622	54.507	29.979	37752
270	600	52.560	28.908	49580
260	578	50.613	27.837	51513
250	556	48.667	26.767	71850
240	533	46.720	25.696	92466
230	511	44.773	24.625	105771
220	489	42.827	23.555	131677
210	467	40.880	22.484	157696
200	444	38.933	21.413	184158
190	422	36.987	20.343	260974
180	400	35.040	19.272	264889
170	378	33.093	18.201	661126
160	356	31.147	17.131	1000000

Fatigue Tests:

AISI 316L Stainless Steel + LSP 900 + LSP 1600 pulses/cm ²					
S _a (Mpa)	S _{max} (Mpa)	F _{max} (kN)	F _{mean} (kN)	Cycles 900	Cycles 1600
280	622	54.507	29.979	35574	60199
260	578	50.613	27.837	57777	75105
240	533	46.720	25.696	91471	107098
230	511	44.773	24.625	130302	165560
220	489	42.827	23.555	233301	185802
210	467	40.880	22.484	268180	444006
200	444	38.933	21.413	1000000	1000000

Fatigue Tests:

LSP 900 + Heat treatment (500°C; 8h)				
S _a (Mpa)	S _{Max} (Mpa)	F _{max} (kN)	F _{mean} (kN)	Cycles
280	622	54.507	29.979	6000
230	511	44.773	24.625	128632
200	444	38.933	21.413	259987
180	400	35.040	19.272	1000000

	Pulse density (cm ⁻²)	C (mm/cycle)	M (dimensionless)
$ = C.K^{m} $	0 (No LSP treatment)	4×10^{-13}	7.664
	900	8×10^{-13}	6.818
	1350	2×10^{-11}	5.733
	2500	3×10^{-10}	4.723

Rubio-González, C. et al.: Mat. Sci. Eng. A., 386 (2004) 291-295

da

dN

A typical prospective LSP application to welding technology

O. Hatamleh/ International Journal of Fatigue 31 (2009) 974-988

4. Mechanical characterization

4. Mechanical characterization

4. Mechanical characterization

4. Mechanical characterization

- § With the aid of the experimental irradiation and process diagnosis system implemented at CLUPM (Spain), a complete feasibility of the LSP technique at laboratory scale for the induction of improved material surface properties has been accomplished. The implementation of the appropriate experimental diagnosis methods enables a reliable process predictive assessment capability in view of process industrial implementation.
- § On the other side, the need for a practical capability of LSP process control in practical applications has led to the joint development of comprehensive theoretical/computational models and related material properties characterization capabilities able to properly assess the complex material issues arising in the process.
- § With the aid of the developed experimental testing capability, a specifically targeted analysis of LSP induced effects (such as surface morphology, surface composition transformations, surface mechanical behaviour, deep residual stress fields and others) is made possible, thus allowing a practical development of the technique from an industrial point of view.
- S Representative applications of the LSP technique to the treatment of typical aeronautic grade alloys (typically AI and Ti) and stainless steels characteristic of the aerospace, nuclear, biomedical and equipment industries, as well as to the post-treatment of welded metallic joints have been successfully conducted to the induction of compressive residual stresses fields decisively improving their fatigue life.

ACKNOWLEDGEMENTS

Work supported by MEC/MCINN (Spain; Projects DPI2005-09152-C02-01; MAT2008-02704/MAT) and EADS-CASA (Spain)

REFERENCES

- 1. Ocaña, J.L. et al.: "A Model for the Coupled Predictive Assessment of Plasma Expansion and Material Compression in Laser Shock Processing Applications". In: High-Power Laser Ablation II, Claude R. Phipps, Masayuki Niino, Eds., SPIE Proceedings, Vol. 3885, 252–263 (2000)
- 2. Ocaña, J.L. et al.: "Predictive assessment and experimental characterization of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys". In: High-Power Laser Ablation V, Phipps C.R., Ed.. SPIE Vol. 5548, 642-653 (2004)
- 3. Ocaña, J.L. et al.: Appl. Surf. Sci., 238 (2004) 242-248
- 4. Ocaña, J.L. et al.: Appl. Surf. Sci., 238 (2004) 501-505
- 5. Rubio-González, C. et al.: Mat. Sci. Eng. A., 386 (2004) 291-295
- 6. Ocaña, J.L. et al.: "Laser Shock Processing as a Method for Surface Properties Modification of Metallic Materials". In: Shot Peening and other Mechanical Surface Treatments, V. Shulze, A. Niku-Lari, Eds. I.I.T.T. Paris (2005), 466-471.
- 7. Sanchez-Santana, U., et al.: Wear, 260 (2006) 847-854
- 8. Rubio-González, C. et al.: Appl. Surf. Sci., 252 (2006) 6201-6205
- 9. Morales, M. et al.: "Numerical Simulation of Plasma Dynamics in Laser Shock Processing Experiments". In: Proceedings of LPM2008. 1-6 (2008)
- 10. Morales, M. et al.: Surf. & Coat. Tech. 202 (2008) 2257-2262
- 11. Martí-López, L. et al.: Appl. Opt. 48 (2009) 3671-3680
- 12. Morales, M. et al.: Appl. Surf. Sci. 255 (2009) 5181-5185
- 13. Ocaña, J.L. et al.: Mat. Sci. Forum, Vols. 638-642 (2010) pp 2446-2451
- 14. Morales, M. et al.: Mat. Sci. Forum, Vols. 638-642 (2010) pp 2682-2687
- 15. Morales, M. et al.: J. Optoelectr. and Adv. Mat., 12 (2010) 718-722

LSP: An emerging industrial technology

Ecor foliges properties are improved by shock hardested

march 1996

LSP: An Emerging Sustainability Supporting Technology

Next event on LSP:

4th International Conference on Laser Peening and Related Phenomena

May 6th-10th 2013 ETS de Ingenieros Industriales, Universidad Politécnica de Madrid, SPAIN

Contact: jlocana@etsii.upm.es http://www.upmlaser.upm.es/4-ICLPRP

NUMERICAL SIMULATION. MODEL DESCRIPTION

The SHOCKLAS Calculational System

