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Physical Characterization of Laser Interaction and        
Shock Generation in Laser Shock Processing:
Coupled Theoretical-Experimental Analysis

OUTLINE:

• Introduction
• Fundamental Physics of the Laser-Plasma Interaction

in Laser Shock Processing
• Theoretical/Computational Model Description
• Some Results. Analysis of Interaction Parameters
• Experimental Validation. Diagnosis Setup
• Discussion and Outlook
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1.  INTRODUCTION

Laser Shock Processing (LSP) has been practically demonstrated as a 
technique allowing the effective induction of  residual stresses fields in 
metallic materials allowing a high degree of surface material protection. 
Experimental results obtained with commercial Q-switched lasers prove 
complete feasibility at laboratory scale.

However, according to the inherent difficulty for prediction of the shock 
waves generation in the laser generated plasma and its subsequent 
evolution in treated materials, the practical implementation of LSP 
processes needs an effective predictive assessment capability.

A physically comprehensive calculational tool (SHOCKLAS) has been 
developed able to systematically study LSP processes. It includes the 
capability of studying from a detailed point of view the laser-plasma 
interaction, a critical step conditioning the overall process, and the 
reliable prediction of the thermo-mechanical input source applied to the 
shocked target for the subsequent solid behaviour calculations.

Consistently, the appropriate interrelated experimental diagnosis system 
has been developed for a practical guidance of experimental parameters 
selection.
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2. NUMERICAL SIMULATION. MODEL DESCRIPTION

The SHOCKLAS Calculational System

Main interest of 
the present paper
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2. NUMERICAL SIMULATION. MODEL DESCRIPTION

HELIOS
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3. NUMERICAL SIMULATION RESULTS

HELIOS Analysis of relative influence of confining material
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3. NUMERICAL SIMULATION RESULTS

HELIOS Analysis of influence of water layer thickness
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3. NUMERICAL SIMULATION RESULTS

HELIOS Analysis of plasma for LSP conditions
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4.  EXPERIMENTAL VALIDATION. DIAGNOSIS SETUP
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4.  EXPERIMENTAL VALIDATION. DIAGNOSIS SETUP

Martí-López, L. et al.: Appl. Optics, 48, 3671-3680 (2009)
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Martí-López, L. et al.: Appl. Optics, 48, 3671-3680 (2009)
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4.  EXPERIMENTAL VALIDATION. DIAGNOSIS SETUP

Spectroscopic system calibrated in wavelength with Hg lamp 
and in intensity with Deuterium lamp
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4.  EXPERIMENTAL VALIDATION. DIAGNOSIS SETUP
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Electron density determination via Stark effect of Al II line at 2816,2 nm:

Delay from laser pulse
2 µs 3 µs

Distance from target
1 mm 20.4 1016 cm‐3 2.4  1016 cm‐3

6 mm 17.2 1016 cm‐3 2.0 1016 cm‐3
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4.  EXPERIMENTAL VALIDATION. DIAGNOSIS SETUP

Electron temperature determination through Boltzmann plot of relative intensities of 
Mg II lines at 279.5528 nm, 280.2704 nm, 292.8633 nm and 293.6509 nm:

Preliminary electron temperature distributions in the range of 1.0-1.5 eV                
(i.e. ≅ 11 600 - 17 400 K) were found close to the target 2-3 μs after laser shut-down
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The need for a practical capability of LSP process control in practical 
applications has led to the development of comprehensive 
theoretical/computational models for the predictive assessment of the 
complex phenomenology involved.
High intensity laser-plasma interaction has revealed itself as a critical point 
for a proper process understanding and predictive assessment of LSP 
processes.
The developed calculational model (SHOCKLAS) allows a systematic study 
of LSP processes starting from laser-plasma interaction. The integrated 
laser-plasma analysis routine, based in realistic material EOSs, provides a 
unique capability for process parametrization.
Additionally, the development of the appropriate experimental diagnosis 
facilities and the connection of numerical simulation to experimental 
material characterization enable a fundamental and reliable process 
understanding capability in view of process industrial implementation.
However, additional work is needed in order to connect experimental 
observations with theoretical code predictions for validation purposes.

5. DISCUSSION AND OUTLOOK
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