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Abstract
Cognitive Radio principles can be applied to HF 
communications to make a more efficient use of the 
extremely scarce spectrum. In this contribution we focus on 
analyzing the usage of the available channels done by the 
legacy users, which are regarded as primary users since they 
are allowed to transmit without resorting any smart 
procedure, and consider the possibilities for our stations -over 
the HFDVL (HF Data+Voice Link) architecture- to 
participate as secondary users. Our goal is to enhance an 
efficient use of the HF band by detecting the presence of 
uncoordinated primary users and avoiding collisions with 
them while transmitting in different HF channels using our 
broad-band HF transceiver. A model of the primary user 
activity dynamics in the HF band is developed in this work. It 
is based on Hidden Markov Models (HMM) which are a 
powerful tool for modelling stochastic random processes, and 
is trained with real measurements from the 14 MHz band. 

1 Introduction 
Standard HF communications make use of ALE (Automatic 
Link Establishment) protocol that is frequently presented as 
an example of a primitive form of cognitive radio. It is based 
on Listen Before Transmit strategy to access the spectrum and 
makes use of sensing, probing and monitoring techniques to 
assess channel utilisation and channel quality. Even if HF 
stations making use of ALE protocol, there are multiple 
collisions between them as they only transmit on their 
assigned channels that are expected to be available according 
to the experience of the radio operator. Considering the 
previous, it is likely that as long as cognitive radio principles 
are introduced in HF stations, the radio frequency spectrum 
could be exploited in a more efficient way because HF 
stations will be aware of their surrounding environment and 
will learn from it. In order to achieve such improvements in 
the band, these cognitive stations shall have the capability to 
change their operating parameters in order to adapt their 
transmissions to the available spectrum holes by using the 
acquired knowledge. 

In cognitive radio systems two types of users are 
distinguished: primary and secondary users. Primary users are 
those users that are holders of a license for a particular 
frequency band and therefore shall have prime access to it. 
On the contrary, unlicensed users transmitting in that band are 
taken as secondary users as they are allowed to make use of 
it, but required not to interfere communications coming from 
primary stations. In this contribution, due to the trans-horizon 
behaviour of HF communications and the limited bandwidth 
where all HF users around the world can transmit, we shall 
assume that the difference between primary and secondary 
users relies on the smart and cognitive capabilities of the HF 
user. Consequently, we will consider the primary ones to be 
the legacy users which transmit without resorting any smart 
procedure, and our stations using the HFDVL (HF 
Data+Voice Link) architecture [3], which are also licensed for 
certain HF bands, will be henceforth considered as secondary 
users of the accessible frequency channels. So, our stations 
must be able to detect in both transmitter and receiver sides 
when the primary users start and finish their transmissions in 
order to send our own data packages by filling silence slots 
within primary transmissions. This will require us to use our 
broad-band HF transceiver [4] to select those channels 
predicted as available. By this way, we will enhance the 
efficient use of the HF band and the performance of our HF 
communication system.  

A model of the primary user dynamics in the band shall be 
extremely useful to make the best from the acquired 
knowledge in predicting the activity of the primary user in the 
channel. An activity model is derived in this work for the HF 
band based on a set of Hidden Markov Models. It has been 
trained and validated with real data from the HF band and 
according to the peculiarities of the particular problem we are 
considering. 

Regarding the modelling and detection problems, Hidden 
Markov Models (HMM) are widely used for speech 
recognition [5], and have recently been introduced into 
cognitive applications for primary user detection and 
behaviour prediction, where they have achieved remarkable 
results. Despite this, most of the research in Cognitive Radio 
is related to communication bands above the HF band. Quite 
recently Koski and Furman introduced the challenges and 
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opportunities of applying cognitive radio principles to HF 
communications in [2]. However, to the best of our 
knowledge, no proposal of a real or simulated cognitive 
system for the HF band has been published yet. 

2 Hidden Markov Models 
HMMs are a powerful and robust tool for modelling 
stochastic random processes as they are able to model a large 
variety of processes achieving high accuracy with relatively 
low model complexity. They have been extensively used in a 
myriad signal processing applications during the last 20 years, 
mainly for fitting experimental data onto a parametric model 
which can be used for real-time pattern recognition, and to 
make short-term predictions based on the available prior 
knowledge.  

A Hidden Markov Model is defined as a doubly embedded 
process with an underlying stochastic process that is not 
observable. These hidden processes (states) can only be 
evaluated through another set of processes that produce 
sequences that actually can be observed [5]. Formally, an 
HMM for discrete symbol observations is defined by the 
following elements: 

A: State transition probability distribution matrix 
ijaA  of size N2 where N is the number of states in the 

model and 
,|1 itjtij SqSqPa ;,1 Nji  (1) 

The set of individual states is NSSSS ,,, 21  and the state 
at time t is denoted as tq .

B: The observation symbol probability distribution for 
state i, )(kbiB , where 

,| itkti SqVOPkb ;1 Ni ,1 Mk  (2) 
Ot is the observation at time t and M is the number of distinct 
observation symbols per state. The observation symbols 
correspond to the physical output of the system being 
modelled and are denoted as MVVVV ,,, 21 .

: The initial state probability distribution i  where 
,iti SqP Ni1 . (3) 

O: An observed sequence 
TOOOO 21  (4) 

where each observation Ot is assumed to be a realization of 
one of the symbols from V, and T is the number of 
observations in an observed sequence.  

Thus, a complete definition of an HMM involves: two model 
parameters (N and M), the specification of the observation 
symbols set and the specification of A, B and . In practise 
the compact notation used for an HMM will be 

BA ,, . (5) 
Regarding the structure of the transition matrix A, particular 
configurations of the HMMs can be identified: ergodic or 
fully-connected HMM where every state can be reached from 
any other state after a finite number of steps, and left-right or 
Bakis HMM which has the property that as time increases the 

state index either increases or stays the same. The later was 
introduced to fit signals which change over time in a 
successive manner, and is characterised by a transition matrix 
which forbids non-causal transitions within the models. 

Moreover, three major tasks must be fulfilled for a Hidden 
Markov Model defined as (5) to be useful in practical 
applications:
1. Evaluation: Given an observed data sequence and a set of 
models to be compared, the probability that the provided 
sequence was produced by each of them, kOP | , is 
computed as the cumulative product of the likelihood 
obtained by each evaluated sample. This is calculated through 
the sum of the so called, terminal forward variables, iT ,
defined in the “forward-backward” algorithm [5]. 
2. Decoding: Given an observation sequence, we choose a 
state sequence that is optimal in some meaningful sense. By 
doing this, we try to uncover the hidden part of the model 
according to some criteria. The most widely used criteria is to 
find the best state sequence that maximises the probability 

|,OQP  using the well-known Viterbi algorithm [5]. 
3. Learning: Also referred as the training of the model for 
which we attempt to find the parameters which best describe 
the observed sequence (the training sequence). An iterative 
procedure such as the Baum-Welch method [5] is used to 
locally maximise the likelihood of the model |OP .

3 Data acquisition and processing 
Real measurements from the HF band have been recorded to 
train and test the proposed model based on HMMs. We have 
used our own broad-band transceiver [4], along with a Vector 
Signal Analyzer (VSA) and SystemVue Software, both from 
Agilent Technologies, to collect the time data from the 
antenna and use it to extract spectral information from the HF 
band by means of the Fast Fourier Transform (FFT). Our 
broad-band HF transceiver was required in the measurement 
system to collect data from the antenna and then transmit it to 
the Vector Signal Analyzer because the sensibility of the 
VSA was not suitable for our purposes and was not able to 
detect most of the HF signals in the band. 

Sequential measurements of the 14 MHz amateur band were 
collected during three days. Each measurement was 10 
minutes long and between measurements a 15 minutes lag 
was introduced. The reasons for choosing this particular band 
are mainly two: the limited bandwidth of our antennas and the 
high-activity in this band that will be useful for the validation 
of the proposed model. In order to acquire data from the 
whole band we selected 14175 kHz as the central frequency 
and a span of 500 kHz, although the collected span by VSA is 
wider than 500 kHz. With these parameters we obtained 
measurements of the amateur band and also channels outside 
of it which correspond to other radio stations as it can be seen 
in the example of Figure 1. 

The information captured by the VSA was processed to 
obtain an estimation of the spectrum power of the whole 



acquisition band. Further on, both frequency and time domain 
processing were applied to the collected data to obtain a time-
frequency representation of the activity in each channel. 
Estimates on the mean power of a 3 kHz channel over a two 
seconds time-window were obtained in this processing step.  

Figure 1: Example of the acquired HF spectrum of the 14 
MHz band with central frequency 14175 kHz, span of 500 
kHz and a duration of 10 minutes. 

Once these estimates are obtained, the signal detection 
problem is set out to make a decision about the activity in the 
channel based on averaged power estimates. For this purpose, 
two hypotheses were defined: 
 H0: nwnx 1,,1 Nn  (6a) 

 H1: nsnwnx 1,,1 Nn  (6b) 
H0 holds when there is only noise, nw , in the channel at 
sample n, while H1 is true when there is a signal, ns , in the 
channel at sample n. The detector that maximises the 
detection probability in identifying activity on a given 
channel for a given false alarm probability is defined through 
the likelihood ratio test formulated in (7) as specified by the 
Neyman-Pearson lemma [1] 

0

1

;
;)(
Hxp
HxpxL  (7) 

where p(x;H1) is the probability distribution function for 
occupied channels, p(x;H0) the probability distribution for 
only-noise channels and the threshold  of the detector is 
derived from the false alarm constraint 

)(:
0;

xLx
FA dxHxpP . (8) 

The probability distributions for both hypotheses, p(x;H0) and 
p(x;H1), were estimated by computing the normalised 
histogram of the power of only-noise samples and occupied-
channel samples, respectively. As a result, threshold  was 
defined for each acquired wide-band measurement. 

Due to the time restrictions in the acquired measurements, the 
processed channel sequences have a length of ten and nine 
minutes. A segmentation of these sequences is proposed here 
to divide them into observation sequences of one minute in 
order to increase the number of available data and considering 
that a minute long observation was long enough to have an 
accurate representation of the temporal behaviour of primary 
users in the HF band. 

Moreover, in order to reduce the variability of the submodels 
in the training stage, we also propose a classification of the 
observation sequences prior to the stochastic modelling of the 
primary user dynamics. This classification is based on the 
expected secondary-user behaviour in a cognitive radio 
system, that is: 

Available channels where the secondary user can transmit. 
Unavailable channels where a primary user is in the band 

and the secondary user cannot transmit. 
Partially available channels in which there are time 

intervals during which the secondary user can transmit until a 
primary user appears. 

The criteria followed in the proposed classification is based 
on the percentage of time that a channel is occupied by a 
primary user. Two thresholds were defined: one for the 
maximum percentage of occupation in available channels and 
another for the minimum percentage of occupation in 
unavailable channels. In order to derive both thresholds, it is 
sensible to consider the worst case of channel occupation in 
HF data communications. The estimation of this worst 
scenario requires us to assume a predefined value for the 
maximum length of a data frame. In this work, the frame of 
maximum length defined by the NATO Standardisation 
Agreement STANAG 5066 [6] has been used. This standard 
establishes the profile for professional HF data 
communications and defines frames, called D-PDU, that have 
46 bytes of overhead and up to 1023 bytes of user data. On 
the other hand, most HF data communications are established 
at data rates of 600 bps or 1200 bps. With these parameters, 
the longest possible D-PDU frame would be 14.25 seconds 
long (1069 bytes at 600 bps) which represent the worst case 
of channel occupation in our scenario. Therefore, we 
considered observation sequences with at least 45 seconds 
occupied within a minute to be unavailable channels as we 
won't be able to transmit the largest frame during the 
remaining 15 seconds. Similarly, available channels were 
defined as those observation sequences with a maximum of 
15 seconds occupation in a minute. Finally, the remaining 
observation sequences were classified as partially available 
channels, as the secondary user could transmit for less than 45 
seconds to avoid collisions with primary users. 

4 HF primary user dynamics model 
As it has been described, Hidden Markov Models were used 
in this contribution as a tool to model the primary user 
activity dynamics in the 14 MHz band. This model should be 
used by our HFDVL stations, acting as secondary users 
according to the scenario previously outlined, to predict the 
presence of a primary user in the band. 

Once the data from the HF band has been processed and 
classified, an interference model can be properly built. 
According to the proposed classification of the observation 
sequences, the model was defined as an ergodic HMM with 
three states interconnecting three underlying submodels, one 
for each class (i.e. available, unavailable and partially 
available channel) as it can be seen in Figure 2. Moreover, 



each submodel was trained with a set of observation 
sequences of a minute long from the corresponding class. 
Consequently, the first submodel is meant to characterise 
available channel sequences, the second submodel for 
unavailable channel sequences and the third one for partially 
available channel sequences. These submodels were 
implemented as left-right HMM as the particular structure of 
the transition matrix they exhibit is quite suited to model the 
time evolution of the samples of the observation sequences, 
much better than ergodic models can, and with a reduced 
number of parameters to be trained. 

Figure 2: HF primary user dynamics model based on HMMs. 

The proposed model for primary user dynamics is build 
through the combination of a high-level, ergodic HMM with 
three states, each of them corresponding to available, 
unavailable or partially available channels respectively, and a 
set of three left-right submodels. Each state in the high-level 
model emits a minute long observation sequence which 
corresponds to the one generated by the submodel for that 
state. However, to simplify the training and evaluation 
procedures of the high-level model, it was trained as an 
independent HMM where each state will just emit one single 
value representing the state, independently from the scores 
provided by the low-level submodels. That is, state S1 only 
emits symbol ‘1’ and it represents the observation sequence 
generated by submodel 1. This also happens for states S2 and 
S3 emitting symbols ‘2’ and ‘3’, respectively. So, the 
observation matrix for the high-level ergodic model, B, is 
actually the identity matrix. With this specification the 
observation symbols generated by the high-level model are 
also the transitions between its states, that is, the transitions 
between the underlying submodels.  

Furthermore, while submodels were trained to characterise 
observation sequences of a minute long from available, 
unavailable or partially available channels, the high-level 
model was trained to characterise the evolution of a particular 
channel for ten and nine minutes long sequences, where states 
are classified according to one minute long sequences. 

Once designed, the proposed model was trained and validated 
as it is described in the following subsections. 

4.1 Model training 

The learning problem was solved in this first stage in order to 
find the parameters of the HMM defined as (5) that maximise

|OP , that is, maximise the probability that the 
observation sequences used as training sequences were 
generated by the model. The Baum-Welch algorithm [5], 
based on the Expectation-Maximisation method, was used to 
train both submodels and the high-level model. Also, 
randomly initialised matrices were used for the first iteration 
of the Baum-Welch method, as no prior knowledge on the 
structure of the sequences was provided, and the amount of 
collected data seemed to be fairly enough. 

Two different protocols were followed to train the models as 
the selected structure for the high-level model was different 
from the submodels structure. As an example, the number of 
states of the high-level model was prefixed -3- due to the 
prior classification of the observations, whereas the number 
of states for each submodel had to be chosen in advance. 
Therefore, we had to choose the number of states for the 
HMM submodels prior to their training by looking for a 
maximum in their likelihood curve. Besides, when 
considering the training of the high-level model, we shall look 
for the model corresponding to the maximum likelihood and 
between different models with matrices initialised to different 
random seeds. Once the models were trained, their respective 
likelihood scores were evaluated according to the evaluation 
task and compared among the different models to select the 
one with the maximum likelihood value, i.e. the one with 
highest |OP .

The best number of states for the submodels, based on left-
right HMM with up to three-states-long transitions was 
estimated using all observation sequences of one minute long 
as training sequences. In these left-right HMM submodels, 
matrices A and B were randomly initialised with a common 
seed, while  was initialised as (1, 0, …, 0) due to the fact 
that these submodels always begin at the first state. Different 
models with a number of states varying from 20 to 45 were 
trained with their own observation sequences of a minute 
long: available channel submodel was trained with all 
sequences classified as available channels, and the same 
procedure was followed for unavailable channel and partially 
available submodels, respectively. Once trained, submodels' 
likelihoods were evaluated attending to the plots of Figure 3. 
Unavailable channel submodel and partially available channel 
submodel likelihoods reach a local maximum when forty 
states are included, while the likelihood of available channel 
submodel is very close to zero for any state, i.e. this submodel 
can perfectly model most of the available channel sequences. 
Furthermore, if all submodels have the same number of states, 
these can be easily compared by simply comparing their 
corresponding estimated likelihood scores. Therefore, all 
submodels were considered to be left-right Hidden Markov 
Models including forty states and up to three-states-long 
transitions as it is represented in Figure 2. 



Once the number of states of the submodels had been chosen, 
each submodel was trained with a 70% of the observation 
sequences. The Baum-Welch method was applied to 
randomly initialised HMM matrices A and B with the same 
seed used in the previous step. Matrices of the trained 
submodels were obtained after ten iterations of the algorithm 
to prevent over-fitting. It has been checked that these matrices 
represent stable models, that is, there is a transition with a 
high probability in each row of the transition matrices and if 
the transition probabilities along the matrix are analysed, the 
final state is always reached for any observation sequence. 

Figure 3: Evolution of submodel log-likelihoods versus the 
number of states. 

4.2 Validating the proposed model 

From the initial set of collected data, once the 70% have been 
put aside for the training of the HF primary user dynamics 
model, the remaining 30% were left to evaluate the trained 
model and validate it. As the HF primary user dynamics 
model is based on three submodels and a high-level model, 
the evaluation protocol requires two steps: first, submodel 
likelihoods are evaluated with sequences one minute long and 
afterwards, the high-level model probabilities are calculated 
for each observation sequence of ten or nine minutes.  

To compare all submodels, the evaluation problem must be 
solved taking the submodel with the highest likelihood as the 
local solution. A matrix containing values {1, 2, 3} was built 
from the results coming from submodels decoding, with its 
rows corresponding to the observation sequences of nine and 
ten minutes. Due to the definition of the high-level model, 
these observation sequences are also equivalent to the 
transitions of the high-level model. Computing the difference 
between this generated matrix and the real one, we were able 
to estimate the percentage of wrong decisions, which actually 
corresponds to 5% for one minute long test observation 
sequences.

As previously stated, the resulting matrix will contain the 
observation sequences for the high-level model and can be 
used to evaluate it. At this point it is not possible to compare 
models in order to solve the evaluation problem but, as these 
observation sequences were the same as the transition 
sequences due to the initial restriction on matrix B of the 
model, the decoding problem can be evaluated using the 

Viterbi algorithm [5]. This algorithm was developed to 
identify the state sequence which maximises the probability 

|, OQP , so that this state sequence can be directly 
compared to the observation matrix. The percentage of errors 
obtained was actually the same as in the previous step, so, the 
high-level model can emit sequences such as the ones used in 
this test. Furthermore, if we think of it as a pseudo-random 
sequence generator, we could guarantee that it would be able 
to emit random sequences statistically close to the distribution 
of the real measurements used for its training. 

Conclusions
In this contribution Hidden Markov Models have been used to 
model primary user activity dynamics in the 14 MHz band 
which anticipates the adoption of cognitive radio principles in 
HF communications. This model would be used by our 
HFDVL stations, acting as secondary users, to predict the 
presence of a primary user, and consequently, to make the 
best use from the available frequency channels. 

The proposed model is built from three interconnected 
submodels which describe three types of channels: available 
channels, unavailable channels and partially available 
channels. It has been trained and validated with real 
measurements collected from the 14 MHz amateur band and 
only 5% test sequences were wrong modelled. 
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