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Abstract 
 
The dynamic effects of high-speed trains on viaducts are important issues for the design of the 
structures, as well as for determining safe running conditions of trains. In this work we start by 
reviewing the relevance of some basic moving load models for the dynamic action of vertical 
traffic loads. The study of lateral dynamics of running trains on bridges is of importance 
mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These 
studies require 3D coupled vehicle-bridge models and consideration of wheel to rail contact. 
We describe here a fully nonlinear coupled model, formulated in absolute coordinates and 
incorporated into a commercial finite element framework. An application example is presented 
for a vehicle subject to a strong wind gust traversing a bridge, showing the relevance of the 
nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle. 
 
1 Introduction 
 
The dynamic behaviour of railway bridges under traffic loads has been an important 
consideration since the early days of railways in the 19th century, with significant implications 
both for the safety and the functionality of structures. The new high-speed trains introduce a 
potentially much greater dynamic effect, the resonant response of the bridge from regularly 
spaced axle loads at speeds whose effective frequency may coincide with the fundamental 
frequencies of the structure. Resonance is not adequately covered by an impact coefficient and 
requires a dynamic analysis of the bridge. As a result of research carried out in Europe to 
investigate high speed traffic actions [1] the new codes for design of railway bridges take into 
account resonant phenomena from traffic, ([2], [3]). These codes prescribe dynamic analyses to 
check resonance under certain circumstances. 

The work on dynamics of railway bridges was pioneered in Spain by Enrique Alarcón, 
who focused his PhD thesis on this topic [4]. Soon after he published proposals for impact 
factors [5] and completed a comprehensive treatise on dynamics with Miguel A. Hacar [6]. 
This work served as the base for the 1975 spanish code for traffic actions on bridges [7]. In the 
early 80’s and motivated by Enrique the first author became acquainted with new approaches 
to these problems of dynamics, taking advantage of the increasing availability of computers 
and new ideas such as the so-called Component Element Method [8]. Further innovations were 
published by Alarcón and co-workers [9]. Recent works compiling new developments in 
railway bridge dynamics have been published by Yang [10] and Xia et al. [11]. 
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This paper also deals with the lateral dynamics of railway vehicles on viaducts, for which 
a 3D coupled full vehicle–structure interaction model must be employed. The interest for this 
study originates from the observation of significant lateral vibrations in some European railway 
bridges, with metallic open deck sections, high lateral compliance and consequently low lateral 
eigenfrequencies. These vibrations affect the train as well as the structure, and were studied 
under the auspices of ERRI [12]. A different type of railway structures with high lateral 
compliance in relative terms are the long continuous viaducts with high piers erected in some 
high-speed railway lines. Several such viaducts form part of the new Spanish HS lines [13]. 

In the rest of this paper we discuss first the dynamic response of bridges in section 2, 
reviewing the “impact” action of moving loads, resonance, and models available for dynamic 
analysis. Following, in section 3 we describe the models for lateral dynamics of vehicles on 
viaducts. A representative application will be presented in section 4. Finally, some concluding 
remarks are summarised in section 5. 
 
2 Dynamic response of bridges 
 
2.1 Dynamic response to a moving load 
 
The dynamic response of a bridge under a moving load is a classical problem in structural 
dynamics. The basic solution for a simply supported bridge was already published in [14]. This 
solution provides a basis for defining a dynamic factor (or impact factor) for design. 

From the dynamic equation of vibration of a beam, the solution may be developed with a 
modal analysis [14], in which we shall take only the fundamental mode of vibration of 
frequency 𝑓! = 𝜔!/2𝜋  (further down we shall consider the implications of taking more 
modes). For a load at constant speed 𝑣 and a bridge of span 𝐿 a non-dimensional parameter 
𝛼 for the load velocity may be defined as: 

 
 𝛼 = !

!!
= !

!!!!
    . (1) 

 
The displacement time history response at the center of the span, in terms of the 

maximum static response 𝑦! = 𝑃𝐿!/48𝐸𝐼 ≈ 2𝑃𝐿!/𝜋!𝐸𝐼  and considering some 
simplifications valid for small damping (𝜁 ≪ 1) may be expressed as:  

 
 𝑦 𝑡 = !!

!!!!
sin 𝛼𝜔!𝑡 − 𝛼e!!!!!sin 𝜔!𝑡   , (2) 

 
where the first term within the brackets is due to the excitation from the external load and the 
second to the free vibration of the bridge. 

Figure 1 shows an application for a 𝐿 = 15 m simply supported beam-type bridge, for 
speeds of 180 km/h and 360 km/h. The impact factor obtained is 1.2 in the first case and 1.7 
in the second case. The solution in eqn (2) is valid during the time the load is on the bridge; 
under this assumption the maximum 𝑦dyn in terms of 𝑡 may be computed (for very fast 
moving loads when the maximum is reached after the load exits the bridge the response is 
lower). For the most unfavourable case without damping (𝜁 = 0) the maximum is attained for 
𝑦 = 0     ⇒     𝜔!𝑡 =

!!
!!!

𝜋, resulting: 
 

 
!!"#
!!

= !
!!!!

sin !
!!!

2𝜋 − 𝛼    sin !
!!!

2𝜋     . (3) 
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Figure 1: Response for a simply supported bridge (𝐿 = 15 m, 𝑓! = 7 Hz, 𝑚 = 12 t/m, 
𝜁 = 1.85%) for a moving load 𝑃 = 200 kN at speeds of 180 km/h and 360 km/h. The arrow 
indicates for each case the time when the load exits the bridge and it continues under free 
vibrations. The axes represent in non-dimensional form the deflection relative to the static 
value 𝑦(𝑡)/𝑦! and the time relative to the fundamental period, 𝑡/𝑇!. 

  
This expression yields an envelope of the dynamic factor with respect to the 

non-dimensional parameter 𝛼, plotted in figure 2. This envelope curve shows a maximum 
response for a critical value of 𝛼! (and associated critical speed, 𝑣! = 2𝛼!𝑓!𝐿):  
 

 
 

Figure 2: Envelopes of impact coefficient for moving load on bridge; 𝜑′dyn from analytic 
solution (3) and 𝜑′UIC from [15]. The various lobes in 𝜑′dyn correspond to slow loads for 
which the beam performs more than one full oscillation during passage.  
 

 𝛼! = 0.617         ⇒         
!!"#
!! !"#

= (1 + 𝜑′!"#)!"# = 1.768  . (4) 

 
In figure 2 the envelope 𝜑′UIC from code [15] is also plotted for comparison, which proves to 
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be sufficiently conservative. As an example, for the bridges in the D214 ERRI study [1] the 
maxima of 𝜑′dyn  correspond to 𝑣! = 333    km/h  for the 𝐿 = 15    m  bridge and 𝑣! =
356    km/h for 𝐿 = 20    m, velocities which may be attained by modern high-speed trains. 
 
2.2 Dynamic analysis with moving loads 

 
The regular patterns in axle spacings of trains may produce resonance in bridges, increasing 
greatly the dynamic effects from the impact effects of a moving load. For railway bridges these 
resonant effects appear in practice for speeds above 200 km/h. This requires a dynamic 
analysis for bridges in high-speed railway lines, which was not generally necessary for 
conventional railway lines with lower train speeds. 

Figure 3 shows some measured results for a bridge in the Madrid-Sevilla HS line, from an 
AVE S100 (ALSTHOM) train at 220 km/h. 

 

   
 

Figure 3: Measured vertical displacement at center of simply-supported span in viaduct over 
Tajo river, Madrid-Sevilla high-speed line, together with results of simulation with moving 
load model [16]. AVE S-100 single unit train at 220 km/h. 

 
The bridge consists of a sequence of simply supported spans with 𝐿 = 38    m. The 

measured and computed results show an impact coefficient of approximately (1 + 𝜑′!"#) =
2.0, measured with respect to the highest static effects due to the locomotive loads. The effect 
would have been even greater for a double unit train (approx. 400 m length). This dynamic 
effect is not so much a problem for the Ultimate Limit State (ULS) of the bridge, which in this 
case is covered by the safety margins embedded in the normative static vertical load envelope 
LM71 and the impact coefficient Φ employed for the design [2]. However, in this case the 
functionality of the bridge was impaired: vibrations induced in the catenary posts proved to be 
excessive and these had to be relocated into new positions. In other cases the resonant dynamic 
effects may be even of much greater magnitude, and must be therefore avoided in the design of 
bridges. 

The basic models for dynamic analysis consider the whole train taking into account the 
complete load sequence (figure 3). A general solution procedure is to employ finite element 
(FE) software for the discretization in space of the dynamic equations. The only feature which 
is special for this case as compared to general structural dynamics problems is the adequate 
definition of the actions from the moving loads, which needs an ad-hoc preprocessing. 
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Figure 4: Model for moving load dynamic analysis. Top: load sequence for AVE S-102 (Talgo) 
HS train with regularly spaced single axles. Bottom: schematic view of model considering 
distribution of loads due to the track. 
 

Two procedures exist for the solution in time: 1) a direct time integration of the coupled 
equations with a numerical scheme, or 2) a modal analysis of the discretised system obtaining 
numerical mode shapes and frequencies. These will then be available as uncoupled single 
degree of freedom equations and may be integrated in time individually. The modal analysis 
option has several advantages. The number of modes to consider can be chosen thus avoiding 
high-frequency components from higher modes, which are not significant for the bridge 
response. Moreover, the solution is generally much faster. The alternative approach of 
performing a direct time integration of the complete system provides a more general method, 
which may be necessary in some cases, for instance to consider nonlinear effects such as 
contacts. A particular case of interest is that of a straight beam subject only to vertical bending, 
for which the differential equation governing the dynamics is  

 
 𝑚𝑢 + 𝐸𝐼    𝑢′′ = 𝑝 𝑥, 𝑡 =   !

!!! 𝑃! 𝛿(𝑥 + 𝑑! − 𝑣𝑡)     , (5) 
 

for a train with 𝑁 concentrated axle loads 𝑃! with offsets 𝑑!, where 𝑥 is the longitudinal 
coordinate, 𝑢(𝑥) the beam vertical displacements, 𝑚 the mass per unit length, and 𝛿 ⋅  is 
the Dirac delta function. The brackets ⋅  have the meaning 𝛿(𝜉) = 𝛿(𝜉) if 0 < 𝜉 < 𝐿 
(load within bridge) or 0 otherwise. Superposed dots (•) represent time derivatives and 
primes (• ′) derivatives with respect to 𝑥. For simple cases, such as the simply supported 
beam, the spatial solution can be performed analytically through modal analysis, obtaining 
uncoupled modal equations for the amplitude of vibration of each mode.Considering mode 
shapes 𝜙!(𝑥) and associated circular frequencies 𝜔!:  

 
 𝑀!𝑦! + 2𝜁!𝜔!𝑀!𝑦!         + 𝜔!!𝑀!𝑦!     =   !

!!! 𝑃! 𝜙! 𝑥 + 𝑑! − 𝑣𝑡 , (6) 
 

where 𝑦! is the amplitude for mode 𝜙!, 𝑀! is the corresponding modal mass and 𝜁! the 
damping ratio. These equations may be integrated in time by direct numerical algorithms 
(either coded directly or available within finite element software). 

An issue which may be of importance is the number of modes to consider in the modal 
analysis. For a displacement analysis of a simply supported beam, it may be generally carried 

v
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out with only the first (fundamental) mode. Acceleration analysis or the extraction of stresses 
or sectional resultants will often require more modes to be considered. 

As an example, we present comparative results for the case of the ERRI D214 𝐿 = 30    m 
bridge under the ICE3 HS train in figure 4. The fundamental (first symmetric) mode frequency 
is in this case 𝑓! = 3    H𝑧, and the second symmetric mode is 𝑓! = 27    H𝑧 (the 2!" mode is 
skew-symmetric and has no influence on mid-span deflections). The analysis is performed here 
for a resonant velocity. It is clear from figure 4 (left) that for displacements only the 
fundamental mode is significant. However, a noticeable influence is seen in figure 4 (right) for 
accelerations from the second symmetric mode. Additional modes or even the direct 
integration with the complete model yield only minor increases to these accelerations. 

 

 
 
Figure 5: Influence of number of modes for simple bridge, on displacements and accelerations. 
ICE3 HS train at 𝑣 = 268    km/h on 𝐿 = 30    m bridge from ERRI D214 [1]. 
 
3 Lateral dynamics of vehicles on bridges 
 
3.1 General features of model 
 
The consideration of lateral dynamics for the response of railway vehicles on bridges requires 
three dimensional models, including degrees of freedom for lateral displacement, rolling and 
yawing in the vehicles. It is also necessary to employ coupled vehicle-structure models, which 
must take into account such features as nosing motion of wheelsets on the rails as well as track 
alignment irregularities. These features give rise to substantially more complex models than 
those used for vertical dynamics described in the previous section. 

A fully nonlinear coupled model is proposed here for the lateral dynamic analysis of 
vehicles on viaducts. Vehicles are considered as three-dimensional multibody systems, and the 
bridge structure is modelled by means of finite elements. The model is developed in a general 
and modular way so that it may be easily implemented within an existing finite element 
analysis software with multibody capabilities. For this work Abaqus [17] finite element 
framework has been used. Both subsystems (bridge and vehicles) are described with 
coordinates in absolute reference frames, as opposed to alternative approaches which describe 
the multibody system with coordinates relative to the bridge motion at the base of the vehicle. 
This facilitates the full consideration of nonlinear inertia terms, without introducing additional 
difficulties for the structural mechanical behaviour [18]. Contrary to the majority of existing 
models for train–bridge dynamic interaction, the formulation described here is capable of full 
consideration of geometrical and material nonlinearities both in the structural subsystem 
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(bridge) and in the multibody subsystem (vehicle). The approach for wheel–rail geometrical 
interaction and mechanical contact model is fully nonlinear as well, not being limited neither to 
constant conicity assumptions nor to linearized elastic contact forces. 

The treatment of wheel to rail contact is based on the elastic contact forces approach [19]. 
The approach for contact point determination at each wheel employs a contact point 
determination based on a pre-computed geometric lookup table. A single hertzian contact point 
is considered at each wheel. Following the basic features of the model are summarised, for a 
more detailed description see [20]. 
 
3.2 Kinematics of wheelset and track 
 
The wheelsets are considered as rigid bodies, within the vehicle multibody subsystem. The 
bridge deck cross sections are also assumed to be rigid within the structural finite element 
model, i.e. no distortion of the plane cross section is considered. This assumption is 
automatically enforced by standard 3D beam-type finite elements. However, both vehicle and 
bridge can undergo large displacements and rotations. In order to establish the contact interface 
with sufficient precision a detailed description of the positions and velocities of the wheel and 
rail points is required, whose key concepts are summarised below. A more general description 
of multibody kinematics for railway applications in [21]. 

We consider a bridge deck section at a position on the deck defined by the longitudinal 
coordinate 𝑠! (Figure 6). The position vector of a point 𝐶 on the rail may be expressed as  

 
 𝐫! = 𝐫! + 𝚲!𝝆! + 𝚲!𝝆!  (7) 

 
where 𝐫! defines the position of the reference point on the deck section. Two reference frames 
are used for the track: the bridge section reference system 𝑏, 𝐞!!  which is attached to the 
deck section at point 𝑏, and the track reference frame 𝑡, 𝐞!!  attached to the track point 𝑡 
located at the mid point between the top of both rails and at the same deck section. 𝚲! and 𝚲! 
are, respectively, the rotation tensors that relate both reference systems and the inertial frame. 
The position of deck section reference point 𝐫!  and the rotation 𝜽!  are obtained by 
consistent interpolation of the finite element nodal degrees of freedom along the bridge deck. 
 

 
 

Figure 6: Reference frames and vectors for track kinematics: intermediate frame attached to the 
deck section 𝑏, 𝐞!!  and the track coordinate system 𝑡, 𝐞!!  
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3.3 Wheelset-track interaction 
 
The contact forces between wheels and rails are computed in three consecutive stages: 
1. Contact geometry: determine of the position of the wheelset considering realistic rail and 

wheel profiles ([20] for details);  
2. Normal contact: following Hertz contact theory [22], obtain the dimensions and shape of 

the contact area (ellipse) and the normal stress distribution;  
3. Tangential contact: compute the resultant forces and moment of the tangential stresses 

which appear as a consequence of the rolling contact.  
Assuming that the material properties of wheel and rail are the same (material symmetry), 

the normal and tangential problems may be considered uncoupled [23] and solved sequentially 
after the determination of the contact geometry. 

The solution for the tangential contact forces at each wheel contact is a key feature of the 
coupled model. This is obtained here using the FastSim algorithm [24], which involves a 
compromise between accuracy and computational cost. The FastSim method has been 
implemented by the authors [25] as a user subroutine within Abaqus [17]. 

For a given friction coefficient 𝜇, the input variables for evaluation of tangential rolling 
forces are the the normal stress distribution, the ellipse semiaxes and the creepages, defined as 
𝜉 = 𝜉! , 𝜉! , 𝜉!

!
 which are defined as: 

 

 𝜉{!,!} =
𝐯!!𝐯! ⋅𝐞{!,!}

!

!
          𝜉! =

𝝎!!𝝎! ⋅𝐞!!

!
  , (8) 

 
with 𝑣 the wheelset longitudinal velocity and (𝝎! ,𝝎!) the angular velocities of wheelset 
and track respectively. The FastSim model involves a discretisation in strips within the contact 
ellipse and integration along each strip, as shown in Figure 7. In this figure a representative 
case for distribution of tangential stresses is shown also. 
 

 
 

Figure  7: Discretisation of contact ellipse with FastSim and evaluation of tangential forces in 
rail-wheel contact 

   
The resultants of the shear stress distribution at a point 𝐴 are the forces 𝑇! and 𝑇! and 

the moment 𝑀! whose directions are, respectively, 𝐞!! , 𝐞!!  and 𝐞!!:  
 

 𝐟!,! = 𝑇!  𝐞!! + 𝑇!  𝐞!! + 𝑁  𝐞!!   , (9) 
 𝐦!,! = 𝑀!  𝐞!!   . (10) 

58 3.4. Problema tangencial

de forma matemática como:

⇥(xc +�xc, yc) = ⇥̂(xc +�xc, yc)

si |⇥̂(xc +�xc, yc)| < µ�zc(xc +�xc, yc)

⇥(xc +�xc, yc) = µ �zc(xc +�xc, yc)
⇥̂(xc +�xc, yc)

|⇥̂(xc +�xc, yc)|

si |⇥̂(xc +�xc, yc)| ⇥ µ �zc(xc +�xc, yc)

�
⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇤

⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇥

, (3.30)

Por tanto, si no existe deslizamiento, la tensión hipotética calculada se da
por válida, en caso contrario, el valor máximo de la tensión tangencial será el
definido por la Ley de Coulomb, y la dirección será la de la tensión hipotética.

Partiendo de la Ecuación 3.29, y haciendo uso de la Ecuación 3.30, es
posible obtener la distribución de tensiones tangenciales �(xc, yc) en toda la
elipse de contacto. Para cubrir de una forma discreta la totalidad de la elipse,
es necesario discretizar, además de en la dirección xc, en la dirección yc. Para
llevar a cabo la discretización se toma un número de divisiones según la
dirección xc (pxc), y otro según la yc (pyc). Valores razonables son pxc = 20 y
pyc = 20, que es lo adoptado para este trabajo2. Una vez elegido el número
de franjas pyc , el valor del ancho de cada una en esa dirección es �yc =
2 b/pyc . Cada franja de ancho �yc tiene una longitud variable, por lo que los
incrementos �xc serán distintos para cada franja y dependerán del valor yc de
los puntos medios de cada rectángulo, siendo �xc(yc) = �2 a

⇧
1� (yc/b)2/pxc

(posteriormente se explica el porqué del signo menos). Ver Figura 3.21.

Figura 3.21.Elipse de contacto discretizada. En el centro de cada rectángulo de la discretización se
obtendrán los valores de las tensiones tangenciales según las dos direcciones locales, mediante FastSim,
lo que permitirá conocer una distribución de tensiones en toda la huella.

Suponiendo conocida la tensión �(xc, yc), mediante la Ecuación 3.29 es
posible determinar el valor de la tensión �(xc+�xc, yc) (Figura 3.22). Inicial-

2La elección pxc y pyc debe ser un compromiso entre la precisión y la eficiencia del
cálculo.
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3.4 Vehicle-bridge system dynamics 
  
Considering wheelset contact forces and moments from (7) (𝐟! ,𝐦!), applied external loads 
(𝐟! ,𝐦!)  and loads transmitted by the suspension systems (𝐟!,𝐦!) , the Newton-Euler 
equations for a single wheelset can be written as  
 

 𝑚  𝐫! + 𝐟! = 𝐟! + 𝐟!   , (11) 
 𝐉  𝝎! +𝝎!× 𝐉  𝝎! +𝐦! = 𝐦! +𝐦!   , (12) 

 
being 𝑚 the mass and 𝐉 the inertia tensor for the wheelset. 

Employing standard multibody dynamics models for the remaining of the vehicle, these 
equations may be assembled into a full system of equations for the complete vehicle. On the 
other hand, the discretised equations for the bridge structural dynamics may be obtained 
following standard finite element procedures, and expressed in a similar fashion. 

The nonlinear set of coupled differential equations is solved in time using an implicit 
integration HHT-𝛼 algorithm, included in Abaqus [17]. This method has a good stability and 
robustness for the coupled problems described, and includes an inherent tunable numerical 
damping for the high frequency noise. The constraints inherent to the multibody subsystem are 
solved efficiently with augmented lagrangian procedures. 
 
4 Application: wind gust on vehicle on continuous deck bridge 
 
As a representative application, the response of a high-speed vehicle when it crosses over a 
multi-span bridge with continuous deck is analysed. The mechanical data for the vehicle are 
detailed in [20]. 

The structure is a single track continuous bridge consisting of six equal spans of 
𝐿 = 50  m each. The bridge is supported on two end abutments and five intermediate piers. 
Torsional rotation is allowed at the piers but constrained at the abutments. The deck cross 
section properties are uniform along the bridge length, see [20]. The first lateral and vertical 
bending eigenfrequencies are equal, of value 2.18  Hz; the first torsion eigenfrequency is 
1.10Hz. Euler-Bernoulli beam elements of 1m length with linear elastic behaviour have been 
used. 

The vehicle runs at a constant velocity of 100  km/h, with a lateral transient wind gust 
load defined by a chinese hat function [26] applied, with maximum value 𝐹!"# = 270  kN and 
gust duration 𝜏 = 0.1  s (Figure 8). This load is applied on the vehicle car-body along 𝑦 
direction (transversal) when the last wheelset of the vehicle enters the bridge. 

In Figure 9 the lateral response of the last wheelset of the vehicle when it crosses the 
bridge is shown, compared with the case for a perfectly rigid track (i.e. no structure). It can be 
seen that wheel flanges contact the lateral part of rail heads, the limits are indicated in the 
graph with dotted lines. We remark that for assessment of these running safety scenarios a 
nonlinear model such as proposed here is essential, as linear models cannot reproduce wheel–
flange impacts. 

Figure 10 shows the lateral response of the vehicle car-body and Figure 11, the tangential 
force 𝑇! time history. This force is expressed at each instant in the local tangent plane to the 
wheel contact (i.e. frame 𝐶, 𝐞!! ) of the left wheel of the last vehicle wheelset; it cannot be 
interpreted as a lateral load. 

Figure 9 shows a significantly different response for wheelset displacements when the 
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structure flexibility is taken into account: not only in terms of amplitude of oscillations, but 
also of frequency. A similar remark can be made for the car-body displacements, Figure 10. 
Moreover, contact forces in Figure 11 exhibit peaks which correspond to the flange impacts, 
these impacts differ significantly in both models.  

 

 
 

Figure 8: Lateral force history on vehicle car-body: wind gust load corresponding to a “chinese 
hat” function 

 

 
 

Figure 9: Lateral response of last wheelset; dotted lines indicate limit for wheel flange contact 
 

 
  

Figure 10: Lateral response of the car-body under an applied wind gust load 
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Figure 11: Tangential contact forces at the left wheel of the last wheelset, showing peaks for 
wheel–flange contact 
 
5 Conclusion 
 
The dynamic effects of high-speed trains on viaducts are important issues for the design of the 
structures, as well as for the consideration of safe running conditions of the trains, specially in 
high-speed railways. 

The study of lateral dynamics of running trains on bridges is of importance mainly for the 
safety of the traffic on laterally compliant bridges, requiring 3D coupled vehicle-bridge models 
and consideration of wheel to rail contact. A fully nonlinear coupled model is proposed here, 
described in absolute coordinates and incorporated into a commercial finite element 
framework. The applications presented demonstrate the relevance of the coupling effect 
between vehicle and bridge, as well as for considering nonlinear contact wheel-rail models. 
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