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Abstract - The Kolmogorov approach to turbulence is applied to the Burgers turbulence in the 
stochastic adhesion model of large-scale structure formation. As the perturbative approach to this 
model is unreliable, here a new, non-perturbative approach, based on a suitable formulation of 
Kolmogorov's scaling laws, is proposed. This approach suggests that the power-law exponent of 
the matter density two-point correlation function is in the range 1-1.33, but it also suggests that 
the adhesion model neglects important aspects of the gravitational dynamics. 

The large-scale structure of the universe is produced by 
the gravitational clustering of an initially homogeneous 
matter distribution. This process can be described by the 
Newtonian equations of motion of the matter fluid, written 
in comoving coordinates and in terms of the peculiar 
velocity and gravitational fields [1]. These equations are 
nonlinear and, although they can be linearized to describe 
the early growth of small perturbations of the initially 
homogeneous distribution, the actual structure formation 
takes place when the nonlinearity plays a major role, at 
the aptly called nonlinear stage of gravitational clustering. 
The nonlinearity of fluid mechanics also plays a major role 
in the phenomenon of turbulence and this is the cause of 
the difficulty in treating this phenomenon (often referred 
to as the "unsolved problem of classical physics"). Since 
turbulence is a key actor in many astrophysical scenarios, 
it is tempting to apply methods and ideas of turbulence 
to the study of large-scale structure formation. 

An early attempt to apply Kolmogorov's scaling laws to 
the origin of galaxies was made by von Weizsacker [2], but 
his ideas have been since mostly restricted to intragalactic 
turbulence and have played no role in the study of the 
formation of clusters and superclusters of galaxies or 
the large-scale distribution of dark matter. However, 
a popular model of large-scale structure formation, 
namely, the adhesion model [3-5], is essentially a model 

of pressureless turbulence, that is to say, the type of 
turbulence that occurs in strongly compressible potential 
flows and is usually called Burgers turbulence. As shown 
in this letter, the Kolmogorov approach to turbulence 
can be applied to cosmic Burgers turbulence, employing 
a suitable formulation of the adhesion model. 

In cosmology, scaling laws for the velocity field, such as 
Kolmogorov's laws, are especially important if they can 
be related to scaling laws for the matter density field, 
because the positions of astronomical objects are more 
easily measurable than their velocities and indeed have 
been shown to obey scaling laws. The best known scal­
ing laws in cosmology have been found in the distribution 
of galaxies [6,7]. The first and prototypical scaling law is 
the power law of the galaxy-galaxy correlation function, 
which is proportional to r~7 , where r is the inter-galaxy 
distance. This law suggests a fractal distribution of galax­
ies, but more detailed analyses show that a more general, 
multifractal distribution is more appropriate [6,7]. Even 
more detailed analyses, namely, analyses of the full matter 
distribution, including the dark matter, are possible with 
the help of iV-body cosmological simulations, and they 
show that both the dark matter and the baryonic matter 
form a common multifractal "cosmic web" structure [8]. 
The cosmic web is precisely the type of structure predicted 
by the adhesion model [3-5]. 

The cosmic web consists of sheets (Zeldovich 
"pancakes"), filaments and nodes, so it is indeed 



multifractal, in the sense that it is formed by objects of 
several dimensions, namely, two, one and zero dimen­
sions. However, such a distribution needs not be scale 
invariant. Nevertheless, the actual cosmic web structure 
is, arguably, a self-similar multifractal [8]. The reason 
why the adhesion model does not necessarily predict a 
scale-invariant distribution lies in a peculiarity of the 
Burgers equation, which we now explain. This equation 
writes 

-^-+u-Vu = vV2u, (1) 

where u is the velocity and v the viscosity coefficient1. 
To this equation, it must be adjoined the potential-flow 
condition, V x t i = 0. Although the Burgers equation is a 
particular case of the general Navier-Stokes equation, it 
has the peculiarity of being irdegrable, in sharp contrast 
with the more usual Navier-Stokes equation of incompress­
ible turbulence. In other words, the chaotic properties 
of the latter are not present in the former, which nicely 
evolves the initial conditions. Therefore, the natural way 
of producing a self-similar cosmic web structure is by using 
self-similar initial conditions, namely, an initial Gaussian 
velocity distribution with a power-law power spectrum [5]. 
A distribution of this type evolves to a self-similar cosmic 
web. 

The exact integral of the Burgers equation is obtained 
through the Hopf-Cole transformation, which transforms 
eq. (1) into the standard heat equation [3-5]. In the zero-
viscosity limit, v —¥ 0, the exact integral gives rise to a 
simple geometrical construction, in terms of Lagrangian 
coordinates (common in fluid mechanics). Equation (1) 
for v = 0 is just du/dt = 0, so fluid particles actually 
move along different straight lines, until certain groups 
of nearby particles collide at caustic surfaces. The straight 
lines can be prolonged beyond the caustics, defining multi-
streaming regions, where the field u given by du/dt = 0 
is multivalued. However, in caustics, the viscous term of 
eq. (1), J/V2U, is non-vanishing even if z/—>0, because 
V 2 M then diverges. The analysis of the Hopf-Cole solution 
shows that any infinitesimal viscosity prevents multi-
streaming and just produces the adhesion of particles at 
caustics, which become shock fronts (it-discontinuities). 
When the initial velocity distribution is Gaussian with a 
power-law power spectrum, so that the initial velocity field 
is continuous but non-smooth, shock fronts are formed 
after an arbitrarily short time and have a built-in self-
similarity [5]. This shock-front structure constitutes a 
self-similar cosmic web. 

For i/ = 0, eq. (1) is indeed scale invariant, in the sense 
that it is invariant under simultaneous space and time 
scalings Xx, A1_?lt, for arbitrary h, if the velocity is scaled 
as Xhu. Therefore, if the initial velocity field is scale 

1As regards the cosmological application of eq. (1), it must be 
noticed that t is not the standard time but a function of it, namely, 
the growth rate of linear density fluctuations [3—5], 

invariant with exponent h, the solution of the inviscid 
equation obeys the dynamical scaling law 

u(x,t) =th/{1-h)u(x/t1/{1-h\ 1), (2) 

that is, the solution at any t > 0 is obtained by scaling 
the solution at t = \. Naturally, this scaling law can be 
derived from the v—>0 limit of the Hopf-Cole integral 
solution for an initial velocity distribution that is Gaussian 
with a power-law power spectrum, in which case, the 
natural range of the exponent h is —\<h<\ [5]. The 
dynamical scaling law (2) is connected with a dynamical 
invariant, ulfh/x, which can be identified with the specific 
dissipation rate e for ft-=1/3 (the Kolmogorov scaling). 
One can further deduce that there is a homogeneity scale 
Lit) =tl^l^h^L(l), such that the cosmic web structure at 
time t has only formed on scales smaller than L(t) whereas 
the initial homogeneous distribution stays on larger scales. 
Indeed, the initial conditions are recovered by eq. (2) in 
the t —¥ 0 limit, which is singular but is essentially attained 
if x ^> L{t). The homogeneity scale L plays a role that is 
similar to the role of the integral scale in incompressible 
Navier-Stokes turbulence. On the other hand, L can be 
identified with a standard scale in cosmology, namely, 
7*0, which denotes the scale at which the galaxy-galaxy 
correlation function is equal to one (and is sometimes given 
the misnomer "correlation length") [9]. 

Equation (1) only constrains the velocity field, and we 
would like to relate it to the matter density field. This 
field is given by the motion of fluid particles, but it 
cannot be directly obtained from the Hopf-Cole solution 
for u. Nevertheless, in the zero viscosity limit, a convenient 
expression of the density field in terms of the velocity field 
can be obtained [10]; namely 

Six) = 8o det [5ij - djUj(x)], (3) 

where g0 is the constant initial density, and it is assumed 
that t = 1. The determinant is actually the Jacobian deter­
minant of the transformation to Lagrangian coordinates. 
Expression (3) simplifies to 

5Q(X) :=Qix)-Qo = -Qodiu''ix) (4) 

in the linear regime, such that \5g\ <C Qo- In the nonlinear 
regime, caustics arise when the Jacobian determinant 
blows up and, according to eq. (3), g—¥ oo. 

Unfortunately, the above-explained approach, based on 
the simple (integrable) evolution of an initial velocity 
distribution with suitable statistical properties, has obvi­
ous shortcomings: i) in cosmology, the initial power spec­
trum is not a power law; ii) the adhesion model is just 
a simplified model of the gravitational dynamics, which 
actually is chaotic; and iii) the adhesion of matter in 
shock fronts is considered as an inelastic collision but the 
dissipated energy is not accounted for. In general, chaos 
and dissipation are connected: chaotic dynamics erases 
memory of initial conditions, giving rise to an irreversible 
process in which entropy grows. Therefore, it is reasonable 



to supplement the adhesion model with a "noise", which 
reverts the lost kinetic energy, on the one hand, and makes 
the long-time evolution of the velocities independent of the 
initial conditions, on the other hand. The noise, or random 
force, is just added to the right-hand side of eq. (1). 

This stochastic adhesion model possesses an attractor 
characterized by a dynamical scaling which, unlike the 
scaling defined by eq. (2), is independent of the initial 
conditions; namely, t-scaling occurs only if t is interpreted 
as the time difference between two arbitrary events in the 
asymptotic stationary state. Nevertheless, this stationary 
state corresponds again to a cosmic web structure, which 
can be described as a "quasi-Voronoi" tessellation of shock 
fronts [11]. Moreover, the stationary state, in which the 
energy injected on scales > L is dissipated at constant rate 
s at the Kolmogorov scale, is analogous to the stationary 
state of incompressible turbulence. However, in Burgers 
turbulence, the dissipation takes place in shock fronts 
and has more spatial variation than in incompressible 
turbulence, producing strong intermittency. Intermittency 
causes deviations from Kolmogorov's scaling in higher-
order correlation functions, and these deviations must be 
taken into account, as shown below. A beautiful exposition 
of Kolmogorov's ideas and of intermittency is given by 
Frisch [12]. 

The stochastic Burgers equation is well studied, since it 
is equivalent to the Kardar-Parisi-Zhang (KPZ) equation, 
which plays an important role in the physics of interface 
growth. The equivalence is realized by expressing the 
Burgers equation in terms of the velocity potential and 
identifying this potential with the interface's height. The 
KPZ equation includes a Gaussian noise with power 
spectrum D(k,oj). It has been studied with renormalized 
perturbation theory by Medina et al. [13]. With this 
method, the types of noise that give rise to dynamical 
scaling are determined as fixed points of the dynamical 
renormalization group. For white noise, in three spatial 
dimensions, the non-trivial fixed point is repulsive, so the 
nonlinear term of the Burgers equation is irrelevant (in 
the renormalization group sense) and the viscous term 
dominates in the perturbative stationary state. Therefore, 
turbulence can only occur in the strong-coupling, non-
perturbative regime. 

More generally, one can consider "colored" noise, but 
with just spatial correlations, namely, with spectrum 
D(k), in order not to break Galilean invariance [13]. 
For small k, namely, length scales much larger than 
the Kolmogorov scale, one can assume the universal 
form D(k) « Do + Dk~2p, p> 0, that is to say, the noise 
consists of white noise plus a power-law correlated noise. 
Unfortunately, the addition of power-law correlated noise 
does not bring real improvements: there can be several 
fixed points, but, in three dimensions, only the trivial fixed 
point is stable and only if p is small; otherwise, it becomes 
a saddle point [13]. This means that a noise with sufficient 
power on large scales inevitably leads to a strong-coupling 
stationary state. 

The method of Medina et al. [13] has been adapted to 
the cosmology setting by Dominguez et al. [14]. They con­
sider a more general type of noise, which includes tem­
poral correlations, namely, D(k, u>) = Do + Dk~2poj~20. 
Furthermore, their KPZ equation has an extra term, 
proportional to the velocity potential, that is, a term 
with a dimensional coupling that they call "mass", in 
analogy with quantum field theory. The corresponding 
renormalization group equations have several fixed points, 
but only one is stable. A choice of p and 9 in certain ranges 
yields a range of exponents of the power-law velocity-
potential correlation function such that the corresponding 
range of exponents of the density correlation function, 
obtained through eq. (4), agrees with the observational 
range of 7 (the exponent of the galaxy-galaxy correlation 
function). This intriguing derivation of 7 has several 
questionable aspects, besides the ad-hoc choice of p and 9. 
First, Galilean invariance is broken, as the existence of 
the stable fixed point demands a non-zero 9 [14]. Second, 
eq. (4) is only valid in the linear regime, in principle. 
Third, the results, apart from the value of 7, are also 
questionable: Regarding the values of the couplings at 
the fixed-point, one notices: the strength D of the colored 
noise turns out to be negative (note that the colored noise 
dominates over the white noise for small k); furthermore, 
the "mass" scale is non-vanishing, so the stable fixed point 
does not seem to correspond to a scale-invariant stationary 
state. 

At any rate, one can argue, on general grounds, that 
perturbation theory (especially, the one-loop approxima­
tion) is not the right approach to Burgers turbulence. The 
effective coupling constants in the renormalization group 
equations have the generic expression X2D/i/3 (except the 
"mass"), where A is the nonlinear coupling constant (to 
be set to the value of unity), D is a noise strength, and v 
the viscosity. Therefore, as the nonlinear term dominates 
in the inertial range, the coupling must be strong. More 
precisely, the given expression implies that the coupling 
constants are actually proportional to the cube of the 
Reynolds number, which has to be a very large number, 
making perturbation theory unreliable. 

Therefore, one must resort to non-perturbative meth­
ods. Standard non-perturbative methods of turbulence 
are the closure approaches, in which the hydrodynamical 
hierarchy of equations for statistical moments is closed at 
some order by assuming a relation between the moments 
of the corresponding order and lower-order ones. There 
is a similar closure approach in cosmology, based on the 
BBGKY hierarchy [1]. This a second-order closure and it 
is consistent with a scaling ansatz for the two-point corre­
lation functions, with just one power-law exponent, but 
this number remains undetermined, unless it is connected 
with the initial conditions, namely, with an initial 
power-law power spectrum of perturbations. Since we 
avoid this type of connections, on account of the chaotic 
nature of gravitational dynamics, we prefer to follow the 
traditional non-perturbative methods of turbulence. They 



are based on reasonable assumptions, the simplest ones 
being Kolmogorov's universality assumptions, namely, 
homogeneity, isotropy, and scaling laws for the moments 
of longitudinal velocity increments [12]. These laws state 
that 

((5tx-r/r)")oc(er)"/3 , (5) 

where 5u = u(x + r /2) — u(x — r /2) and n G N. A general 
form of the Kolmogorov scaling laws, suitable for intro­
ducing the effect of intermittency, is 

[\5u\q) = Ar«q\ (6) 

where g G l , and A does not depend on r. This general 
scaling law characterizes u as a (random) multifractal or 
multi-affine function, whereas the restriction to £(q) oc q 
corresponds to an ordinary self-affine function [15]. There­
fore, eq. (5) corresponds to a particular form of self-
affinity, whereas the effect of intermittency is to give 
rise to multifractality, given by the function C(<?)> whose 
properties are explained in the following. 

Kolmogorov's scaling laws can be justified by employing 
the hierarchy of hydrodynamical equations, in particular, 
the second-order one, called the Karman-Howarth-Monin 
equation [12]. A version of this equation is valid for 
Burgers turbulence. An illuminating derivation of the 
equation has been given by Polyakov [16] in the one-
dimensional case. Polyakov realizes that, in the equation 
for dtu

2, the dissipation in the inertial range arises as a 
field-theory anomaly, due to the non-differentiability of 
the velocity field. The form of the anomaly can be found 
by employing a point-splitting method (already implicit 
in the definition of 5u). In the three-dimensional case, the 
calculation is more involved but it yields the simple result 

dtv?(x) = -u'ix)^^- + - lim A (5iJ 5u2) (7) 

(in the v—>0 limit). The last term is the anomaly a(x), 
which would vanish if u(x) were differentiable. Remark­
ably, to derive eq. (7), we do not need homogeneity or 
isotropy. Anyway, homogeneity and isotropy are part of 
Kolmogorov's universality assumptions and are natural 
in cosmology. From eq. (7), one deduces that the average 
dissipation in the steady state is e = — (a)/2. This closure 
relation is an exact formulation of the n = 3 case of the 
scaling laws (5) for Burgers turbulence, analogous to 
Kolmogorov's "4/5" law of incompressible turbulence [12]. 
Therefore, in eq. (6), £(3) = 1 (assuming that e is well 
defined in the i/—>0 limit). 

If the probability P(5u) were Gaussian, then £(q) oc q 
(self-affine u), and necessarily C(<?) = ,?/3, as in eq. (5). 
However, intermittency manifests itself in a slower growth 
of C(q) for q > 3, as extensively studied by Frisch [12] for 
incompressible turbulence. As already said, intermittency 
in Burgers turbulence is especially strong. Indeed, in 
one dimension and with power-law correlated noise, the 
strength of intermittency depends on the noise exponent 
but is always such that the maximum of £(q) is C = l ; 

as shown by Hayot and Jayaprakash (who qualify this 
behaviour as "extreme multifractality") ([17], especially, 
fig. 2). The reason for that maximum is that the average 
in eq. (6) is dominated, starting from some value of q, by 
the effect of shocks; so one gets, by replacing the ensemble 
average with a spatial average, 

(|H9)~5>U„|9r, 
n 

where the sum is over the set of u-discontinuities and 5un 

is the jump at the n-th discontinuity. 
Hayot and Jayaprakash [17] determine the values of 

q at which £(q) reaches the value of unity, in terms of 
the exponent of the noise power-law correlation function. 
Their results can be generalized to three dimensions. In 
terms of the KPZ noise exponent p, the value p = 5/2 is 
such that the noise strength D has the dimensions of e and 
the (Burgers) noise correlation function is proportional to 
log r. This leads to the Kolmogorov scaling law £(q) = q/3 
for q ̂  3, while ((q) = l for q ̂  3 [17]. The r —¥ 0 limit 
of the noise correlation function, equal to e, diverges as 
v —¥ 0 for p < 5/2 and diverges as L —¥ oo for p > 5/2. In 
other words, 

/>oo 

£ = / k2D(k)d3k 
Jo 

diverges at k = oo or at k = 0 and therefore is not univer­
sal. However, the r-dependent part of the noise correlation 
function is universal and proportional to r2p~5 for 3/2 < 
p < 7/2, p y^ 5/2. In particular, the values of p G (5/2, 7/2) 
correspond to large-scale forcing, such that e must depend 
on L but is well defined in the i/—>0 limit. This large-scale 
forcing leads to £(q) = 1 if q ̂  3, like for p = 5/2, but now 
2/3 < C(2) < 1. For p> 7/2, the r-dependent part of the 
noise correlation function is not universal and depends on 
what happens on scales of the order of L; that is to say, 
it is determined by the initial conditions. Furthermore, 
((q) = 1 for q ̂  2, so £(2) reaches its maximum value. In 
this case, namely, p > 7/2, the stochastic adhesion model 
is presumably equivalent to the ordinary adhesion model 
with self-similar initial conditions. Therefore, the interest­
ing range for the cosmic structure is pG (5/2, 7/2). 

Our next step is to calculate the density correlation 
function from eq. (3), assuming eq. (6) with ((q) = l 
for q ̂  3 and 2/3 < £(2) < 1. The expansion of the deter­
minant in eq. (3) yields 

5Q/ QO = —diu' + {pi'uld2'u2 — di'u2d2'ul + di'uld^'u3 

- dlU
zdzu

l + d2u
2d3u

3 - d2u
3d3u

2) + 0(du)3. (8) 

While eq. (4), of 0(du), is valid in the linear regime, we 
have to consider the formation of caustics. As already said 
regarding eq. (3), caustics and hence density singularities 
are due to the blowing up of the Jacobian determinant, 
namely, of some eigenvalue(s) of the matrix diUj = dij<p, 
where 4> is the velocity potential. When there are density 



singularities, the relative importance of the summands in 
the right-hand side of eq. (8) is given by the number of 
diverging eigenvalues. Therefore, eq. (4) may still hold in 
the nonlinear regime if only one eigenvalue diverges, that 
is to say, for the formation of sheets in the early stages, 
whereas for filaments or nodes, the remaining terms in 
eq. (8) are necessary. Let us see how this idea is realized 
for the density correlation function. 

The reduced two-point correlation function of the 
density is 

(5e(r)5e(0))/e
2
0 = (diu

i(r)dju*(0))-2c(r) 

+ (0(5U)4) + ---, (9) 

where 

c(r) = {{pi'uld2'u2 — di'u2d2'ul + di'uld^u3 — di'u3dy,ul 

+d2u
2d3u

3 - d2u
3d3u

2) (r) djU
j(0)). 

We have shown explicitly only terms up to 0(<9u)3, 
because the other terms do not require any calculation, as 
we now explain. The functions on the right-hand side of 
eq. (9) are power-laws of r, each one with a characteristic 
exponent —7 that can be deduced from eq. (6); namely, 
—7 = ((n) — n for (0(du)n). Given that ((n) = 1 for n = 
3,4, 5, 6, we have 7 = 2, 3,4, 5, respectively. However, the 
maximal value is 7 = 3, which is the value for a Poisson 
distribution (shot-noise) term: this term can appear as 
either 5(r) or r~3 (see, e.g., ref. [9]). In general, the 
value 7 = 3 appears whenever there are points with finite 
mass, as, for instance, the cosmic-web nodes. Since 7 = 3 
is reached for n ^ 4, we only need to consider the cases 
n = 3 and n = 2. 

To explicitly calculate c(r) ocr~2, it is useful to express 
it as c(r) = Ag(r), where 

g(r) = ((d114>d224>-di24>d2i4>+dii4>d334>-d134>d314> 

+ d224> d33<f> - d23<f> d324>)(r) (f)(0)). 

This function is a dimensionless scalar, so it must be a 
constant. Therefore, c(r) = 0 and the 7 = 2 contribution 
vanishes. 

When the density correlation function is, in the nonlin­
ear domain r <C L, the sum of different powers of r, the 
most singular term dominates on the smaller scales. The 
most singular term is, of course, the r~3 term, but it 
must be discarded [9]. Therefore, in the end, the relevant 
contribution to the density two-point correlation func­
tion is just due to the velocity two-point correlation func­
tion, as if the only contribution to the density is due to 
sheets. The corresponding exponent is 7 = 2 — C(2). Since 
2/3 < C(2) < 1, we obtain 1 < 7 < 4/3. The Kolmogorov 
scaling </(2) = 2/3 yields the upper bound, 7 = 4/3 ~ 1.33. 
The range of values of 7 obtained from galaxy surveys or 
iV-body cosmological simulations is (mostly) in the inter­
val (1, 2) [6-8]. However, the classic value 7 = 1.7, which 
still stands [7,8], is larger than 4/3. Nevertheless, a specific 

methodology for the analysis of galaxy catalogs [6] yields 
values of 7 in the interval (1, 1.3). 

To obtain values of 7 in the interval (4/3, 2), one could 
try a p G (3/2, 5/2). Then, the Kolmogorov scale could not 
be set to zero, so it should be kept and, preferably, iden­
tified with a physical scale. In the gravitational dynamics, 
there is no intrinsic small scale, although there are small 
scales in the initial conditions. In iV-body cosmological 
simulations, the most suitable small scale is the scale of 
gravitational smoothing. In any case, if we were to take 
p G (3/2, 5/2), then £(3) < 1, so c(r) would not vanish. As 
this term is more singular than r^2^2, it would produce 
a 7 > 2 on the smaller scales, so the density correlation 
function would not be a pure power law with 7 G (4/3, 2) 
over the entire inertial range. This alteration of the smaller 
scales for p G (3/2, 5/2) is related to the non-universality 
of e and, hence, of the Kolmogorov energy cascade, which 
both would depend on the detailed dissipation mechanism 
below the Kolmogorov scale. 

With 1 ̂  7 < 4/3, the density correlation function 
is dominated by sheets. Interestingly, the analysis of 
iV-body cosmological simulations leads one to a simi­
lar conclusion: the bulk of mass belongs to sheets [8]. 
However, to fully understand the role of the three types 
of cosmic-web singularities, namely, sheets, filaments and 
nodes, one must go beyond the scope of the adhesion 
model, because the three types of singularities are very 
different in regard to the gravitational dynamics. The 
accumulation of matter in sheets produces density singu­
larities, but the gravitational potential stays finite. In 
contrast, filaments and nodes are gravitational singular­
ities as well as density singularities, so their formation 
involves the dissipation of an infinite amount of energy. 
Therefore, it is not surprising that the analysis of iV-body 
cosmological simulations [8] shows that the spectrum of 
local dimensions a is cut off at a=l, which is precisely 
the local dimension of filaments. Nevertheless, for fila­
ments, the gravitational potential has just a logarithmic 
singularity, which is milder than the r _ 1 singularity of 
nodes and, hence, involves less dissipation. 

At any rate, gravitational singularities cannot be 
described in a Newtonian framework and need the Theory 
of General Relativity. In this theory, the energy dissipated 
in, for example, the formation of a point singularity 

black hole is finite, namely, it is given by the 
well-studied black-hole entropy. Plausibly, a good part 
of the gravitational energy dissipation that takes place 
below the (cosmic) Kolmogorov scale can be attributed 
to the formation and growth of super-massive black 
holes, which occur due to dissipative processes in the 
dark matter and, preferentially, in the baryonic matter. 
However, the formation and growth of black holes or 
other relativistic gravitational singularities is beyond the 
scope of the adhesion model and even beyond the scope 
of (state-of-the-art) iV-body cosmological simulations. 

In conclusion, a hydrodynamic closure approach 
to three-dimensional Burgers turbulence leads to 



Kolmogorov's scaling laws, although in a general form 
compatible with the presence of strong intermittency. 
These scaling laws can be applied to the stochastic 
adhesion model of the cosmic structure, in particular, to 
the determination of the density two-point correlation 
function. The result is in partial agreement with the two-
point correlation function obtained from the distribution 
of galaxies and from iV-body simulations but suggests 
that the adhesion model underestimates the contribution 
of low-dimensional singularities (filaments and nodes) 
to energy dissipation, whereas iV-body simulations 
overestimate it. It is probably necessary to have a bet ter 
modeling of small-scale dissipative processes, and this 
modeling may require ingredients from general relativity. 
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