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One of the main causes for age-related declines in working memory is a higher vulnerability to retroactive interference due 
to a reduced ability to suppress irrelevant information. However, the underlying neural correlates remain to be established. 
Magnetoencephalography was used to investigate differential neural patterns in young and older adults performing an 
interference-based memory task with two experimental conditions, interrupting and distracting, during successful recogni­
tion. Behaviorally, both types of retroactive interference significantly impaired accuracy at recognition more in older adults 
than in young adults with the latter exhibiting greater disruptions by interrupters. Magnetoencephalography revealed the 
presence of differential age-related neural patterns. Specifically, time-modulated activations in temporo-occipital and 
superior parietal regions were higher in young adults compared with older adults for the interrupting condition. These 
results suggest that age-related deficits in inhibitory mechanisms that increase vulnerability to retroactive interference may 
be associated with neural under-recruitments in a high-interference task. 

THE increasing life expectancy occurred during the last 
decades demands the study of the particular needs of 

aged individuals (1); therefore, the study of age-related cog­
nitive declines and their neural correlates is crucial. Aging is 
associated with memory impairments (2,3), particularly in 
working memory (WM). This theoretical construct involves 
the ability to retain and actively manipulate information 
temporarily. WM is a capacity-limited system, which affects 
both storage and processing, resulting in limited mainte­
nance and attention capacity, respectively (4). WM supports 
other high-level cognitive processes, such as storage, 
rehearsal, and executive functions (5). Executive functions, 
in turn, include inhibitory mechanisms, necessary to delete 
task-irrelevant information and resolve interference during 
memory maintenance (6). Regarding the neural correlates of 
WM, neuroimaging research suggests that it represents an 
emergent property with neural interactions between the pre­
frontal cortex (PFC) and more posterior regions of the brain 
(7). Specifically, it seems that controlled top-down signals 
from the PFC modulate the storage in posterior parietal 
regions (8). 

Inhibitory deficit hypothesis (9) provides a theoretical 
framework to understand which cognitive processes remain 
stable and which are affected by aging. Specifically, it pos­
tulates age-related difficulties to reduce interference from 
task-irrelevant information due to inefficient inhibitory con­
trol mechanisms (10,11). Age-related decrements in WM 
performance at recognition have been reported (12-16), 
especially in tasks in which subsequent events interfere 
with previous ones during the maintenance of information 
(17). This phenomenon, known as retroactive interference 
(RI), reduces the ability to suppress irrelevant information 
and also leads to declines in bottom-up mechanisms. 

Two main sources of RI might affect inhibitory mecha­
nisms, distractions, and interruptions. Distractions are re­
ferred to the irrelevant information that should be ignored 
and is related to top-down suppression signals from the PFC 
(18,19), whereas interruptions are referred to the informa­
tion encountered as secondary and involve the reallocation 
of cognitive resources in order to reactivate disrupted repre­
sentations, which is related to the medial temporal lobe 
(MTL) and the PFC (19,20). Distractions are defined by an 



unintended attention shift, whereas interruptions could in­
clude an intended or an unintended attention shift with an 
additional task that might be performed. Recently, func­
tional neuroimaging and neurophysiological tools have 
been employed to examine the neural substrates of these 
age-related memory impairments. Some experiments have 
found greater neural activations in older adults compared 
with young adults (21-23), whereas others have found the 
opposite results with under-recruitments in the elderly pop­
ulation (24,25). According to the inhibitory deficit theory, 
different authors have observed a progressive loss of frontal 
activity with aging (26,27), which may be precisely related 
to a difficulty to suppress irrelevant responses. Gazzaley 
and colleagues (28) provided further information by dem­
onstrating age-related attention deficits circumscribed to the 
top-down suppression of irrelevant distractions with pre­
served enhancement of relevant information at early stages 
of visual processing. These heterogeneous results indicate 
that the relationship between brain function and age-related 
memory declines remains unclear. Note that most neuroim­
aging studies have explored age-related effects on distract­
ing interference without directly addressing the impact of 
both distractions and interruptions in the elderly. However, 
a recent electroencephalographic study has revealed distinct 
neural mechanisms underlying the detrimental influence 
of both types of interference on WM in older adults (19). 
Focusing attention on early neural activity associated with 
visual stimulus representations and attentional control, 
these authors explained age-related declines by an excessive 
attentional allocation to distractors, although mechanisms 
for interruptions remain unclear. In summary, more research 
needs to be conducted in order to explore the impact of 
interruptions and distractions on recognition and, a central 
issue, the presence of age-related changes in the temporal 
dynamics of neural activity. In this regard, the present study 
explores age-related deficits in inhibitory mechanisms related 
to task-irrelevant suppression and also provides novel con­
tributions by considering the brain as a holistic system in 
which different networks are characterized by specific tem­
poral dynamics crucial to perform a task. This study used 
magnetoencephalography (MEG), which is an ideal non­
invasive tool to explore the dynamic properties of the neural 
underpinnings of the age-related decline in WM. MEG 
directly measures, with optimal temporal resolution (ie, ms), 
brain magnetic fields from pyramidal neurons in the human 
cortex while the subject is performing a task. In contrast 
with previous studies that focused on early processing 
stages during encoding, we were interested in neural activ­
ity during WM recognition. Although it has been proposed 
that "pure" recognition processes are better preserved than 
encoding processes with normal aging (29,30), it has been 
demonstrated that successful retrieval of recently formed 
representations is strongly affected by interference (31), 
and older adults are disproportionally sensitive to interfer­
ence in memory tasks (32). The current study thus aimed to 

examine age-related changes in brain activity during rec­
ognition after the presentation of two types of RI, interrup­
tions and distractions. To explore age-related changes, as 
well as to assess differences in WM performance, two groups 
of individuals, young (19-35 years old) and older (56-75 
years old) adults, performed a delayed paired-associate task 
for faces in which interruptions and distractions were pre­
sented during the maintenance stage; MEG was recorded 
throughout the task. We examined the temporal dynamics of 
brain magnetic activity during the first 1,000 ms after the 
onset of each correct response at recognition. 

Based on the inhibitory deficit theory, we hypothesized that 
an age-related increased susceptibility to RI, due to a reduced 
ability to suppress irrelevant information, would be associated 
with neural changes in both interrupting and distracting 
conditions. Older adults would show under-recruitment 
and delayed activity within our 1,000-ms time window in 
posterior-frontal regions engaged in both earlier bottom-up 
and later top-down processes, respectively, compared with 
young adults. Suppression deficits would cause older adults to 
reach their WM capacity limit earlier by allowing irrelevant 
information to intrude and consume limited storage capacity 
and thus damage cognitive performance in our WM task. 

MATERIALS AND METHODS 

Participants 
Twenty-eight young (mean age 23.04 years, SD of 4.85 

years, range 19-35 years, 23 women) and twenty-three older 
adults (mean age 65.27 years, SD of 4.95 years, range 56-75 
years, 17 women) participated in the study. All subjects were 
healthy, right-handed, and presented normal or corrected-
to-normal visual acuity. Subjects were assigned in two 
experimental conditions, interrupting and distracting. Fifteen 
young (mean age 24.20 years, SD of 5.51 years, range 19-35 
years, 11 women) and 12 older adults (mean age 65.08, SD 
of 4.81 years, range 56-75 years, 9 women) were included 
in the interrupting condition, whereas 13 young (mean age 
21.20 years, SD of 3.80 years, range 19-31 years, 12 women) 
and 11 older subjects (mean age 65.46 years, SD of 5.32 
years, range 58-73 years, 8 women) were included in the 
distracting condition (see Table 1 for subjects' characteris­
tics). Written informed consent was obtained for all subjects. 
The study was approved by the Institutional Review Board 
at University Complutense and was in accordance with the 
Declaration of Helsinki. 

Tasks and Stimuli 
Two auditory visual-adapted delayed paired-associate 

tasks corresponding to each experimental condition, inter­
rupting and distracting, were employed. A "LEARN" 
yellow cue appeared for 500 ms indicating the beginning of 
each trial and was followed by a blank screen for 200 ms. 
Two paired associates, each of them composed of a visual 



Table 1. Participants ' Characteristics 

Interrupting condition (n = 27) 
Young 
Older 

Distracting condition (n = 24) 
Young 
Older 

n 

15 
12 

13 
11 

Age 

24.2(5.51) 
65.08(4.81) 

21.70(3.80) 
65.46 (5.32) 

Education 

3.93 (0.27) 
3.08 (1.08) 

4.00 (0.00) 
3.00(1.18) 

MMSE 

29.77 (0.44) 
29.17(0.83) 

29.58 (0.67) 

29.55 (0.69) 

rGDS 

0.92 (1.38) 
1.58 (2.47) 

0.83 (1.03) 
0.91 (1.05) 

Note: Education ratio from 1 to 4, 1 = 1-5 years, 2 = 6-8 years, 3 = 9 - 1 2 years, 4 = 13-17 years; MMSE = 
geriatric depression scale; SD = standard deviation. Values are represented as mean (SD). 

mini-mental state examination; rGDS = reduced 

stimulus (face) plus an auditory stimulus (attribute describ­
ing some aspect of the face), were subsequently shown for 
2,000 ms, interleaved with a 200-ms blank screen. Subjects 
were instructed to memorize those two paired associates 
presented (encoding stage). After a 500-ms blank screen, an 
interfering stimulus of a famous face was presented during 
3,000 ms (maintenance stage). In the interrupting condition 
(see Figure 1A), participants were required to answer a yes 
or no question presented auditorily about the famous face by 
pressing one of two response buttons. By contrast, in the 
distracting condition (see Figure IB), no question was 
asked, though participants were instructed to press a button 
in order to control potential group differences in motor com­
ponents. A 500-ms blank screen followed. Next, a 500-ms 
"REMEMBER" signal in capital letters appeared, followed 
by a 200-ms blank screen. Thereafter, two paired associates 

were presented during 2,000 ms each, interleaved with a 
200-ms blank screen. Finally, another blank screen appeared 
for 200 ms. Subjects were required to identify, by pressing a 
button, whether each paired associate had appeared during 
the initial encoding stage (recognition stage, Figure 1). 

Visual stimuli consisted of 420 colored pictures of neutral-
expression faces. Sex and age were controlled across pic­
tures. Auditory stimuli were stereo recorded with a frequency 
of 44100 Hz and 16 bits. A noise reduction filter with auto 
spectral subtraction was applied, and stimuli were edited to 
have a duration of 2,000 ms. A total of 300 words were 
recorded as auditory stimuli: 100 were adjectives from the 
dictionary of the Royal Academy for the Spanish Language, 
100 were professions, and 100 were places of residency. The 
last two categories were selected from a data set from the 
Spanish Institute of Statistics. Paired associates at encoding 
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Figure 1. Trial structure in the interrupting condition (A) and distracting condition (B). Two paired associates to memorize were shown subsequently at encoding. 
An interfering picture of a famous face was displayed at maintenance stage with a difference in the instructions given to participants in each experimental condition. 
In the interrupting condition, they were asked about some attributes related to that picture, whereas in the distracting condition, no question was asked. Two more 
paired associates were shown subsequently at recognition and participants reported whether each of them matched up with those previously encoded. 



and interfering faces at maintenance, 240 and 120 stimuli, 
respectively, were novel across all trials. For the overall 
probes (240), half matched a cue stimulus, whereas the other 
half did not. For the latter, 60 of the 120 probes consisted 
of a cue visual stimulus plus a novel auditory attribute and 
the 60 remaining consisted of a novel visual stimulus plus a 
cue auditory attribute. 

Procedures 
MEG scans were recorded during the performance of the 

delayed paired-associate task. Due to the great number of 
trials necessary for a high signal-to-noise ratio with MEG 
recordings, it was unfeasible to develop a within-subjects 
design with both types of RI as the within-subjects factor. 
We developed a between-subjects design very suitable to 
avoid fatigue or practice effects instead. Some of the vari­
ables that might contaminate between-subjects designs and 
reduce their power were carefully controlled, such as sample 
size, individual variability (eg, age, nationality, education, 
psychological traits), or environmental factors (eg, time of 
the day participants were tested). 

One task per experimental condition was programmed 
using E-Prime software (Psychology Software Tools, Inc.). 
Each task was composed of 120 trials and was presented in 
two blocks of 15 minutes each, separated by a 2-minute 
resting interval. 

Prior to MEG scans, participants undertook a 20-trial 
training session. They were instructed to respond with a but­
ton press as quick and accurate as possible. Button assignment 
was counterbalanced across participants in each condition. 

Images subtended 1.8° horizontally and 3° vertically of 
visual angle at a 60-cm viewing distance and were centered 
at the fovea. They were projected through an LCD video-
projector (Sony VPL-X600E) situated outside the shielded 
room onto a series of in-room mirrors. 

Neural Data Acquisition and Preprocessing 
Neuromagnetic fields were recorded, within a shielded 

room, with a 148-channel whole-head magnetometer array 
(Magnes 2500 WH; 4-D Neuroimaging, San Diego, CA) at 
a sampling rate of 678.17 Hz and a band-pass online filter 
between 0.1 and 100 Hz. MEG data were submitted to an 
interactive noise reduction procedure that aided in reducing 
environmental noise part of the signal analysis package. 
The electro-oculogram signals were acquired through a 
Synamps amplifier (Neuroscan, EL Paso, TX) by placing 
two electrodes near the left and right outer canthus and two 
above and below the right eye. 

We selected an epoch length of 1,000 ms starting after the 
onset of each probe stimulus during the recognition stage. 
Initially, MEG data were baseline corrected on the basis of 
a pre-stimulus 100 ms time window. Thereafter, the signal 
was low-pass filtered at 20 Hz. Epochs contaminated by 
ocular artifacts were off-line corrected by means of BESA 

artifact-correction tool version 5.1.8 (MEGIS Software GmbH, 
Grafelfing, Germany). Data were then visually inspected for 
movement artifacts, and epochs with peak-to-peak amplitudes 
exceeding a threshold of 3 pT were discarded from further 
analysis. Thereafter, the surviving single-trial event-related 
magnetic fields (ERMFs) were then averaged together selec­
tively in each experimental condition (interrupting condition 
and distracting condition) and computed only for those trials 
with correct responses (hits and correct rejections) at the recog­
nition stage. Both age groups exhibited a similar number of 
trials per condition that survived this criterion. Hence, the po­
tential effect that differences in the number of trials could have 
on the power and reliability of posterior source estimates was 
controlled. Although of interest, it was not possible to compute 
MEG averages for unsuccessful recognition because a mini­
mum of 90 epochs was not achieved. 

Neural Data Analysis 
In order to estimate the cortical origin of the ERMFs, we 

conducted source reconstruction data analyses. Specifically, 
an 12-minimum norm estimation procedure (33) was em­
ployed. The minimum norm solution provides a straightfor­
ward solution to the inverse problem and is a very suitable 
method whenever no reliable a priori information about 
source generators is available, for instance, when complex 
cognitive tasks are employed (32), such as our interference-
based WM task. The Tikhonov regularization was applied, 
using the Brainstorm open source Matlab toolbox (http:// 
neurimage.usc.edu/brainstorm/). The Montreal Neurological 
Institute phantom brain (34), implemented in SPM5 (http:// 
www.fil.ion.ucl.ac.uk/spm/software/spm5/), with 7204 sur­
face dipoles served as brain model to estimate the current 
source distribution. This Montreal Neurological Institute 
dipole mesh (7204 nodes) was used to calculate the forward 
solution using a head model based on overlapping spheres. 
The underlying current source density of the ERMFs, that is 
the source strength at each node of the Montreal Neurological 
Institute phantom brain, was estimated for each experimen­
tal condition (interrupting and distracting) and age group 
(young and older adults). 

Behavioral Statistical Analyses 
Two measures were calculated in order to analyze behav­

ioral performance at recognition: mean reaction times for 
correct responses (hits and correct rejections) and percent­
age of correct responses. Comparisons between age groups 
within each experimental condition were subjected to a one­
way analysis of variance with age (young and older adults) 
as between-subjects factor. 

Neural Statistical Analysis 
MEG data were subjected to a nonparametric cluster-based 

permutation test to explore possible differences in brain 
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Figure 2. Participants' performance at recognition. Young adults showed a 
greater accuracy compared with older subjects in the interrupting condition (A) 
and distracting condition (B). Error bars indicate standard error of the mean. 

activity (MATLAB; Math Works, Natick, MA). This test 
effectively controls the family-wise error rate in a situation 
involving multiple comparisons (7204 nodes and 746 time-
points) by clustering neighboring points that exhibit the same 
effect in time and space, considering each point as a (sensor 
and time-point) pair. We conducted comparisons between age 
groups (young and older adults) with experimental condition 
(interrupting and distracting) as between-subjects factor. Nine 
hundred permutations were computed and minimum norm 
estimation source strength values calculated per individual 
across time were shuffled within each condition under the 
null hypothesis of no differences between age groups (35). 

At a primary threshold level, two-sample t tests were per­
formed for each of the 7,204 nodes at a 0.05 (uncorrected) 
significance level. We selected all nodes significant larger 
than this primary threshold for subsequent cluster analysis 
based on spatio-temporal adjacency criteria. At a supra-
threshold level, we calculated the so-called exceedance 
mass of the largest cluster (36), defined as the sum of those 
significant t values within a cluster. The largest clusters 
were precisely those with the highest exceedance mass. For 
each cluster, the p value was approximated by the Monte 
Carlo estimate (35,37). 

RESULTS 

Behavioral Performance 
A significant effect of age was observed on the percent­

age of correct responses for the interrupting condition, 
F(l,26) = 17.368, p < .0001; young: 81.44 + 5.11%; older: 
67.43 + 11.75%, and the distracting condition, F(l,23) = 
15.991,/? < .001; young: 87.62 + 7.65%; older: 72.42 +10.92%, 
indicating that young adults performed the recognition 
memory task more accurately than older adults in both 
experimental conditions (see Figure 2A and B). However, 
there were no significant effects of age on mean reaction 
times either for the interrupting, F(l,26) = 1.058, p < .314; 
young: 610.20 + 139.92 ms; older: 665.17 + 135.53 ms, or 

the distracting condition, F(l,23) = 0.182,/) < .674; young: 
573.54 + 78.17 ms; older: 587.09 + 76.89 ms (Figure 2). 

Altogether, our behavioral analyses indicated that young 
adults were more accurate than older adults in both interfer­
ence conditions. Based on these observations, we compared 
the distributed source localization of brain magnetic activity 
(ERMFs) between both age groups. 

ERMFs during Successful Recognition: Comparisons 
Between Young and Older Adults 

In this section, we summarize the main results regarding 
those brain magnetic differences between young and older 
adults within each experimental condition. We took the larg­
est cluster-level statistics under the following criterion: for 
900 permutations, the 95th percentile is at 900 x 0.05 = 45 
(c), so the critical primary threshold was the 46th (c + 1) 
largest member of the permutation distribution (38). 

For the interrupting condition, this primary threshold was 
0.77 x 105. Our cluster-based permutation test revealed the 
presence of one significant cluster in favor of young adults 
with a Monte Carlo p value of .022. 

For the distracting condition, the critical threshold was 
0.93 x 105. No significant clusters were obtained for one or 
the other age group. In fact, the cluster closest to signifi­
cance in favor of young adults had a corresponding Monte 
Carlo/) value of .505. 

These results reflect the presence of differential neural 
patterns at recognition with higher activations in young 
compared with old adults after the presentation of interrup­
tions, whereas no group differences were observed after the 
presentation of distractions. The specific spatio-temporal 
dynamics of this significant activity in young adults for the 
interrupting condition are the following: activity was firstly 
observed in the right superior parietal lobe including the 
precuneus (Brodmann areas 5/7) and the right inferior and 
medial temporal cortices, including the fusiform gyrus 
(Brodmann areas 22/37), during the 438-550 ms time win­
dow. Statistical differences between age groups in temporal 
lobe activity disappeared at approximately 550 ms, whereas 
significant differences in the superior parietal cortex were 
present up to 814 ms. The nonparametric maps for age 
group differences in the interrupting condition are depicted 
in Figure 3. 

DISCUSSION 

The present study examined the neural changes underlying 
the decline in WM, particularly in inhibitory mechanisms, 
that accompanies aging and the neural modulation by two 
types of RI, interruptions and distractions, during success­
ful recognition. Our behavioral investigation of age-related 
differences in performance at recognition revealed a greater 
accuracy in young adults compared with older adults in 
both interrupting and distracting conditions. This finding 
suggests that the presentation of two types of interference 



First LC Uc'-U W,= -3 5 U.= ^* 

^ # & 
1 1 1 1 n*:—3z 1 1 if 1 1-* 
0 4SS £ 1 2 8 " 100D 

Figure 3. Statistical maps referred to cortical source largest clusters (LC) 
indicating significant higher activity for the young adults group relative to the 
older adults group in the interrupting condition. Only statistical differences are 
shown considering the corresponding minimum Monte Carlo p value (in text). 
A time axis (in milliseconds) is included to remark the temporal dynamics of 
neural differences. 

during the maintenance of information leads to age-related 
deficits in the ability to suppress irrelevant information and to 
correctly recognize two previous encoded paired associates, 
which is consistent with previous studies (39,40). The 
absence of significant effects on reaction times could have 
two potential origins. One plausible explanation might be that 
both young and older participants could be equally affected 
by distractions and interruptions with long reaction times. 
Second, a possible methodological rationale might be related 
to the sample size and statistical power. However, both of 
them remain speculative and further experiments with a 
greater sample size should be conducted in order to clarify it. 

MEG results indicated the presence of age-related differ­
ential spatio-temporal patterns of neural activity during 
successful recognition. Specifically, young adults showed 
higher time-modulated activity in temporo-occipital and pa­
rietal areas for the interrupting condition, whereas no statis­
tical differences were observed for the distracting condition. 

Age-Related Changes in Neural Patterns at Recognition as 
a Consequence of Retroactive Interference 

Multiple brain structures including medial temporal (41), 
precentral, and superior parietal areas (42) have been asso­
ciated with interference resolution processes something in 
accordance with our results. However, one of the main con­
tributions of the present study is the description of the tem­
poral dynamics regarding neural activity. In this regard, we 
obtained differential greater activity in favor of young par­
ticipants for the interrupting condition over the right 
temporo-occipital cortices, including medial, inferior tem­
poral areas, and the fusiform gyrus at medium latencies, and 
right superior parietal areas at medium and late latencies. 

The absence of between-group differences in the inter­
rupting condition at early sensory stages may indicate that 
primary sensory processing is not affected by RI (43,44). 
However, we obtained higher neural patterns at postsenso-
rial stages, particularly at medium and late latencies. In gen­
eral, temporo-occipital areas belong to a visual pathway that 
includes face-selective regions, such as the fusiform gyrus 
and involves face perception (45^17). Our results may indi­
cate that the mediation of the occipital gyrus at medium 
latencies is necessary for the basic analysis of facial features 
that allows the fusiform gyrus to identify a photograph of 
a face (48). Higher activations in young participants in the 

MTL at medium latencies may be related to interference res­
olution. Specifically, in order to bring the encoded informa­
tion back from the off-line to the online state, the same areas 
as for encoding were reactivated at retrieval after the presen­
tation of an interfering stimulus during maintenance 
(6,20,49). When the online maintenance is interrupted by 
external interference, it is temporarily deactivated until a 
recognition judgment reactivates again the to-be-retrieved 
information. The MTL is engaged in reactivation processes 
at retrieval from long-term memory and WM as well. 

In this regard, our interrupting task constitutes a high-
demanding task, in which the online maintenance of paired 
associates presented at encoding is interrupted at mainte­
nance by the additional necessity to access long-term stores 
in order to explicitly retrieve information from episodic 
memory to correctly answer a yes or no question. This factor 
might have a direct impact on WM recognition, by interfering 
retroactively with those paired associates presented at 
encoding and altering their memory traces. Thus, reactivation 
processes at recognition are crucial in this high-demanding 
task in order to override RI. 

As previously mentioned, MEG results also revealed 
significant higher recruitments of superior parietal areas at 
medium and late latencies in young adults relative to older 
adults in the interrupting condition. Despite traditional the­
ories emphasizing parietal contributions to spatial attention 
and sensorio-motor integration (50), significant parietal 
lobe activation has been also observed in previous event-
related potentials (51,52) and functional neuroimaging 
studies during the performance of memory retrieval tasks 
(53-58). Our greater activated network including the precu­
neus, medial, and lateral parietal cortex may be associated 
with the correct recognition of information (17,59,60); 
particularly, these regions may subserve temporal structures 
in order to resolve external interference and accomplish a 
successful recognition judgment. 

Literature in cognitive aging describes age-related neural 
under-recruitments as one key element associated with cogni­
tive decline (24). In the present study, age-related under-
recruitments for the interrupting condition were associated 
with detriments in accuracy, indicating that such neural 
under-recruitments are accompanied by WM difficulties. 
Specifically, under-recruitments in occipital areas at medium 
latencies may reflect bottom-up impairments at postpercep-
tual stages as a consequence of interference. One mechanism 
explaining MTL under-recruitments may be the presence of 
age-related reduced abilities to reactivate the memoranda 
stored off-line after the presentation of interrupting interfer­
ence (19) in order to bring it back to the online state. In this 
regard, both the PFC and MTL have been shown to send sig­
nals to posterior association areas in the postinterruption 
period (19,61,62). Specifically, Sakai and colleagues (20) 
suggested a double dissociation between the MTL and PFC 
by manipulating the reactivation of maintained information 
and the demand for interference resolution. It seems that the 



MTL is engaged in the reactivation of the information stored 
off-line, whereas the PFC has a primary function in the top-
down selection of task-relevant information to override 
interference. According to our results reflecting age-related 
under-recruitments in the MTL with the absence of PFC dif­
ferences, we suggest that age-related WM declines after inter­
ruptions may be related to a difficulty to reactivate the off-line 
information. This may be related to deficits in the suppres­
sion of prepotent responses rather than deficits in the selec­
tion of task-relevant information. Older individuals may fail 
to delete the interrupting information from WM, which retro­
actively interferes with subsequent memory decisions at rec­
ognition (63). Additionally, it has been established that the 
disruption of medial temporal projections to medial parietal 
reflects a loss of functional inhibition not only in normal aging 
but also in Alzheimer's disease (64), which may explain our 
age-related under-recruitments in parietal structures at me­
dium and late latencies in terms of inhibitory deficits. 

Hence, we suggest that age-related diminished neural 
activity may be related to deficits in earlier postsensorial 
and later top-down processes. It may be indicative of inef­
ficient inhibitory mechanisms to suppress irrelevant stimuli, 
responsible for an increased vulnerability to RI, which leads 
to difficulties to reactivate and correctly recognize paired 
associates during retrieval. These findings are consistent 
with behavioral (9) and neuroimaging research in cognitive 
aging (27) showing reduced occipital, temporal, and parietal 
activities in older adults at recognition (23,51,65-67). 

Finally, we would like to emphasize that our focus of 
interest was to explore age-related neural differences in 
the presence of RI. We did not include a noninterference 
condition in order to maximize power to investigate group 
differences in our two interference conditions. 

To summarize, the current study importantly contributes 
to the notion that aging impairs WM ability, particularly 
inhibitory mechanisms that increase vulnerability to RI. 
We also provide novel evidence about the brain temporal dy­
namics and show the neural substrates of reported behavioral 
changes during successful recognition. 

Our findings extend previous research by reflecting age-
related neural under-recruitments in temporo-occipital areas 
at medium latencies and superior parietal areas at medium 
and later latencies after the presentation of interrupting in­
terference, whereas no neural changes were observed after 
the presentation of distracting interference, which suggests 
that aging affects both earlier postsensorial and later top-
down mechanisms in a high interfering task. These results 
may indicate the presence of age-related inhibitory deficits 
to suppress irrelevant information leading to difficulties to 
reactivate the off-line representations to the online state and 
correctly make a recognition judgment. These results have 
direct implications to better understand the functioning of 
the aged brain and may help to improve the quality of life 
of elderly by training inhibitory mechanisms in order to 
imrove resistance to RI. 
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