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Abstract: Concession contracts in highways often include some kind of clauses (for example, a minimum traffic guarantee) that 
allow for better management of the business risks. The value of these clauses may be important and should be added to the total value 
of the concession. However, in these cases, traditional valuation techniques, like the NPV (net present value) of the project, are 
insufficient. An alternative methodology for the valuation of highway concession is one based on the real options approach. This 
methodology is generally built on the assumption of the evolution of traffic volume as a GBM (geometric Brownian motion), which 
is the hypothesis analyzed in this paper. First, a description of the methodology used for the analysis of the existence of unit roots 
(i.e., the hypothesis of non-stationarity) is provided. The Dickey-Fuller approach has been used, which is the most common test for 
this kind of analysis. Then this methodology is applied to perform a statistical analysis of traffic series in Spanish toll highways. For 
this purpose, data on the AADT (annual average daily traffic) on a set of highways have been used. The period of analysis is around 
thirty years in most cases. The main outcome of the research is that the hypothesis that traffic volume follows a GBM process in 
Spanish toll highways cannot be rejected. This result is robust, and therefore it can be used as a starting point for the application of 
the real options theory to assess toll highway concessions. 
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1. Introduction  

Most of road traffic models are based on the 

relationship between traffic volume and a number of 

explicative variables for which available information 

and prediction capacity are greater than for traffic itself. 

However, the use of time-series models may be an 

alternative tool to predict the traffic volume and to 

build a confidence interval for the forecast, when there 

are available data for traffic in a given road during a 

enough long period. 

In this case, it can be assumed, in principle, that 

variations of traffic volume follow a GBM (geometric 

Brownian motion), which can be described in the 

following way: 

dzdtad            (1) 

where, 
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θ:      traffic volume 

dθ:    differential increment of traffic 

a:      growth rate of traffic 

dt:    differential time interval 

σ:      traffic volatility 

dz:    increment of a Wiener process 

Starting from Eq. (1), and applying Itô’s lemma [1], 

the process followed by the natural logarithm of θ can 

be described as: 

dzdtad   ´)(ln          (2) 

where, ln θ is the natural logarithm of traffic and  

a´= a – σ2/2. 

On the right-hand side of Eq. (2), the parameter a´ is 

a constant drift term or growth parameter. It means that 

the logarithm of traffic has a growth of a´ per unit of 

time. Regarding the second term, dz is the increment of 

a standard Wiener process, so that dz = εt(dt)1/2, where, 

εt is a variable which is normally distributed with zero 

mean and unit standard deviation [2]. This second term, 

σdz, adds a noise or variability to the path followed by 

DAVID  PUBLISHING 

D 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148665428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Unit Root Analysis of Traffic Time Series in Toll Highways 

  

1642

the logarithm of traffic. The amount of this noise is σ 

times a standard Wiener process, so the process 

represented by Eq. (2) has a standard deviation of σ. 

This means that the variance rate (the variance per unit 

of time) of this process is σ2 [3]. It is assumed that the 

parameter σ, which is called the traffic volatility, is also 

a constant. 

The discrete version of Eq. (2) would be the 

following: 

zta   ´)(ln          (3) 

where, 

E( z ) = 0   [expected value of z ] 

E[ )(ln ] = ta ´  [expected value of )(ln ] 

V[ )(ln ] =  2 t    [variance of )(ln ] 

This means that the change in the logarithm of 

traffic is normally distributed over any time interval 

t (with mean ta ´  and standard deviation 

t ), following a random walk with a drift. This 

assumption is frequently made for economic and 

financial variables. For stock prices, for example, the 

hypothesis of GBM is generally accepted, and it has 

been used for the development of the theory of 

options’ valuation, since the initial works carried out 

by Black and Scholes [4] and Merton [5]. In the field 

of road traffic, this assumption has been made by 

Zhao et al. [6] to analyze the decision-making process 

in highway development. 

However, the GBM hypothesis is not always evident. 

Pindyck and Rubinfeld [7], for example, have analyzed 

whether commodity prices follow this process. They 

found that, for very long time series (more than 100 

years), detrended prices of crude oil and copper do not 

follow a random walk, but a mean-reverting process. 

However, and to the contrary, the hypothesis of a 

random walk cannot be rejected for the detrended 

prices of lumber. 

In this paper, a test is performed for the hypothesis of 

a GBM for the evolution of traffic volume on toll 

highways. Series available for Spanish toll highways 

have been used, which, in most cases, cover a 

thirty-year period. In the following section a 

description is given of the methodology used for the 

analysis of the existence of unit roots in time series in 

general. The Dickey-Fuller approach has been applied, 

which is the most widely used test for this kind of 

analysis. Then this methodology has been applied for 

traffic series in Spanish toll highways and the results 

obtained have been examined. The limitations of the 

analysis carried out are considered and the possible 

application of the results is discussed. Finally, the main 

conclusions of the paper are summarized. 

2. Unit Roots Analysis of Time Series 

Suppose that Yt is a random variable which evolves 

over time following an autoregressive process that can 

be described as: 

ttt uYY   1             (4) 

where, ut is a random error term. Now, the parameter 

ρ can be analyzed. If ρ is equal to 1, then it is said that 

a unit root exists, which means that Yt is a 

non-stationary variable. In the opposite case (if ρ ≠ 1) 

the Yt variable would be stationary. 

A constant drift term α can be added to Eq. (4), 

without changing the reasoning. The equation would 

then be: 

ttt uYY   1           (5) 

Eq. (5) can be rewritten in the following way: 

tttt uYYY   11 )1(  (6) 

The parameter ρ in Eq. (6) can be estimated by using 

OLS (ordinary least squares), and calculating the 

t-statistic to test whether ρ is significantly different 

from 1. If the hypothesis that ρ = 1 cannot be rejected, 

then it can be said that the process has a unit root, and 

therefore the Yt variable is non-stationary after 

detrending. However, if the true value of ρ is 1, then the 

OLS estimator is biased toward zero [7]. Then the use 

of OLS could lead us to incorrectly rejecting the 

non-stationarity hypothesis. 

To solve this problem, Dickey and Fuller [8, 9] used 

a Monte Carlo simulation to calculate the correct 

critical values for the distribution of the t-statistic when 
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ρ = 1. The DF (Dickey-Fuller) test is subsequently the 

most widely used test to analyze the existence of a unit 

root in a given process. 

To apply the DF test, Eq. (6) can be written as 

follows:  

ttt uYY   1          (7) 

where, β = ρ – 1. 

Now, the OLS method is applied to estimate the 

value of the parameter β (where the null hypothesis is 

that β = 0) and to calculate its t-statistic. The t-statistic 

thus obtained is then compared with the critical values 

calculated by Dickey-Fuller. In fact, the critical values 

obtained by other authors based on the DF 

methodology are used. For example, McKinnon [10] 

obtained the following critical values. 

If the t-statistic obtained in our estimation is greater 

than the critical value, the hypothesis that β = 0 cannot 

be rejected and then it is not possible to reject that the 

process is non-stationary after detrending. Observe that 

all critical values are negative. Therefore, if the 

t-statistic obtained in our estimation is positive, the null 

hypothesis cannot be rejected (i.e., it cannot be rejected 

that the process is non-stationary). 

In this kind of test, it is assumed that there is no serial 

correlation in the error term ut. However, the process 

described by Eq. (7) may be non-stationary, even if 

there is serial correlation in ut. As an extension of the 

methodology, serial correlation can be allowed now, by 

using the so-called ADF (augmented Dickey-Fuller) 

test. For that purpose, the model is expanded by adding 

the lagged dependent variable to the right-hand side of 

the equation, as follows: 

t

m

j

jtjtt uYYY 


 
1

1     (8) 

where, λj represent the m parameters obtained in the 

regression analysis between the dependent variable ΔYt 

and the same dependent variable with a lag of j periods 

(i.e., ΔYt-j). For example, for annual data, if two lags are 

considered, the following expression would apply: 

ttttt uYYYY   22111   (9) 

where, two terms have been added, on the right-hand 

side of the equation, that include the dependent 

variable with a lag of one year and two years (ΔYt-1 and 

ΔYt-2, respectively). The number of lags considered in 

the analysis depends on the decision of the analyst and 

the kind of problem being analyzed. 

The regression analysis to determine the parameters 

in Eq. (8) is made using OLS. The t-statistic obtained 

for the parameter β is then compared with the same 

critical values contained in the former (Table 1). Again, 

if the t-statistic obtained in our estimation is greater 

than the critical value, it cannot be rejected that β = 0 

and that the process is non-stationary after detrending. 

3. Results Obtained for Spanish Toll 
Highways 

In this section, the methodology described above is 

applied, in both versions (the Dickey-Fuller and the 

Augmented Dickey-Fuller tests), for traffic series in 

Spanish toll highways. As a starting point, data 

collected by the public authority [11] which is in 

charge of the supervision of national toll highways are 

used. These highways have an average length of 134 

km, and all of them are managed by private companies 

under concession contracts. These private companies 

are obliged to provide the relevant data to the said 

public authority, and this is published, and is available 

for researchers or for any person with an interest in the 

matter. 

The AADT (annual average daily traffic) has been 

used in the research. By using annual data, the problem 

of seasonality in traffic volumes is avoided. The 

collected data are included in Appendix 1 in this paper.  
 

Table 1  Critical values for t-statistic in DF unit roots tests. 

Sample size Significance level = 5% Significance level = 

10% 

25 -3.00 -2.63 

50 -2.93 -2.60 

100 -2.89 -2.58 

∞  -2.86 -2.57 
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In order to perform the DF test, the following 

variable is used: Yt = ln (θt), where θt is the volume of 

traffic, in terms of AADT. Therefore, Eq. (7) is applied, 

where ΔYt = ln (θt / θt-1). A regression analysis has been 

performed, using OLS to obtain the estimation of the 

parameter β and the t-statistic for that estimation for 

each highway. The results for the relevant t-statistics 

are included in the third column of Table 2. 

These results can be compared with the critical 

values in Table 1. As the period of analysis is around 

thirty years in most cases, the critical values can be 

taken for a sample size equal to 25 in Table 1. It can 

then be seen that for significance levels of 5% and 10%, 

the null hypothesis (i.e., β = 0) cannot be rejected for 

any of the highways analyzed. This means that, 

according to the DF test, the hypothesis that traffic in 

Spanish toll highways follows a GBM process cannot 

be rejected. 

The ADF test has also been performed, by using Eq. 

(8), where once again ΔYt = ln (θt / θt-1). One lag and 

two lags have been taken for the analysis, which is 

considered to be sufficient in view of the results 

obtained. 

With one lag, the regression analysis is applied using 

the following expression: 

tttt u  )(ln)(ln)(ln 111  (10) 

Here the parameter β is estimated and its t-statistic 

is then calculated. 

With two lags, the relevant expression is analogous, 

and again, the estimation of the parameter β is carried 

out. 

The relevant t-statistics for each highway are 

included in the fourth and fifth columns in Table 2. As 

it can be observed, making a comparison with the 

critical values in Table 1, the null hypothesis cannot 

be rejected for any of the highways and, subsequently, 

it cannot be rejected that traffic follows a GBM 

process. On the other hand, there is not a clear pattern 

in the values of the t-statistic with one lag and with 

two lags. For some highways, the t-statistic is nearer 

the critical value with two lags than with one lag, and 

in other cases it is the other way round. 

4. Limitations of the Analysis and 
Application of the Results 

According to the results obtained in the research 

described in this paper, the GBM hypothesis for traffic 

volume cannot be rejected. However, one should be 

aware of the limitations of the analysis. These results 

provide only weak evidence in favor of the hypothesis 

that traffic actually follows a GBM. In fact, the results 

could be different for longer periods of analysis, as the 

results obtained by Pindyck and Rubinfeld [7] show 

for the case of commodity prices. Unfortunately, 

longer traffic series are not normally available.

 

Table 2  Results of unit roots tests for traffic series. 

Name of highway Period of analysis DF test t-statistic ADF test (one lag) t-statistic ADF test (two lags) t-statistic 

Villalba-Adanero 1974-2007 0.6692 0.7843 0.8895 

Zaragoza-Mediterráneo 1976-2007 -1.5419 -0.8040 -1.2278 

Sevilla-Cádiz 1974-2007 1.1856 0.3834 0.0468 

Montmeló-La Junquera 1974-2007 0.6792 -0.5228 -0.2624 

Barcelona-Tarragona 1974-2007 -1.4503 -1.7321 -1.2479 

Montmeló-Papiol 1978-2007 -0.7704 -1.2694 -1.4408 

Bilbao-Zaragoza 1978-2007 0.8923 -0.4104 -0.1090 

Burgos-Armiñón 1978-2007 -2.0183 -0.6922 -0.3636 

León-Campomanes 1983-2007 0.2918 -1.3950 -1.1522 

Tarragona-Valencia 1974-2007 -0.3193 -0.9579 -0.8513 

Valencia-Alicante 1976-2007 -1.3442 -0.8213 -0.1557 
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Nevertheless, the results are robust, in the sense that 

the relevant tests have been applied to all the national 

toll highways in Spain, and the hypothesis could not be 

rejected in any of these. Furthermore, it would be 

possible to generalize the results, since there are 

various types of highways in the sample used: some of 

these are coastal highways (with a clearly tourist 

nature), others are interurban highways and, finally, 

other highways have some of the features of 

metropolitan transportation networks. 

Another limitation of the analysis is the assumption 

of a constant volatility of traffic. For the estimation of 

this volatility, historic data in Spanish toll highways 

have been used. A simple procedure to calculate traffic 

volatility is as follows: 

Suppose a traffic series for a certain highway: θ1, θ2, 

θ3, … θn, where θi is the traffic volume in year i. Then 

the following variable is defined: xi = Δ ln (θi) = ln (θi / 

θi-1), and x  is obtained as the mean of x1,x2,   xn. The 

volatility of traffic, defined as the standard deviation of 

the sample x1,x2… xn, would then be as follows: 










ni

i

i xx
n

1

2)(
1

1         (11) 

Using this definition, the volatility for traffic in each 

toll highway in Spain has been obtained, starting from 

data contained in Appendix 1. It has been assumed that 

the volatility in each highway remains constant, but it 

may in fact change over time. However, it has been 

observed that traffic volatility in toll highways is 

greater over the first years of the concession, before 

becoming smaller and more stabilized. This means that, 

if with sufficiently long time series (say twenty years) 

the hypothesis of a constant volatility in the future can 

be assumed. In the present case, it has been obtained 

that the volatility of traffic in Spanish toll highways 

(for annual data) tends towards an average value close 

to 0.075. 

The hypothesis of the Geometric Brownian Motion 

given by Eq. (1) can be applied for the valuation of toll 

highways concessions. In this kind of concession, both 

the forecast of future traffic and the measure of the 

risks involved are essential for the appraisal of the 

business. The calculation of the value of the volatility 

of traffic (probably the most important source of 

uncertainty in a toll highway) allows for using the 

model to build a confidence interval for the traffic 

forecast. 

Besides, the terms of reference in toll highway 

concessions (and the concession contracts) often 

contain certain clauses that allow for a degree of 

operational flexibility in the management of the 

business. The valuation of this kind of clauses in 

contracts can be carried out using a real options 

approach, a methodology based on the development of 

the theory of financial options. Under this approach, 

traffic volume on the highway (for which a GBM 

process is assumed) is used as the underlying asset in 

an option contract. Options that are embedded in the 

concession agreement are thus calculated as a 

derivative of the traffic volume. This means that traffic 

is treated as the source of uncertainty that determines 

the value of the options. 

The possible exercise of this series of rights 

represents an added value for the project which is not 

captured by the traditional procedures of valuation. The 

habitual practice of calculating the NPV (net present 

value) of the project by means of the discount of cash 

flows, leads to erroneous results when the project 

incorporates a certain degree of flexibility. 

Therefore, the theory of real options is an alternative 

tool for the correct valuation of toll highway 

concessions, under the hypothesis that the variations of 

traffic volume follow a GBM like the one described in 

former Eq. (1). 

5. Conclusions 

The main result of the research is that the hypothesis 

that traffic follows a generalized Wiener process (or 

so-called Geometric Brownian Motion) in Spanish toll 

highways cannot be rejected. In other words, the 

evidence found leads to the conclusion that the 

non-stationarity hypothesis for traffic cannot be 
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rejected, but have to bear in mind that this is only a 

weak evidence in favor of the hypothesis that traffic 

actually follows a non-stationary process. 

The GBM hypothesis can be applied to the valuation 

of toll highway concessions. The terms of contracts in 

toll highway concessions often contain certain clauses 

that allow for a degree of operational flexibility in the 

management of the business. The valuation of these 

kinds of clauses in contracts can be carried out using a 

real options approach. The full description of this 

methodology is beyond the scope of this paper [12], but 

some of the options that usually appear in concession 

contracts have been quoted: minimum traffic 

guarantees (traffic floors), maximum traffic limitations 

(traffic caps), extension of the concession, anticipated 

reversion, granting of public subsidies, public 

participation loans, etc.. These mechanisms reduce the 

variability of the project cash-flows, and allow for 

more flexibility and a better management of the 

concession based on the contingency of future events. 

The theory of real options is an alternative tool for the 

correct valuation of highway concessions when these 

kinds of rights are present in concession contracts, and 

the results of our research allow for the application of 

this methodology under the assumption that the 

evolution of traffic volume follows a Geometric 

Brownian Motion. 
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Appendix 1  Traffic Data 

AADT (annual average daily traffic) in Spanish Toll Highways 

Year
/Hig-
hway 
 

Villalba-A
danero 

Zaragoza-M
editerráneo 

Sevilla
-Cádiz 

Montmeló-L
a Junquera  

Barcelona-T
arragona 

Montmel
ó-Papiol

Bilbao-Z
aragoza

Burgos-Ar
miñón 

León-Camp
omanes 

Tarragona
-Valencia

Valencia-
Alicante

1974 7,258 3,171 14,728 15,377 5,603 

1975 7,817 3,382 13,354 15,367 5,776 

1976 8,168 5,276 3,017 13,002 16,630 6,002 3,563 

1977 6,690 6,179 3,039 13,925 19,760 6,870 4,148 

1978 7,796 6,439 3,470 15,823 22,811 9,389 4,689 2,479 7,524 5,183 

1979 8,455 7,001 3,681 15,859 23,659 6,875 4,169 3,604 7,828 5,874 

1980 8,326 7,053 3,774 15,026 24,565 7,480 4,606 4,060 7,773 6,059 

1981 8,380 6,920 3,999 15,557 23,575 6,470 4,681 5,622 7,590 6,258 

1982 8,355 6,761 3,929 15,948 23,613 6,723 4,754 4,966 7,455 6,147 

1983 8,283 6,607 3,629 15,934 23,166 6,861 4,374 4,611 2,494 7,233 6,071 

1984 8,452 6,489 3,417 16,478 23,597 6,944 4,281 4,970 2,049 7,178 6,124 

1985 8,810 6,659 3,632 17,099 24,857 7,352 4,275 5,142 2,141 7,596 6,933 

1986 9,478 7,181 3,959 18,892 27,154 27,404 4,433 5,487 2,275 8,514 7,240 

1987 10,360 8,119 4,525 21,282 30,793 31,558 4,874 5,994 2,445 9,707 8,316 

1988 11,420 9,387 5,282 23,671 34,963 42,998 5,617 6,832 2,768 10,873 9,376 

1989 12,929 11,423 6,350 26,296 39,624 51,004 6,494 7,777 3,233 12,336 10,563 

1990 14,005 12,127 6,835 26,660 40,618 52,226 6,870 8,294 3,661 12,501 12,027 

1991 15,610 12,327 7,791 27,802 42,080 54,489 7,118 8,954 4,254 13,043 12,663 

1992 16,415 12,174 9,214 28,488 41,379 49,997 7,052 9,403 4,256 12,894 12,595 

1993 16,504 11,425 8,005 28,124 40,152 45,884 6,956 9,680 4,199 12,336 12,085 

1994 16,628 10,958 7,978 28,554 41,123 46,960 6,930 10,172 4,583 12,469 12,301 

1995 17,358 11,309 7,648 28,509 43,270 48,724 7,013 11,026 4,680 12,907 12,313 

1996 17,866 11,027 7,434 27,076 43,530 52,453 7,038 11,430 4,718 13,070 12,423 

1997 18,687 11,423 7,828 29,021 45,677 58,635 7,343 12,198 4,995 14,186 13,207 

1998 20,715 12,377 10,101 30,717 47,799 63,220 8,082 13,696 5,659 16,692 16,271 

1999 22,918 13,350 11,825 33,815 47,089 70,219 9,002 15,161 6,320 19,092 18,987 

2000 24,325 14,870 13,300 35,955 51,278 83,935 10,623 16,605 6,642 20,453 21,225 

2001 25,482 15,206 15,218 37,901 53,721 90,218 11,742 18,062 7,433 22,004 23,409 

2002 27,238 15,594 16,534 40,464 55,994 92,636 12,196 19,348 7,679 22,796 24,968 

2003 28,662 15,464 17,897 41,756 57,782 95,712 12,844 20,101 8,048 23,396 26,640 

2004 30,301 15,350 19,642 43,324 59,053 99,460 13,503 21,072 8,736 23,932 27,302 

2005 30,770 14,744 21,859 44,918 60,342 111,353 13,542 21,206 9,006 23,482 28,180 

2006 32,998 15,273 24,244 47,122 63,683 115,607 14,177 22,209 9,683 25,215 29,207 

2007 34,414 15,541 24,951 49,180 66,217 118,519 14,712 23,937 10,288 25,110 29,411 

 

 

 


