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Abstract Current understanding of the synaptic orga­
nization of the brain depends to a large extent on 
knowledge about the synaptic inputs to the neurons. In­
deed, the dendritic surfaces of pyramidal cells (the most 
common neuron in the cerebral cortex) are covered by 
thin protrusions named dendritic spines. These repre­
sent the targets of most excitatory synapses in the cere­
bral cortex and therefore, dendritic spines prove critical 
in learning, memory and cognition. This paper presents 
a new method that facilitates the analysis of the 3D 
structure of spine insertions in dendrites, providing 
insight on spine distribution patterns. This method is 
based both on the implementation of straightening and 
unrolling transformations to move the analysis process 
to a planar, unfolded arrangement, and on the design 
of DISPINE, an interactive environment that supports 
the visual analysis of 3D patterns. 
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Introduction 

The acquisition of high resolution reconstructions of 
neurons in 3D is becoming more and more frequent in 
neuroscience, for purposes such as analyzing detailed 
aspects of the structure of the neurons' dendritic arbors 
(DeFelipe 2010; Meijering 2010; Donohue and Ascoli 
2011). However, studying the 3D distribution of rel­
evant entities of dendritic processes is not a simple 
task. It should be noted that inferring 3D structure 
from 2D projections obtained with the current acqui­
sition techniques (Semwogerere and Weeks 2005) gets 



difficult when the geometry is complex and the user 
has to recognize patterns just visually (Eick and Karr 
2002). The video accompanying Fig. 1 illustrates the 
rotation of a dendrite's segment, showing clearly some 
of the problems found by domain experts when analyz­
ing such a structure directly in 3D. Typical difficulties 
come from the irregular distribution of 3D samples, 
the dendrite's curvature, the presence of occlusions, 
and the absence of spatial references. The existence of 
a large number of relevant morphological parameters 
increases the influence of these problems, hampering 
further analysis of this kind of data. 

So far, direct visual observation of these feature 
distributions was the only exploration technique avail­
able to neuroscientists. In consequence, even drawing 
preliminary conclusions was a hard task; this situation 
has resulted in the existence up to now of very few 
studies dealing with the 3D arrangement of many rele­
vant dendritic structures. But on the other hand, under­
standing the synaptic organization of the brain depends 
largely on knowledge about the synaptic inputs to the 
neurons. Indeed, the dendritic surfaces of pyramidal 
cells (the most common neuron in the cerebral cor­
tex Defelipe and Farinas 1992) are covered by thin 
protrusions named dendritic spines, which represent 
the targets of most excitatory synapses in the cerebral 
cortex and therefore, are critical in learning, memory 
and cognition (Spruston 2008; Kasai et al. 2010; Yuste 
2010). 

This paper presents a new method that facilitates 
analyzing 3D structure in dendrites, together with its 

application for studying the distribution patterns of 
dendritic spines. It has to be noticed that dendritic 
spines are dynamic structures which might show motil­
ity and changes in length and size, although their in­
sertion points in the dendritic shafts are rather stable 
(e.g., Portera-Cailliau et al. 2003). In consequence, the 
spines' insertion points have been chosen as primary 
references, albeit users can select other references such 
as the spine heads' centroid or its distal tip. 

The insertion of spines in dendrites can be repre­
sented as a cloud of points distributed over the dendrite 
surface, presenting accordingly a tubular arrangement. 
Nevertheless, the analysis of spine distribution patterns 
over the dendrite's surface by classical interactive pro­
cedures such as zooming, panning or rotating the point 
of view is difficult. The main reason for this difficulty is 
that the dendrites' geometry perturbs the 3D locations 
of the spines' insertion points, destroying the shape 
from motion cues that facilitate 3D user perception 
while rotating and interacting with the 3D dendrite 
representations. Furthermore, sharp bends in the den­
drite's axis or even radial displacements in the position 
of the spines' insertion points, such as those found in 
Figs, lc and 6, make things harder. 

The method proposed here uses a new approach for 
simplifying the visual analysis of dendritic spine distrib­
utions, by straightening and unrolling the placement of 
the point-based primitives used to characterize the in­
sertion of spines over the dendritic surface. Essentially, 
this method is based on applying a transformation that 
reduces the data dimensionality from 3D to 2D, while 

Fig. 1 a Confocal microscopy image of an intracellularly injected 
layer III pyramidal neuron of the human cingulate cortex, b and c 
present low and high magnification images showing a basal den­
dritic segment, including dendritic spines and their points of in­
sertions (white dots) in the dendritic shaft. This image represents 
a single plane from the stack of images used to locate the insertion 

points in the 3D reconstruction (see text for further details). 
Thus, only the insertion points present in that plane are shown 
(see a supplementary video at http://www.datsi.fi.upm.es/~ 
arodri/cbb/ninfll/Figurel_video.avi). Scale bar (in c): 26.25 u.m 
in a; 4 u.m in b; and 1.9 u.m in c 

http://www.datsi.fi.upm.es/~


preserving the most relevant spatial properties from 
the original distribution. Moving from the original 3D 
domain to a transformed 2D domain might seem odd at 
first, but the fact is that this transformation eliminates 
a third, irrelevant dimension, where noise is prevalent. 
Analyzing dendrite data in this transformed domain is 
much simpler because this noise is eliminated. At any 
rate, the user can combine both domains (the original 
3D and the transformed 2D), selecting which one to use 
at every single moment. 

The straightening and unrolling transforms have 
been implemented in DISPINE, a new software tool 
that supports the interactive visual analysis of 3D pat­
terns. This is especially relevant because, as mentioned 
by Fuchs and Hauser (Fuchs and Hauser 2009), "In­
teraction is probably the most important tool for un­
derstanding complex data". The interaction process lets 
users change dynamically the visualization parameters, 
allowing the representation of data in such a way that 
the presence of relevant information is maximized. 
This approach facilitates and accelerates strongly the 
analysis process, providing neuroscientists with a more 
powerful method to examine the insertion points, since 
the joint visualization of data both in the transformed 
and the original space allows a better visual analysis of 
surface patterns and trends. 

Because of the high magnification applied during 
the digitization stage, dendrites are divided during 
the acquisition process into segments of fixed length 
to be manageable; Fig. lb shows an example of a 
dendritic segment captured with confocal microscopy. 
Once spines are represented as volumetric images, the 
3D positions of the spines' insertion points can be man­
ually marked (Fig. lc) with the help of commercial tools 
like Imaris (Bitplane 2011). Other possible references 
that could be marked instead are the spines' center of 
mass, or the apex of the spine's head. Additionally, 
other relevant morphological features of spines, like 
length or volume (Arellano et al. 2007), can also be 
manually estimated with Imaris. 

Figure 2 shows a global view of the results of the 
marking process applied to a dendritic segment, draw­
ing red dots in the positions of the detected insertion 
points. Replacing each spine by its insertion point is a 
first simplification which can facilitate the visual analy­
sis of spine distributions. But as Figs. 1 and 2 show, this 
process is not enough, in particular for tasks such as 
detecting 3D hidden surface distribution patterns. 

Additionally, the zoomed-in window in Fig. 2 shows 
clearly some discontinuities in the digitized spines, 
those arising because the injection technique does not 
guarantee a complete stain of the neuron structures. 
This effect makes automatic analysis very hard, which is 

Fig. 2 Example of a dendritic segment with spines represented 
by red markers indicating the spines' insertion points on the 
dendrite's surface. The volumetric image displayed here has a 
resolution of 1024 x 1024 x 45 voxels for the following dimen­
sions: 76.88 urn x 76.88 u.m x 12.59 u.m 

one of the reasons why interactive visualization proce­
dures are such an important support tool for exploring 
the anatomy of brain tissues. 

The following section describes a spatial transfor­
mation that improves the level of interpretability of 
the cloud of points. For a better explanation of the 
method, the spatial transform is decomposed in two 
stages, straightening and unrolling. From now on, the 
word "point" will be a synonymous of the term "spine 
marker", or simply "spine". This way, each spine will 
be represented by its insertion point pi, and the set of 
spines, by P (the set of spines' insertion points). 

Spatial Transformations 

Dendrites can be well approximated by tubular geome­
tries, which can be parameterized along three directions 
(Fig. 3): 

1. Axial direction: position along the medial axis1 of 
the dendrite measured from the proximal end of 
the dendritic segment. 

2. Angular direction: angular orientation around the 
dendrite's medial axis. 

3. Radial direction: radial distance to the dendrite's 
medial axis. 

lrrhe dendrite's sheath medial axis is a simplified representation 
that is manually created; it is actually a polyline whose vertices 
are markers which store the tangent unit vector. 



Fig. 3 Parameterization of the spines' markers positions (red 
points): axial direction (X), angular direction (9) and radial 
direction (p) 

From the three parameters that specify the position 
of a spine's insertion point on the dendrite's surface, 
the radial distance is the least relevant. There are two 
reasons for this: first, small variations on the distance 
to the medial axis may be due to changes in the den­
drite's radius or to inaccuracies introduced during the 
manual marking process. Second, they are very small 
in comparison to the total spine length. Based on such 
consideration, this paper provides an alternative and 
simplified 2D representation for the insertion points, 
which preserves their relative positions but discards 
the radial component of their coordinates, therefore 
simplifying the visual analysis of point distributions. 
This alternative representation domain requires two 
transforms, straightening and unrolling, which ensure 
consistency with the original data sequences. 

In order to illustrate the advantages provided by 
the method proposed here, two artificial distribution 
patterns of spines have also been considered, follow­
ing helicoidal and purely random distribution patterns. 
On the one hand, helical arrangements of spines have 
been described in fish and mammalian Purkinje cells 
(O'Brien and Unwin 2006). On the other hand, den­
drites of cortical pyramidal neurons have been studied 
using the tools presented in this paper, searching for 
helicoidal patterns. However, the results obtained show 
that the arrangement of spines is closer to a random 
distribution, discarding the hypothesis of a more struc­
tured format. 

The following sections describe the straightening and 
unrolling geometrical transforms that allow the repre­
sentation of spine data in a simplified domain. 

Straightening Transform 

The first operation to be performed on the dendrite 
segment is to straighten it, in order to eliminate the 
possible irregularities that could appear on its surface 

along the axial and radial directions. The straightening 
process must keep relevant points along the dendrite's 
medial axis, such as the spines' insertion points, in the 
same relative order as in their original positions. 

Starting at one end of the dendrite, it is possible 
to follow the medial axis that users have previously 
marked using one of the tools mentioned in Section 
"Introduction" (the medial axis could also be computed 
automatically by means of some skeleton or medial 
axis transforms (Borgefors et al. 1999; Lakshmi and 
Punithavalli 2009) and a final pruning step, if required). 

Figure 4 shows a sketch of the operations involved 
in each step of the algorithm. These steps are described 
below: 

1. Step (a) computes the length value / of the me­
dial axis MA (the blue axis shown in Fig. 6). The 
parameters vt(x,y,z), i=l,...n are the spatial 
positions of the set V of n vertices introduced by 
neuroscientists to define the MA polyline. The MA 
length is defined as: 

H - l 

l = ^2di(vi,vi+l), (1) 
(=i 

where d*(% vi+i) is the Euclidean distance between 
vertices vt and vi+\. 

2. Step (b) introduces additional vertices along the 
dendrite's MA in order to facilitate the computa­
tion of the transformed coordinates of any point p} 

located on the dendrite's surface after applying the 
straightening transform. The purpose of this step is 
to obtain a dense, evenly spaced collection of ver­
tices vi that can be associated with the spines' inser­
tion points pj, in order to displace them smoothly 
while the dendrite is being straightened. In conse­
quence, this stage can be seen as a preprocessing 
step, necessary to minimize the geometric error 
introduced in the position of relevant points after 
the application of the straightening transform. 
Ideally, there would be no errors if the straight­
ening transform were computed using the actual 
analytical function that maps the medial axis onto 
a straight line. This function could be used to com­
pute the appropriate transform that would take 
every point in the MA into its final position (and 
together with every associated point point from 
the dendrite's surface corresponding to that slice 
of the medial axis, obtaining thus a straightened 
dendrite). But this process is unfeasible from the 
point of view of computational cost, and it has been 
approximated by the transformation of a discrete 
set of points placed along the MA. Clearly, a denser 
set of points will approximate the continuous, 
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(a) Compute the length value I of the medial axis MA defined by vertices Vi introduced while manually tracing the dendrite 
(Eq. 1). 

OV1=V1 Hf 

(b) Oversample the polyline by introducing new vertices in the original domain in order to create a dense collection of vertices 
that are evenly spaced along the original medial axis polyline. These oversampled vertices, labelled ovi, will be used as references 
in the straightening process. Figure 4(b) shows the set of vertices ovi to ovs introduced in the polyline segment comprised between 
vi and us. 

SMA 
• •— 

SV] sv2 
sv3 sv4 sv5 SV,.2 sv. SV„.! 

K - -5H 

(c) Create the straightened medial axis SMA of the same length / and with the same number of vertices svi than the oversampled 
vertices ovi, located at the corresponding intervals (Eq. 5). 
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(d) Translate the axes to match their origins (the se- (e) Relate the points pi on the dendrite's surface to the closest over-
lected end of the dendrite; Eq. 6). sampled vertex OVJ of the medial axis (Eq. 7) . 

(f) For each of the vertices ovi that characterizes the polyline within the dendrite's medial axis, compute the transformation 
TRj (rotation + translation) that brings each vertex ov% to its final position sv% within the straightened medial axis, applying 
it to every point associated with each of the oversampled vertices (Eq. 8-10). 

Fig. 4 Diagram summarizing all the steps involved in the straightening transform 

analytical transform better. Therefore, rather than 
applying the transform to the vertices vt which are 
placed along the medial axis polyline, and then, 

applying it to the set of points pj associated with 
each of the vertices vt, the transform's accuracy can 
be incremented by increasing the density of vertices 



on the medial axis by using an oversampling factor 
w. Nevertheless, the number of new vertices has 
to remain bounded in order to keep accuracy and 
computational cost well balanced. 
Figure 5 and Table 1 show the dependence of the 
average straightening errors and processing time 
on the total number of vertices used for computing 
the straightening transform. The original number 
of vertices was 45, and the errors are computed 
by comparing the relevant points' final positions 
obtained using the stated number of vertices with 
those obtained using the densest (from a practi­
cal point of view) population of oversampled MA 
vertices. In this data set, the oversampling factors 
range between 0.55 and 11.11. 
Experimental tests with a variety of marked den­
drites have shown that introducing an oversampling 
factor of w = 2.5 yields acceptable results, achiev­
ing a good balance between accuracy and computa­
tional cost. In consequence, after the oversampling 
process, the original n vertices vt will be replaced 
with a new set of m oversampled vertices ovt, which 
are uniformly spaced along the MA. The total num­
ber of vertices introduced, m, and the number of 
vertices introduced between each original vertex 
pair, mi, are given by the following expressions: 

Table 1 Tabular data of Fig. 5 considering absolute values for 
execution time (s) and average error (u.m) 

m. 

m 

diivi, vi+i) 
w • • n 

J2m' 

(2) 

(3) 
i=i 

From now on, all these vertices form the new set of 
oversampled vertices OV: 

OV = {ovk], k=\,m (4) 

3. Step (c) performs the straightening process, substi­
tuting the original dendrite's hand-marked points v, 

Number of resampled 
vertices 

500 
475 
450 
425 
400 
375 
350 
325 
300 
275 
250 
225 
200 
175 
150 
25 
100 
75 
50 
25 

Execution 
time (s) 

2.90 
2.74 
2.61 
2.47 
2.33 
2.20 
2.06 
1.90 
1.80 
1.62 
1.49 
1.35 
1.22 
1.07 
0.92 
0.79 
0.65 
0.51 
0.37 
0.22 

Average 
error (urn) 

0.026 
0.017 
0.024 
0.030 
0.028 
0.039 
0.033 
0.037 
0.044 
0.031 
0.051 
0.057 
0.045 
0.080 
0.087 
0.099 
0.118 
0.108 
0.244 
1.326 

of the MA by a set of straightened and uniformly 
oversampled points svt. The result is the straight 
medial axis SMA, a straight line of the same length 
/ and with the same number m of oversampled ver­
tices ovi that were introduced in step (b), keeping 
their relative distances: 

di{svi,svi+i) = di(ovi,ovi+1), ovi e OV,i=i,...,m (5) 

4. Step (d) translates the SMA for matching both 
its origin (sv^ e SV) and the direction of the first 
linear sector (sV̂  = (sv1,sv2)) with the correspond­
ing elements of the original MA (pv\ G OV, ovi = 
{ovi,ov2)): 

SMA = T • MA | svi = ovi, svi = <m (6) 

Fig. 5 Typical curves 
obtained when normalizing 
the approximation error and 
the execution time obtained 
with the straightening 
transform 

500 475 450 425 400 375 350 325 300 275 250 225 200 1 

Number of resampled vertices 
Execution time (—) Average error ( ) 



(a) Example of a tortuous dendrite. 

(b) Example of another tortuous dendrite. 

(c) Example of a third tortuous dendrite. 

(d) Dendrite presented in Fig. 2. 

Fig. 6 Left: dendrites with the original curvature; center, right: different views of the results achieved after applying the straightening 
transform 



Bold letters have been used for denoting vectors, 
being T the required translation. 

5. Step (e) establishes correspondences Q ; among the 
elements of the oversampled original medial axis 
OV and the points at the dendrite's surface, fol­
lowing the criteria of minimizing the Euclidean 
distance. 

Cij=(Pi,OVj) | 

d(pi, OVJ) = min(d(pi, OVJ)) Wpt e P, VOVJe OV (7) 

6. Step (f) computes for each vertex OVJ with at least 
one correspondence Q ; established in step (e) the 
transform TRj = TjRj required for moving OVJ to 
the position of the straightened MA's vertex SVJ 
associated with it. Being otj the angle among the 
vectors SVJ and OVJ (those linking vertices OVJ-\ and 
OVJ, and SVJ-\ and svj), and Uj, the unitary vector 
perpendicular to the plane containing SVJ and ovj: 

(8) 

Rotating vector OVJ can be performed in an elegant 
way using Rodrigues' rotation formula: 

ovj*01 = OVJ cos a?/ + (UJ x OVJ) sinof7 

+ "^(^ .5Vj ) ( l -COSay) 

Then we apply the translation: 

Tj=s~Vj OVj 

(9) 

(10) 

Finally, the same transformation TRj is applied to 
the set of points pt of the dendrite's surface that 
belong to the set of correspondences Q ;, that is, 
those that are closer to the vertex OVJ. 

The transform is only applied to the relevant points 
extracted by the user because those points are the only 
ones that will be analyzed later on. The result is a dis­
tribution of surface points aligned along the dendrite's 
central axis, ready for the unrolling transform. 

Figure 6 illustrates the importance of this transform, 
showing several dendrites that are far from the ideal, 
straight model. Problems such as sharp bends, strong 
local curvature and the presence of irregularities are 
common, preventing users from getting an accurate 
idea of the 3D distribution of insertion points across the 
dendrite's surface. Straightening the dendrite facilitates 
the analysis task, allowing users to apply either the 
methods described in this paper, or regular interaction 

techniques, or else just comparing visually different 
dendrite sections (as they show a similar geometry). 
Any of them could be used as an example for describing 
the unrolling transform and DISPINE's functionality, 
which is done in the following sections. 

Unrolling Transform 

After the straightening transform, the relevant points 
are processed sequentially, arranged according to their 
X coordinate, starting again at one end of the dendrite. 
Then, a cylindrical transform to each of the points is 
applied: 

(X,Y,Z) -> (X90.p,p) (11) 

where 0 is the azimuth or steering angle of the point 
around the sheath axis, p is the radial distance from the 
point to the central axis SMA, and ~p is the mean radial 
distance of the cloud of points (Fig. 7). 

The unrolling transform maps points between two 
different 3D domains, but the variability of the radius 
p, the third coordinate in the transformed domain, 
is very small. Therefore, the unrolled points can be 
mapped easily to a 2D domain by using the X and 0 • p 
coordinates. Please note that using the average radius 
in the unrolling transform instead of its value at each 
relevant point is equivalent to applying a scale factor to 
the angular coordinate; using local values for the radius 
would just distort the unrolled representation. 

Figure 8 shows an example of applying the unrolling 
transform to the spines' insertion points of the straight­
ened dendrite displayed in Fig. 6d. Figure 8a to d show 
the unrolled insertion points from the straightened den­
drite in green, and their 3D spatial positions before 

t 
e f -p, 

~1 
2u-Pi 

Fig. 7 For each sample i, conversion of the angular coordinate 
to a tangential distance in the unrolled domain is performed by 
multiplying 0; by a scale factor p; = p. Please note that using 
an average radius has two advantages. First, it limits the effects 
of local variations in p. And second, if a fixed value p were 
not used for translating radial values to ordinates, the unrolled 
representations of thick and thin dendrites sections would show 
wide scale variations in the Y axis 



(a) Frontal view of the unrolling transform. In green, the unrolled points. In red, the same points before unrolling. The medial 
axis is displayed in light blue. 

(b) Perspective and perpendicular or axial views of the 
points shown in (a) illustrating how the user perceives the 
straightened (almost tubular) and the unrolled data (al­
most planar) from different points of view. 

(c) Same as (a) but for a synthetic helicoidal pattern. 

(d) Same as (a) but for a random pattern. 

Fig. 8 Three views of the unrolling transform applied to the 
data shown in Fig. 6, together with two examples of a synthetic 
helicoidal and random patterns. The views show the unrolling-

transformed insertion points in green, alongside the correspond­
ing data before straightening, plotted as a cloud of red points. The 
medial axis is displayed in light blue 

unrolling in red (together with the straightened medial 
axis, which is plotted in light blue). Figure 8b displays 
slanted and axial perspective views of the straightened 
insertion points, in their original and unrolled repre­
sentations. The unrolled points show a relatively small 
amount of radius variability that can be appreciated 
best in the axial view (right part of Fig. 8b). The orig­
inal points in red obviously show additionally a larger 
scattering in angular direction, since they are placed 
around the light blue medial axis. Finally, Fig. 8c and 
d present the unroll-transformed and original insertion 
positions for synthetic helicoidal and random point 
distributions. 

DISPINE's Tool 

This section presents DISPINE, a prototype developed 
in close collaboration with the neuroscientists who are 
actually using it. The prototype functionality and tech­
nologies used are described below. 

System Functionality 

In addition to implementing the straightening and un­
rolling transforms, DISPINE also allows performing 
the following tasks that fulfill all the demands posed so 
far by neuroscientists for analyzing spine distributions. 



3D Navigation for Point Distribution Exploration 

3D Navigation for point distribution exploration is the 
basic functionality of the tool and the motivation be­
hind this work, because direct exploration in 3D around 
raw microscopy data is not enough for extracting re­
liable conclusions about the distribution of spines in 
dendrites, as presented in Figs. 2-8. 

In order to improve the analysis process, users can 
mix raw data together with the information produced 
during previous analysis stages. For example, the user 
may display markers such as the spines' insertion 
points, the spines' apex location, the dendrites' axis, 
a 3D cubic spline interpolating the spines' insertion 
points, etc. Moreover, users can display the results of 
applying the straightening and unrolling transforms to 
the raw data on a separate window. 

When both views are simultaneously selected, only 
the insertion points are presented in the 3D Cartesian 
view. This simplifies the whole scene, facilitating the 
exploration of the original data by offering interac­
tive panning and zooming over any of the available 
views. 

Synthesis of Three-Dimensional Point Distribution 
According to User-Defined Patterns 

Synthesis of three-dimensional point distribution ac­
cording to user-defined patterns can be defined both 
in the 3D Cartesian domain and in the transformed 
domain. In our case, we have implemented two typ­
ical patterns that can be found in tubular structures: 
a random pattern and a helicoidal pattern (Fig. 8c 
and d). For the random pattern case, the algorithm 
implemented follows the standard uniform distribution, 
introducing a pseudo-random distortion over the 3D 
marker coordinates. For the spiral case, the user can 
select the number of cycles, the angular offset of the 
first loop, the radius, the axis length, and the num­
ber of samples regularly distributed along the whole 
spiral. 

Visual Mapping of Relevant Features Associated 
with Markers 

For spines, typical features under consideration are the 
spine size, length or orientation. We have chosen 3D 
shapes based on deformed spheres for representing 
these three variables as glyphs, assigning spine size to 
the shape volume, spine length to the ratio among the 
major and minor axis of the resulting deformed sphere, 

and spine orientation to the directional orientation of 
the 3D shape. The average values for spine size (mea­
sured as spine volume) and length have been computed 
for each dataset. Individual spines have been compared 
with this average value in order to know whether they 
are bigger or longer than the average (Fig. 9). As for 
size, those spines that are above or below the mean 
value are represented by a larger or smaller sphere, 
proportional to the deviation from the mean (Fig. 9a). 
For length, spheres representing spines are deformed to 
obtain an ellipsoid, elongated if the spine value is longer 
than average, or flattened otherwise (Fig. 9b). 

Spine orientation is defined as the difference be­
tween the radial direction obtained when joining the 
insertion point with the closest point of the medial axis, 
denoted as foj, and the orientation of the spine's medial 
axis extracted from the spines manually segmented, 
denoted as soj (Fig. 10 illustrates this concept). If no 
deviation is found, the deformed shape is vertical in 
the unrolled plane (almost normal to the dendrite's 
surface). 

Spine orientation is the most difficult feature from 
the point of view of data representation, because of 
its high dimensionality. First, spine insertion points 
are represented in the original domain by their 3D 
coordinates, and in the unrolled domain, by two para­
meters (distance along the MA and p-scaled azimuth). 
Representing spine orientation from the insertion point 
outwards requires three additional parameters in the 
original domain, and two in the unrolled domain. 

When visualizing spines in the original domain, the 
presence of spine and dendrite morphological data 
gives the user enough cues to get a clear idea about 
spine orientation, even though the user might not prop­
erly grasp the magnitude of other parameters which 
are obscured by dendrite and spine clutter. In conse­
quence, a simple solution for maximizing visualization 
efficiency would be just to superpose the glyphs de­
scribed in the previous paragraphs and displayed in 
Fig. 9a to c on top of the spine representations. The 
left and central images of Fig. 9d show this solution. 
As it can be appreciated, placing the glyphs on the 
spines' heads results in improved data interpretability. 
Regarding user navigation, DISPINE permits users to 
explore only raw data, only glyph data, or both, as 
shown in Fig. 9d. 

Visualizing spine orientation in the unrolled domain 
is hard, because the user does not have the morpho­
logical cues mentioned above. Since eccentricity cannot 
always be used to represent spine direction because 
there might be spherical glyphs (remember that ec­
centricity is also used for representing spine length), 
spine direction is represented by the presence of a non-



(a) Spheres deformed to represent spine size. Prom left to right, spines smaller, equal or larger than the mean value. 

(b) Spheres deformed to represent spine length. From left to right, spines shorter, equal or longer than the mean value. 

(c) 3D Shapes oriented in the unrolled space. Vertical orientation with respect the unrolling plane means no deviation from the 
radial direction. Prom left to right: 0°, 45° and 90° (approximately). 

(d) Visual mapping applied on the original system of reference (left,center) and on the unrolled domain (right). Visual mapping 
orientation is best illustrated in left, placing the deformed shaded sphere at the spine heads instead of using their insertion 
points, as it has been done so far (center). Please notice that the dendrite segment in the unrolled domain has been rotated. 

Fig. 9 Examples of glyphs used for visually mapping features such as spine size (a), length (b) and orientation (c). A dual view is also 
available for this tool functionality (d) 

saturated color region, oriented in the same spatial 
direction as the spine (Fig. 9c and d). 

Point Filtering 

As it can be seen in Fig. 11, the user can select the 
data to be displayed by setting up different values. In 
this manner, the data which does not meet the selected 
parameter ranges may be filtered out. For example, 
users may enable or disable the visualization of spines 
according to their size, length, angular position in which 
they grow, etc. Only the selected set of spines that fall 

inside the interval specified by the upper and lower 
thresholds will be drawn. Local spatial exploration can 
also be performed if the user selects a region of interest 
defined from the straightened medial axis. 

Any combination of parameter values is user-
selectable for filtering out the undesired data. In con­
sequence, the filter options provide additional help for 
simplifying the amount of data and the complexity of 
the representation, allowing the user to focus his/her 
attention on a specific set of samples (Fig. 11). In this 
particular example, regarding the spatial position, the 
user has selected a central region of the dendrite seg­
ment, and for the azimuth, only the samples included in 
the [180°, 360°] interval. 
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Fig. 10 Different cases of spine orientation defined by the angle 
between the radial orientation vector roj and the orientation of 
the spine's medial axis extracted from the spines, represented 
by the vector s5j. The value of the angle computed will be the 

orientation of the glyph used for mapping visual features in the 
unrolled domain (Fig. 9d right). The azimuth angle is not shown, 
since it can be easily perceived from the glyph in the unrolled 
representation 

Data Clustering for Periodic Data 

DISPINE offers tools for searching for repetitive pat­
terns in the position of spine insertion points. Given 
the human ability for detecting patters visually, this is 
done by offering users the possibility of superposing 

data from different dendrite areas. The tool offers two 
options: 

1. Fixing a particular origin and period with respect 
to X (medial axis position), and comparing spine 
insertion points from several different dendrite 

(a) Filtering spine samples by size and length using the visual mapping representation. Left: original set of samples. Right: 
selected subset. 

(b) Filtering spine samples by angular and spatial position. Top: original set of samples. Bottom: selected subset (only those 
spines located between two specific axial locations and growing between two azimuth directions are displayed). 

Fig. 11 Filtering out insertion points according to spine size, length, angular position, and spatial position. The whole unfiltered data 
set is shown in Fig. 2 



fragments at that specific period. This has been 
labeled multi-period clustering. 

2. Fixing a region origin, selecting different period 
lengths, and comparing points from two adja­
cent periods. This has been denoted by intergroup 
folding. 

Figure 12 shows an example of this functionality. The 
user has selected four cycles in the reference pattern, 
delimited by yellow bars, and the corresponding data 
samples on the unrolled domain are grouped into one 
cluster. Figure 12a shows several samples coming from 
the four different cycles taken as the period of ref­
erence. Notice the four colors assigned to the points 
identifying their original cycles. Inter-group folding, 
shown in Fig. 12b, allows to group two cycles inside the 
initial interval of interest. In this case, only two colors 
are required for representing the original pair of cycles. 

For multi-period clustering, clusters can be defined 
by varying the frequency / of the current helicoidal 
pattern reference (with / = l/lc, being Ic the helix 
pitch) or by varying the number of cycles n that belong 
to each cluster. Defining UP as the set of unrolled 
points, cluster i is formed by displacing the selected set 
of samples to the current cycle defined as the reference: 

pcj(x, y, z) = Pj(x - (k • Ic), y, z), 

I 
VjeUP,k = 0,.... 

Ic • n 

being k the ordinal cycle inside cluster i and Ic • 
n the total length of the dendrite fragment under 
consideration. 

The tool also performs inter-group folding as a help 
for period determination, if users want to analyze 
different clustering periods. Just like before, 

pcj(x, y, z) = Pj(x - (k- Ic- n), y, z), 

' t' 
V; eUP,k=l mod 2 

(13) 

(14) 

1 (12) 

being mod the module function, t the ordinal of the 
cycle that contains pj, and i the target cluster. 

Users can visualize at the same time the target helix 
as a reference pattern and the clustering result. They 
are able as well to specify an offset for the cycle starting 
point in the samples' analysis as a percentage value of 
the basic cycle length along the medial axis. Addition­
ally, they can select a uniform color for the grouped 
samples, or different color codes depending on their 
original positions. Transparency can also be used for 
simultaneously visualizing some overlapping samples, 
because the sample density increases when different 
dendrite regions are grouped. 

Visual Animation of the Raw Data and the Transforms 
Applied 

Occasionally, 3D spatial interpretation is a difficult task 
for certain users. Animating the transforms offers thus 
a very helpful support for this set of experts, because 

Fig. 12 Data clustering for 
spiral analysis. Color codes in 
the gathered samples are 
assigned depending on their 
original positions with respect 
to four different cycles 
{multi-period), or two pairs of 
cycles (intergroup), grouped 
in the current spiral pattern 
taken as the reference 

•«-** -ss \S 
(a) Multi-period clustering. 

* * * 
* * • * 

• . - * " .v 
-

VA 

m 

AA 
(b) Intergroup folding. 



it illustrates easily all the steps of the visual analysis 
method proposed in this work. 

Standalone animations free users from taking care 
of interaction controls, allowing them to focus their 
attention on the data being examined. This visual effect 
is synchronized in both representation domains if the 
dual viewing mode is selected. 

Detection of Periodic Patterns Using Sound Feedback 
as an Optional Aid 

Sound can also be used for giving users additional 
cues about the data being analyzed. On account of 
human sensitivity to audible frequencies and rhythms 
(temporal repetition patterns of audible frequencies), 
this feedback proves particularly useful when users 
are trying to detect the presence of periodic patterns 
hidden within the analyzed data (Mansur et al. 1985). 
In this framework, we have selected the distance among 
points along the dendrite's medial axis as well as their 
angular position as the key parameters for translating 
spatial information into sound: 

- Each of the chromatic scale notes has been associ­
ated with a range of values of the azimuth parame­
ter 9 by dividing its range (360°) among the twelve 
semitones of this scale 

- The time when a particular note is being played 
depends on the spines' position along the medial 
axis. 

The activation instant of the notes is determined by the 
spatial position of spines along the medial axis length, 
translating therefore axial spatial information to the 
time domain and fixing t = 0 for the axis origin. In 
DISPINE, the user may select both sound parameters 
(tones and time instants) for exploring dendrites along 
the medial axis, or just tone, in order to analyze the 
sequential distribution of the spines' insertion point an­
gle along the spines' medial axis. Other more complex 
mappings for assigning audio stimuli to circular pitch 
are also possible (Deutsch 2010), but are beyond the 
goals of this work. 

Technologies Used 

The development method followed is very similar to 
Scrum because it is very well adapted to our envi­
ronment and to the user-centered design philosophy 
followed in this application (Rising and Janoff 2000). 
This methodology enables software to be developed 
rapidly on the basis of small sprints, the result of each 
representing a further improvement in the prototype. 

Another issue taken into consideration was to ensure 
the portability of DISPINE across a wide range of 
systems. We chose a set of stable and widely tested 
free distribution tools that made this objective easier. 
Thus, we chose Python vs. 2.6 as the programming 
language, Qt for user interface development, VTK vs. 
5.4 as the visualization library, and NumPy vs 1.5.1 for 
linear algebra. Accordingly, DISPINE has already been 
successfully installed on a variety of systems with Linux 
and Windows. 

With regard to the GUI architecture, it was condi­
tioned both by the selected toolkits and by the required 
prototype functionality. The design pattern that best 
fitted our purposes was the observer-pattern, because 
we needed to synchronize multiple views of the same 
model taking into account the changes introduced in 
the model by user interaction (Gamma et al. 1995). 
Moreover, Qt and VTK made available a large set 
of widgets which enabled the establishment of view-
hierarchies in order to define new specific component 
and container hierarchies, or else, to reuse generic ones. 
View-hierarchies were also applied to the management 
of the input, output and DISPINE layout. 

Case Study: Preliminary Analysis of Cortical Dendritic 
Spine Distributions 

The system presented here has been used for the analy­
sis of cortical dendritic spine distributions. The use of 
the straightening and unrolling transforms for analyz­
ing data has been decisive for guiding the neurosci-
entists' work, as well as for reaching new conclusions 
about the spatial patterns found in these distributions. 

In the present work we intracellularly injected cells 
in cytoarchitectonically identified layer III of the hu­
man cingulate cortex, but the proposed method can 
be applied to any other type of neuron in the human 
brain or in any other species. The fluorescent marker 
Lucifer Yellow (LY) was applied to each injected cell 
by continuous current until the distal tips of each cell 
fluoresced brightly (Fig. la), indicating that the den­
drites were completely filled and ensuring that the 
fluorescence did not diminish at a distance from the 
soma (for a detailed description of the cell injection 
methodology, see Elston and Rosa 1997; Elston et al. 
2001; Ballesteros-Yanez et al. 2010). 

Following the intracellular injection of pyramidal 
neurons, the sections were stained using rabbit antisera 
against LY. The antibody was visualized with biotiny-
lated goat anti-rabbit IgG and streptavidin-conjugated 
Alexa fluor 488. The sections were then studied with 
the aid of a Leica TCS 4D argon/krypton mixed-gas 



confocal scanning laser attached to a Leitz DMIRB 
fluorescence microscope. Fluorescent labeling profiles 
were imaged using an excitation peak of 491 nm to 
visualize Alexa fluor 488. 

Stacks of images were acquired at high magnification 
(63x with an oil-immersed objective) to build volu­
metric reconstruction of a dendrite (Semwogerere and 
Weeks 2005). 

The reader may find a video at http://www.datsi.fi. 
upm.es/~arodri/cbb/ninfl l/dispine_video.wmv showing 
a typical working session where the user runs the fol­
lowing sequence of actions after loading the data file: 

1. Interactively explore the dendrite, looking for rel­
evant features in the image stack. 

2. Animate the visualization, adding rotational mo­
tion to the elements of the 3D scenario. 

3. Add insertion points and additional visual refer­
ences (medial axis of the dendrite and interpola­
tion curve) in the 3D view of the stack. 

4. Obtain the straightening transform. 
5. Compute the unrolling transform. 
6. Define a new distribution pattern for synthetic 

data. 
7. Interactively examine and filter out points on both 

domains, 3D Cartesian and transformed, either 
with static views or with animated visualizations, 
according to different criteria: spine size, length, 
angular position or spatial position along the me­
dial axis. 

8. Perform visual mappings of the morphological 
features extracted from spines. 

9. For periodic patterns, perform visual data analysis 
in the unrolled domain taking into account spatial 
frequency sampling. 

10. Animate the path of the spines along the medial 
axis receiving audio feedback about the spatial 
distributions examined. 

Once neuroscientists have completed the exploration of 
the dendritic spine distribution under study, they can 
extract hypothesis about the morphological features of 
the structure being analyzed. Considering the example 
presented in Fig. 2, we can visually compare the two 
synthetic patterns defined as references with the data 
extracted from the segment shown. Examining Figs. 8-
11 in the way in which a domain expert would do, it 
seems at first sight that this distribution is closer to 
a random distribution, discarding the hypothesis of a 
structured pattern such as the helicoidal distribution. If 
we now focus our attention at the clusterings presented 
in Fig. 12, we can easily observe again that the gathered 
samples do not resemble the helicoidal pattern, but 
they look rather like the random distribution pattern. 

However, if we look at the original 3D distribution 
shown in Figs. 2 and 6 (left column), a neuroscientist 
has no evidence about the existence or not of any 
pattern, preventing him to reach a firm conclusion with 
such data. 

Discussion and Future Work 

At times, it may be difficult to detect 3D features when 
the object geometry is masked by non-rigid transfor­
mations such as those found in real dendrites. In these 
cases, moving to a simpler transformed domain can be 
an effective way to simplify the analysis process. 

This paper presents a methodology for assisting 
neuroscientists to study the 3D organization of spine 
insertions in dendrites, a task that is important for 
studying dendritic spine distribution patterns. This may 
prove critical not only for better understanding the 
brain's synaptic organization, but also for detecting 
differences among neuronal circuits under different 
circumstances.2 Thus, we propose that the method de­
scribed here can be of general interest because it repre­
sents a substantial help for the analysis of the dendritic 
spine organization. 

The method at issue is based on two transforms, 
straightening and unrolling, which have been applied 
to spine insertion points scattered along the dendrites' 
surface. These two transforms were used to map the 3D 
position of points into a two dimensional space. 

The creation of an unfolded arrangement such as the 
one proposed enables a straightforward visualization 
and analysis of these structures. As pointed out in the 
introduction, it manages to avoid the difficulties of 
performing the analysis directly in 3D while definitely 
improving the user's insight. The result of both trans­
forms allows users to enhance the interpretability of 
data without losing any of the properties present in the 
original tubular data, such as its spatial ordering, or the 
spatial relationships among neighbor points or point 
attributes. Neuroscientists working with this type of 
data have argued that, from their experience, exploring 
these properties directly in 3D is not possible because 
visual references are very difficult to establish using 
point-based representations. This can be noticed in the 
video accompanying Fig. 1 or in the examples presented 

2For example, the morphology, number and density of dendritic 
spines are altered in many brain diseases and under several 
conditions such as malnutrition, alcohol or toxin exposure (Fiala 
et al. 2002). 

http://www.datsi.fi
http://upm.es/~arodri/cbb/ninfl


throughout the paper. In any case, as it has been shown 
in the previous sections, the original data remains avail­
able, so the users contrast their hypotheses within both 
representation domains at all times. 

Central to the methodology presented here is also 
the design of DISPINE, an interactive environment 
that permits exploring 3D data in various reference 
systems, filtering out insertion points according to dif­
ferent spine features, both morphological and spatial. 
Additionally, DISPINE supports the following options: 

- Pattern synthesis (random and helicoidal 
distributions). 

- Periodic spatial pattern analysis applied to spirals. 
- Simple visual mapping creation (spine size, length 

and orientation). 
- Audible feedback. 

All these options increase the resources available to 
users for analyzing such complex 3D data. 

The tests performed with end users, together with 
the feedback provided by them, show that this tool can 
effectively help analyzing complex tubular structures 
such as spines' insertion points in dendrites. It can 
also be applied to different brain regions, species, and 
experimental conditions (healthy vs. abnormal, young 
vs. old, etc.), and it can additionally be applied to 
other scientific fields, where this kind of tubular point 
distributions can be found. Further experiments with 
other datasets, like the one presented in this paper, 
will allow neuroscientists to easily and quickly explore 
new hypotheses about 3D neuron morphology. In turn, 
this will provide support in deciding whether additional 
statistical analysis will be required for demonstrating 
or refuting specific hypothesis (Morales et al. 2012). 
Furthermore, this tool will help improving productivity 
by incorporating new interactive aids in Neuroscience; 
for example, the use of this tool has been fundamental 
for guiding the statistical analysis performed in Morales 
et al. (2012). 

DISPINE has been tested in several laboratories 
from different institutions, located in a number of 
countries. The feedback provided by users has been 
very positive, supporting the evidence that this tool has 
opened new possibilities for analyzing spine distribu­
tions in ways that were not possible before because 
of a lack of tools for performing this kind of analysis. 
In general, users have evaluated also very positively 
DISPINE's functionality and ease of interaction. 

Future work will be devoted to the improvement of 
the tool usability by introducing local interactions for 
selected regions of interest, and to the development of 
additional tools for characterizing spine distributions, 
such as the inclusion of stereoscopic rendering. It must 

be noticed that we consider stereoscopic vision just 
an additional aid for improving depth discrimination, 
although the complexity of examining the distribution 
patterns of dendritic spines requires new methods to 
simplify this task, and not just new technologies for 
visualizing data in 3D. 

Also, future work will consider the possibility of 
including user-defined azimuth references in order to 
keep the orientation consistency between the straight­
ened, unrolled projections, and the 3D domain (its 
effect over the straightened dendrite will be equivalent 
to perform a torsion along its medial axis in order 
to assign azimuth uniform values to spines directed 
towards the same region in 3D space). 

Information Sharing Statement 

The software will follow a free distribution policy 
under the GPL licence. It can be downloaded to­
gether with the dataset shown in the paper from 
http://cajalbbp.cesvima.upm.es/dispine. All the videos 
referenced in this work will be also available at the 
same url. 
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