
Failure Detectors in Homonymous Distributed Systems
(with an Application to Consensus)

Sergio ARÉVALO⋆ Antonio FERNÁNDEZ ANTA⋆⋆ Damien IMBS‡

Ernesto JIM ÉNEZ⋆ Michel RAYNAL †,‡

⋆ EUI, Universidad Politécnica de Madrid, 28031 Madrid, Spain
⋆⋆ Institute IMDEA Networks, 28918 Madrid, Spain

† Institut Universitaire de France
‡ IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract— This paper is on homonymous distributed systems
where processes are prone to crash failures and have no initial
knowledge of the system membership (“homonymous” means
that several processes may have the same identifier). New
classes of failure detectors suited to these systems are first
defined. Among them, the classesHΩ and HΣ are introduced
that are the homonymous counterparts of the classesΩ and Σ,
respectively. (Recall that the pair 〈Ω, Σ〉 defines the weakest
failure detector to solve consensus.) Then, the paper showshow
HΩ and HΣ can be implemented in homonymous systems
without membership knowledge (under different synchrony
requirements). Finally, two algorithms are presented thatuse
these failure detectors to solve consensus in homonymous
asynchronous systems where there is no initial knowledge ofthe
membership. One algorithm solves consensus with〈HΩ, HΣ〉,
while the other uses onlyHΩ, but needs a majority of correct
processes.

Observe that the systems with unique identifiers and anony-
mous systems are extreme cases of homonymous systems
from which follows that all these results also apply to these
systems. Interestingly, the new failure detector classHΩ can be
implemented with partial synchrony, while the analogous class
AΩ defined for anonymous systems can not be implemented
(even in synchronous systems). Hence, the paper provides us
with the first proof showing that consensus can be solved
in anonymous systems with only partial synchrony (and a
majority of correct processes).

Keywords-Agreement problem, Asynchrony, Consensus, Dis-
tributed computability, failure detector, Homonymous system,
Message-passing, Process crash.

I. I NTRODUCTION

Homonymous systems Distributed computing is on mas-
tering uncertainty created by adversaries. The first adversary
is of course the fact that the processes are geographically
distributed which makes impossible to instantaneously ob-
tain a global state of the system. An adversary can be static
(e.g., synchrony or anonymity) or dynamic (e.g., asynchrony,
mobility, etc.). The net effect of asynchrony and failures is
the most studied pair of adversaries.

This work has been partially funded by the Spanish Research Council
(MICCIN) under projects TIN2010-19077 and TEC2011-29688-C02-01,
by the Madrid Research Foundation (CAM) under project S2009/TIC-
1692 (cofunded by ERDF & ESF), and by the National Natural Science
Foundation of China under grant 61020106002.

This paper is on agreement in crash-prone message-
passing distributed systems. While this topic has been deeply
investigated in the past in the context of asynchrony and
process failures (e.g., [1], [2]), we additionally consider here
that several processes can have the same identity, i.e., the
additional static adversary that ishomonymy. A first model
and the motivation for homonymous processes in distributed
systems can be found in [3] where, for example, users keep
their privacy taking their domain as their identifier (the
same identifier is then assigned to all the users of the same
domain). Observe that homonymy is a generalization of two
cases: (1) having unique identifiers and (2) having the same
identifier for all the processes (anonymity), which are the
two extremes of homonymy.

We also assume that the distributed system has to face
another static adversary, which is the fact that, initially, each
process only knows its own identity. We say that the system
has to workwithout initial knowledge of the membership.
This static adversary has been recently identified as of
significant relevance in certain distributed contexts [4].

How to face adversaries It is well-known that lots of
problems cannot be solved in presence of some adversaries
(e.g., [5], [6], [7], [8]). When considering process crash
failures, thefailure detector approach introduced in [9], [10]
(see [11] for an introductory presentation) has proved to be
very attractive. It allows to enrich an otherwise too poor
distributed system to solve a given problemP , in order to
obtain a more powerful system in whichP can be solved.

A failure detector is a distributed oracle that provides
processes with additional information related to failed pro-
cesses, and can consequently be used to enrich the com-
putability power of asynchronous send/receive message-
passing systems. According to the type (set of process
identities, integers, etc.) and the quality of this information,
several failure detector classes have been proposed. We refer
the reader to [2] where classes of failure detectors suited
to agreement and communication problems, corresponding
failure detector-based algorithms, and additional behavioral
assumptions that (when satisfied) allow these failure detec-
tors to be implemented are presented. It is interesting to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148665382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

observe that none of the original failure detectors introduced
in [10] can be implemented without initial knowledge of the
membership [4].
Aim of the paper Agreement problems are central as
soon as one wants to capture the essence of distributed
computing. (If processes do not have to agree in one way or
another, the problem we have to solve is not a distributed
computing problem!) The aim of this paper is consequently
to understand the type of information on failures that is
needed when one has to solve an agreement problem in
presence of asynchrony, process crashes, homonymy, and
lack of initial knowledge of the membership. As consensus
is the most central agreement problem we focus on it.
Related work As far as we know, consensus in anonymous
networks has been addressed first in [12], [13]. (While [13]
considers different synchrony assumptions, [12] considers
systems enriched with failure detectors.) Connectivity re-
quirements for agreement in anonymous networks is ad-
dressed in [14].

To the best of our knowledge, up to now agreement in
homonymous systems has been addressed only in [3], [15],
and [16]. In the first paper the authors consider that, among
the n processes, up tot of them can commit Byzantine
failures. The system is homonymous in the sense that there
are ℓ, 1 ≤ ℓ ≤ n, different authenticated identities, each
process has one identity, and several processes can share
the same identity. It is shown in that paper thatℓ > 3t and
ℓ > 3t+n

2 are necessary and sufficient conditions for solving
consensus in synchronous systems and partially synchronous
systems, respectively. In [15] it is shown that this bound
can be improved if the distribution of processes among
identifiers is known.

The latter paper [16] mainly explores consensus in a
shared memory system with anonymous processes, and
bounds the complexity (namely, individual write and step
complexities) of solving consensus with the aid of an
anonymous leader electorAΩ (see below). They show that
if the system is homonymous instead of purely anonymous
these bounds can be improved.

The consensus problem in anonymous asynchronous
crash-prone message-passing systems has been recently ad-
dressed in [12] (for the first time to our knowledge). In
such systems, processes have no identity at all1. This paper
introduces an anonymous counterpart2 (denotedAP later in

1They must also execute the same program, because otherwise they could
use the program (or a hash of it) as their identity. We consider that it is the
same if processes have no identity or they have the same identity for all
processes, since a process that lacks an identity can choosea default value
(e.g.,⊥) as its identifier.

2In this paper, when we say that a failure detectorA is thecounterpart of
a failure detectorB we mean that, in a classical asynchronous system (i.e.,
where each process has its own identity) enriched with a failure detector of
classA, it is possible to design an algorithm that builds a failure detector
of the classB and vice-versa by exchangingA and B. Said differently,
A and B have the same computability power in a classical crash-prone
asynchronous system.

[17]) of the perfect failure detectorP introduced in [10].
A failure detector of classAP returns an upper bound (that
eventually becomes tight) of the current number of alive pro-
cesses. The paper then shows that there is an inherent price
associated with anonymous consensus, namely, while the
lower bound on the number of rounds in a non-anonymous
system enriched withP is t + 1 (wheret is the maximum
number of faulty processes), it is2t + 1 in an anonymous
system enriched withAP . The algorithm proposed assumes
knowledge of the parametert.

More general failure detectors suited to anonymous dis-
tributed systems are presented in [17]. Among other results,
this paper introduces the anonymous counterpartAΣ of the
quorum failure detector classΣ [18] and the anonymous
counterpartAΩ of the eventual leader failure detector class
Ω [9]. It also presents the failure detector classAP which
is the complement ofAP . An important result of [17] is
the fact that relations linking failure detector classes are
not the same in non-anonymous systems and anonymous
systems. This is also the case if processes do not know the
numbern of processes in the system (unknown membership
in anonymous systems). Ifn is unknown, the equivalence
betweenAP andAP , shown in [17], does not hold anymore.

Regarding implementability, it is stated in [17] thatAΩ is
notrealistic (i.e., it can not be implemented in an anonymous
synchronous system [19]). If the membership is unknown, it
is not hard to show thatAP is not realistic either, applying
similar techniques as those in [4]. On the other hand, while
AP can be implemented in an anonymous synchronous
system, it is easy to show that it cannot be implemented
in most partially synchronous systems (e.g., in particular, in
those with all links eventually timely).

Contributions As mentioned, we explore the consensus
problem in homonymous systems. Additional adversaries
considered are asynchrony, process crashes, and lack of
initial knowledge of the membership. We can summarize
the main contributions of this paper as follows.

First, the paper defines new classes of failure detectors
suited to homonymous systems. These classes, denotedHΩ
andHΣ, seem to be natural homonymous counterparts ofΩ
andΣ, respectively.HΩ relaxes the restriction ofΩ that the
identifier returned by the failure detector belongs to a single
leader, allowing multiple homonymous leaders. Similarly,
HΣ provides the quorum guarantees ofΣ, but overcoming
the issue that unique identifiers are not guaranteed. The
interest on the latter classes is motivated by the fact that
〈Σ, Ω〉 is the weakest failure detector to solve consensus in
crash prone asynchronous message-passing systems for any
number of process failures [18]. The paper also investigates
the relations linkingHΣ , AΣ and Σ, and shows that both
HΩ and HΣ can be obtained fromAP in asynchronous
anonymous systems. As a byproduct, we also introduce
a new failure detector class denoted3HP , that is the

homonymous counterpart of3P (the complement of3P
[10]), which we consider of independent interest.

Then, the paper explores the implementability of these
classes of failure detectors. It presents an implementation
of 3HP in homonymous message-passing systems with
partially synchronous processes and eventually timely links.
This algorithm does not require that the processes know the
system membership. SinceHΩ can be trivially implemented
from 3HP without communication,HΩ is realistic and can
also be implemented in a partially synchronous homony-
mous system without membership knowledge. The paper
also presents an implementation ofHΣ in a synchronous
homonymous message-passing system without membership
knowledge.

Finally, the paper presents two consensus algorithms
for asynchronous homonymous systems enriched withHΩ.
Both algorithms are derived from consensus algorithms for
anonymous systems proposed in [20] and [17], respectively.
The main challenge, and hence, the main contribution of our
algorithms, is to modify the original algorithms that usedAΩ
to useHΩ instead. In the second algorithm, also the use of
AΣ has been replaced by the use ofHΣ.

The first algorithm assumes that each process knows the
value n and that a majority of processes is correct in all
executions3. Since, as mentioned,HΩ can be implemented
with partial synchrony, the combination of the algorithms
presented (to implementHΩ and to solve consensus with
HΩ) form a distributed algorithm that solves consensus
in any homonymous system with partially synchronous
processes, eventually timely links, and a majority of correct
processes. Applied to anonymous systems, this result relaxes
the known conditions to solve consensus, since previous
algorithms were based on unrealistic failure detectors (AΩ)
or failure detectors that require a larger degree of synchrony
(AP).

The second consensus algorithm presented works for any
number of process crashes, and does not need to know
n, but assumes that the system is enriched with the pair
of failure detectors〈HΣ, HΩ〉. This algorithm, combined
with the algorithms to implementHΣ and HΩ, shows
that the consensus problem can be solved insynchronous
homonymous systems subject to any number of crash fail-
ures without the initial knowledge neither of the parameter
t nor of the membership. Applied to anonymous systems,
this result relaxes the known conditions to solve consensus
under any number of failures, since previous algorithms used
unrealistic detectors (AΩ) or required to knowt or an upper
bound on it.

This second consensus algorithms also forces us to restate
the conjecture of which could be the weakest failure detector
to solve consensus in asynchronous anonymous systems.

3The knowledge ofn can be replaced by the knowledge of a parameterα
such that,α > n/2 and, in all executions, at leastα processes are correct.

The algorithm solves consensus in anonymous systems with
a pair of detectors〈HΣ, HΩ〉, and we describe how it
can be modified to solve consensus with a pair〈HΣ, AΩ〉.
Additionally, as mentioned, it is shown here thatHΣ can
be obtained fromAΣ, and both HΣ and HΩ can be
obtained fromAP . The conjecture issued in [17] was that
〈AΣ, AΩ〉 ⊕ AP 4 could be the weakest failure detector.
Then, using the same algorithm described in [17] to combine
the consensus algorithms for〈HΣ, AΩ〉 and〈HΣ, HΩ〉, the
new candidate to be the weakest failure detector for consen-
sus despite anonymity is now〈HΣ, AΩ〉 ⊕ 〈HΣ, HΩ〉.

Roadmap The paper is made up of V sections. Section II
presents the system model. Section III introduces failure de-
tector classes suited to homonymous systems, and explores
their relation with other classes and their implementability.
Finally, Section V presents failure detector-based homony-
mous consensus algorithms.

II. SYSTEM MODEL

Homonymous processes Let Π denote the set of processes
with |Π| = n. We use id(p) to denote the identity of
processp ∈ Π. Different processes may have the same
identity, i.e. p 6= q ; id(p) 6= id(q). Two processes
with the same identity are said to behomonymous. Let
S ⊆ Π be any subset of processes. We defineI(S) as the
multiset (sometimes also calledbag) of process identities
in S, I(S) = {id(p) : p ∈ S}. Let us remember
that, differently from a set, an element of a multiset can
appear more than once. Hence, asI(S) may contain several
times the same identity, we always have|I(S)| = |S|.
The multiplicity (number of instances) of identityi in a
multiset I is denotedmultI(i). When I is clear from the
context we will use simplymult(i). P (I) ⊆ Π is used to
denote the processes whose identity is in the multisetI, i.e.,
P (I) = {p : p ∈ Π ∧ id(p) ∈ I}. Every processp ∈ Π
knows its own identityid(p). Unless otherwise stated, a
processp does not know the system membershipI(Π), nor
the system sizen, nor any upper boundt on the number of
faulty processes. Observe that the setΠ is a formalization
tool that is not known by the set of processes of the system.

Processes are asynchronous, unless otherwise stated. We
assume that time advances at discrete steps. We assume a
global clock whose values are the positive natural numbers,
but processes cannot access it. Processes can fail by crash-
ing, i.e., stop taking steps. A process that crashes in a run
is said to befaulty and a process that is not faulty in a run
is said to becorrect. The set of correct processes is denoted
by Correct ⊆ Π.

Communication The processes can invoke the primitive
broadcast(m) to send a messagem to all processes of the

4⊕ represents a form of composition in which the resulting failure
detector outputs⊥ for a finite time until it behaves at all processes as
one -and the same- of the two detectors that are combined.

system (including itself). This communication primitive is
modeled in the following way. The network is assumed
to have a directed link from processp to processq for
each pair of processesp, q ∈ Π (p does not need to be
different from q). Then,broadcast(m) invoked at process
p sends one copy of messagem along the link fromp
to q, for eachq ∈ Π. Unless otherwise stated, links are
asynchronous and reliable, i.e., links neither lose messages
nor duplicate messages nor corrupt messages nor generate
spurious messages. If a process crashes while broadcasting
a message, the message is received by an arbitrary subset of
processes.

Notation and time-related definitions The previous
model is denotedHAS [∅] (Homonymous Asynchronous
System). We useHPS [∅] to denote a homonymous system
where processes are partially synchronous and links are
eventually timely. A process ispartially synchronous if the
time to execute a step is bounded, but the bound is unknown.
A link is eventually timely if there is an unknown global
stabilization time (denotedGST) after which all messages
sent across the link are delivered in a boundedδ time, where
δ is unknown. Messages sent beforeGST can be lost or
delivered after an arbitrary (but finite) time.

AS[∅] denotes the classical asynchronous system with
unique identities and reliable channels. Finally,AAS[∅]
denotes the Anonymous Asynchronous System model [17].
Observe thatAS[∅] andAAS[∅] are special cases (actually
extreme cases with respect to homonymy) ofHAS [∅] (an
anonymous system can be seen as a homonymous system
where all processes have the same default identifier⊥).

III. FAILURE DETECTORS

In this section we define failure detectors previously pro-
posed and the ones proposed here for homonymous systems.
Then, relationships between these detectors are derived, and
their implementability is explored.

Failure detectors for classical and anonymous systems
We briefly describe here some failure detector previously
proposed. We start with the classes that have been defined
for AS[∅].

A failure detector of class Σ [18] provides each process
p ∈ Π with a variabletrustedp which contains a set of
process identifiers. The properties that are satisfied by these
sets are [Liveness]∀p ∈ Correct , ∃τ ∈ N : ∀τ ′ ≥ τ,
trustedτ ′

p ⊆ I(Correct), and [Safety]∀p, q ∈ Π, ∀τ, τ ′ ∈

N, trustedτ
p ∩ trustedτ ′

q 6= ∅.
A failure detector of class Ω [9] provides each processp ∈

Π with a variableleaderp such that [Election] eventually
all these variables contain the same process identifier of a
correct process.

The following failure detector classes have been defined
for anonymous systemsAAS[∅].

A failure detector of class AΩ [17] provides each process
p ∈ Π with a variablea leaderp, such that [Election] there

is a time after which, permanently, (1) there is a correct
process whose Boolean variable is true, and (2) the Boolean
variables of the other correct processes are false.

A failure detector of class AP [12] provides each process
p ∈ Π with a variableanapp such that, if anapτ

p and
Correctτ denote the value of this variable and the number
of alive processes at timeτ , respectively, then [Safety]
∀p ∈ Π, ∀τ ∈ N, anapτ

p ≥ |Correctτ |, and [Liveness]
∃τ ∈ N, ∀p ∈ Correct , ∀τ ′ ≥ τ, anapτ ′

p = |Correct |.
A failure detector of class AΣ [17] provides each process

p ∈ Π with a variablea sigmap that contains a set of pairs
of the form(x, y). The parameterx is a label provided by the
failure detector, andy is an integer. Let us denotea sigmaτ

p

the value of variablea sigmap at timeτ . Let SA(x) = {p ∈
Π | ∃τ ∈ N : (x,−) ∈ a sigmaτ

p}. Any failure detector of
classAΣ must satisfy the following properties:

• Validity. No seta sigmap ever contains simultaneously
two pairs with the same label.

• Monotonicity. ∀p ∈ Π, ∀τ ∈ N : (((x, y) ∈
a sigmaτ

p) =⇒ (∀τ ′ ≥ τ : ∃y′ ≤ y : (x, y′) ∈

a sigmaτ ′

p).
• Liveness.∀p ∈ Correct , ∃τ ∈ N : ∀τ ′ ≥ τ : ∃(x, y) ∈

a sigmaτ ′

p : (|SA(x) ∩ Correct | ≥ y).
• Safety. ∀p1, p2 ∈ Π, ∀τ1, τ2 ∈ N, ∀(x1, y1) ∈

a sigmaτ1

p1
: ∀(x2, y2) ∈ a sigmaτ2

p2
: ∀T1 ⊆

SA(x1) : ∀T2 ⊆ SA(x2) : ((|T1| = y1) ∧ (|T2| =
y2)) =⇒ (T1 ∩ T2 6= ∅).

Failure detectors for homonymous systems Classical
failures detectors output a set of processes’ identifiers.
Our failures detectors extend this output to a multiset of
processes’ identifiers, due to the homonymy nature of the
system. The following are the new failure detectors proposed
for homonymous systems.

A failure detector of class 3HP eventually outputs for-
ever the multiset with the identifiers of the correct processes.
More formally, a failure detector of class3HP provides
each processp ∈ Π with a variable h trustedp, such
that [Liveness]∀p ∈ Correct , ∃τ ∈ N : ∀τ ′ ≥ τ ,
h trustedτ ′

p = I(Correct). This failure detector3HP is
the counterpart of3P .

A failure detector of class HΩ eventually outputs the
same identifierℓ and numberc at all processes, such that
ℓ is the identifier of some correct process, andc is the
number of correct processes that have this identifierℓ.
More formally, a failure detector of classHΩ provides
each processp ∈ Π with two variablesh leaderp and
h multiplicityp, such that [Election]∃ℓ ∈ I(Correct), ∃τ ∈

N : ∀τ ′ ≥ τ, ∀p ∈ Correct , h leader τ ′

p = ℓ, and

h multiplicityτ ′

p = multI(Correct)(ℓ).
Any correct processp such thatid(p) = ℓ is called

a leader. Note that this failure detector does not choose
only one leader, like inΩ or in AΩ, but a set of leaders
with the same identifier. When all identifiers are different,

the classHΩ is equivalent toΩ. Furthermore, a failure
detector of classHΩ can be obtained from any detectorD
of class 3HP without any communication (for instance,
setting at each processp periodically h leaderp to the
smallest element inD.h trustedp, andh multiplicityp ←
multD.h trustedp

(h leaderp)).
A failure detector of class HΣ provides each process

p ∈ Π with two variablesh quorap and h labelsp, where
h quorap is a set of pairs of the form(x, m) (x is a label,
and m is a multiset such thatm ⊆ I(Π)) and h labelsp

is a set of labels. Roughly speaking, each pair(x, m)
determines a set of quora, and the seth labelsp of a process
p determines in which of these sets it participates. More
formal, let us denoteh quoraτ

p andh labelsτ
p the values of

variablesh quorap and h labelsp at time τ , respectively.
Let S(x) = {p ∈ Π | ∃τ ∈ N : x ∈ h labelsτ

p}. Any failure
detector of classHΣ must satisfy the following properties:

• Validity. No seth quorap ever contains simultaneously
two pairs with the same label.

• Monotonicity. ∀p ∈ Π, ∀τ ∈ N, ∀τ ′ ≥ τ :
(1) h labelsτ

p ⊆ h labelsτ ′

p , and (2) ((x, m) ∈

h quoraτ
p) =⇒ ∃m′ ⊆ m : (x, m′) ∈ h quoraτ ′

p .
• Liveness.∀p ∈ Correct , ∃τ ∈ N : ∀τ ′ ≥ τ, ∃(x, m) ∈

h quoraτ ′

p : m ⊆ I(S(x) ∩ Correct).
• Safety. ∀p1, p2 ∈ Π, ∀τ1, τ2 ∈ N, ∀(x1, m1) ∈

h quoraτ1

p1
: ∀(x2, m2) ∈ h quoraτ2

p2
: ∀Q1 ⊆

S(x1), ∀Q2 ⊆ S(x2), (I(Q1) = m1 ∧ I(Q2) =
m2) =⇒ (Q1 ∩Q2 6= ∅).

ComparingHΣ andAΣ, one can observe thatHΣ has pairs
(x, m) in which m is a multiset of identifiers, whileAΣ
uses pairs(x, y) in which y is an integer. However, a more
important difference is that, inHΣ, each process has two
variables. Then, the labels that a processp has inh quorap

can be disconnected from those it has inh labelsp. This
allows for additional flexibility inHΣ.

Reductions between failure detectors In this section we
claim that it can be shown, via reductions, the relation of
the newly defined failure detector classes with the previously
defined classes. We use the standard form of comparing the
relative power of failure detector classes of [10]. A failure
detector classX is stronger than classX ′ in systemY [∅] if
there is an algorithmA that emulates the output of a failure
detector of classX ′ in Y [X] (i.e., systemY [∅] enhanced
with a failure detectorD of classX). We also say thatX ′

can be obtained fromX in Y [∅]. Two classes are equivalent
if this property can be shown in both directions.

Due to space restrictions, we only present the main results.
The proofs and additional details can be found in [21].
The first result shows that, in classical systems with unique
identifiers,Σ, HΣ, andAΣ are equivalent.

Theorem 1. Failure detector classes Σ, HΣ, and AΣ
are equivalent in AS[∅]. Furthermore, the transformations

between Σ and HΣ do not require initial knowledge of the
membership.

In anonymous systems we have the following properties.
Recall that an anonymous system is assumed to be a
homonymous system in which every process has a default
identifier⊥5.

Theorem 2. Class HΣ can be obtained from class AΣ in
AAS[∅] without communication.

Theorem 3. Classes 3HP and HΣ can be obtained from
class AP in AAS[∅] without communication.

AP3HP 3HP

Σ HΣAΣ

HΩΩAΩ

AP

AS [∅] system model

AΣ HΣ

HΩ

AAS [∅] system model

Figure 1. Relations between failure detector classes in themodelsAS[∅]
andAAS[∅]. There is an arrow from classX to X′ if X is stronger that
X′. Solid arrows are relations shown by Bonnet and Raynal in [17]. Dashed
arrows are relations shown here, while dotted arrows are trivial relations.

IV. I MPLEMENTING FAILURE DETECTORS IN

HOMONYMOUS SYSTEMS

In this section, we show that there are algorithms that
implement the failure detectors classes3HP and HΩ
in HPS[∅] (homonymous partially synchronous system).
We also implement the failure detectorHΣ in HSS[∅]
(homonymous synchronous system). In all cases they do not
need to know initially the membership.

Implementation of 3HP and HΩ The algorithm of
Figure 2 implements3HP (andHΩ with trivial changes)
in HPS [∅] where processes are partially synchronous, links
are eventually timely, and membership is not known. It
is a polling-based algorithm that executes in rounds. At
every roundr, the Task 1 of each processp broadcasts
(POLLING, r, id(p)) messages. After a timetimeoutp, it
gathers in the variabletmpp (and, hence, also inh trustedp)
a multiset with the senders’ identifiersids of processes from
(P REPLY, r′, r′′, id(p), ids) messages received withr′ ≤
r ≤ r′′.

Task 2 is related with the reception ofPOLLING
and P REPLY messages. When a processp receives a
(POLLING, r, id(q)) message from processq, processp
has to respond with as manyP REPLY as processq
needs to receive up to roundr, and not previously sent by

5Note that this differs from the assumption used in [17].

1 Init
2 h trustedp ← ∅; // multiset of process identifiers
3 mshipp ← ∅; // set of process identifiers
4 rp ← 1; timeoutp ← 1; start Tasks T1and T2;
5
6 Task T1
7 repeat forever
8 broadcast(POLLING, rp, id(p));
9 wait timeoutp time;

10 tmpp ← ∅; // tmpp is an auxiliary multiset
11 for each (P REPLY , r, r′, id(p), id(q)) received
12 with (r ≤ rp ≤ r′) do
13 add one instance ofid(q) to tmpp;
14 end for;
15 h trustedp ← tmpp;
16 rp ← rp + 1;
17 end repeat.
18
19 Task T2
20 upon reception of (POLLING, rq, id(q)) do
21 if id(q) /∈ mshipp then
22 mshipp ← mshipp ∪ {id(q)};
23 createlatest rp[id(q)];
24 latest rp[id(q)] ← 0;
25 end if;
26 if latest rp[id(q)] < rq then
27 broadcast(P REPLY , latest rp[id(q)] + 1, rq, id(q), id(p));
28 end if;
29 latest rp[id(q)] ← max(latest rp[id(q)], rq);
30
31 upon reception of (P REPLY , r, r′, id(p),−) with (r < rp) do
32 timeoutp ← timeoutp + 1.

Figure 2. Algorithm that implements3HP (code for processp).

processp (Lines 26-28). Note that theP REPLY messages
are piggybacked in only one message (Line 27). Also note
that is in variablelatest rp[id(q)] wherep holds the latest
round broadcast toid(q). If it is the first time that process
p receives a(POLLING,−, id) message from a process
with identifier id, then variablelatest rp[id] is created and
initialized to zero (Lines 21-25).

It is important to remark that, for each different
identifier id, only one (P REPLY,−,−, id(q), id) mes-
sage is broadcast by each processq. So, if processes
v and w with id(v) = id(w) = x broadcast two
(POLLING, r, x) messages, then each processp only
broadcast one(P REPLY, r′, r′′, x, q) message withr′ ≤
r ≤ r′′. Note that eventually (at least after GST time) each
P REPLY message sent by any process has to be received
by all correct processes. Hence, eventually processesv and
w will receive all P REPLY messages generated due to
POLLING messages.

Finally, Lines 31-32 of Task 2 allow processp to
adapt the variabletimeoutp to the communication latency
and process speed. When processp receives an outdated
(P REPLY, r,−, id(p),−) message (i.e., a message with
round r less than current roundrp), then it increases its
variabletimeoutp.

Lemma 1. Given processes p ∈ Correct and q /∈ Correct ,

there is a round r such that p does not receive any
(P REPLY , ρ, ρ′, id(p), id(q)) message from q with ρ′ ≥
r.

Proof: There is a timeτ at which q stops taking
steps. If q ever sent a(P REPLY ,−,−, id(p), id(q))
message, consider the largestx such thatq sent message
(P REPLY ,−, x, id(p), id(q)). Otherwise, let x = 0.
Then, the claim holds forr = x + 1.

Lemma 2. Given processes p, q ∈ Correct , there is a round
r such that, for all rounds r′ ≥ r, when p executes the loop
of Lines 12-14 with rp = r′, it has received a message
(P REPLY , ρ, ρ′, id(p), id(q)) from q with ρ ≤ r′ ≤ ρ′.

Proof: Observe that, sincep is correct, it will
repeat forever the loop of Lines 7-17, with the
value of rp increasing in one unit at each iter-
ation. Hence, p will be sending forever messages
(POLLING ,−, id(p)) after GST with increasing round
numbers, that will eventually be received byq. Then,q even-
tually will send infinite (P REPLY ,−,−, id(p), id(q))
messages afterGST , with increasing round numbers. Let
(P REPLY , x,−, id(p), id(q)) be the first such message
sent byq after GST . Then, for each round numbery ≥ x,
there is some message(P REPLY , ρ, ρ′, id(p), id(q)) sent
by q with ρ ≤ y ≤ ρ′, and these messages are delivered at
p at mostδ time after being sent.

Now, assume for contradiction that for each roundy ≥ x,
there is a roundy′ ≥ y such that, whenp executes the
loop of Lines 12-14 withrp = y′, it has not received
the message(P REPLY , ρ, ρ′, id(p), id(q)) from q with
ρ ≤ y′ ≤ ρ′. But, every time this happens, when the message
is finally received,rp has been incremented in Line 16
and, hence,timeoutp is incremented (in Lines 31-32). Then,
eventually, by some roundr, the value oftimeoutp will be
greater than2δ + γ, whereγ is the maximum time thatq
takes to execute Lines 20-29. Then,p will receive message
(P REPLY , ρ, ρ′, id(p), id(q)) with ρ ≤ r′ ≤ ρ′ before
executing the loop of Lines 12-14 withrp = r′, for all
r′ ≥ r. We have reached a contradiction and the claim of
the lemma follows.

Theorem 4. The algorithm of Figure 2 implements a failure
detector of the class 3HP in a system HPS [∅] (homony-
mous system where processes are partially synchronous and
links are eventually timely), even if the membership is not
known initially.

Proof: Consider a correct processp. From Lemma 1,
there is a roundr such that p does not receive any
(P REPLY , ρ, ρ′,−,−) message withρ′ ≥ r from any
faulty process. From Lemma 2, there is a roundr′ such that
for all roundsr′′ ≥ r′, whenp executes the loop of Lines 12-
14 with rp = r′′, it has received a(P REPLY , ρ, ρ′,−,−)
message withρ ≤ r′′ ≤ ρ′ from each correct process.

Hence, for every roundr′′ ≥ max(r, r′) when the Line 15 is
executed withrp = r′′, the variableh trustedp is updated
with the multisetI(Correct).

We can obtainHΩ from the algorithm of Fig. 2 with-
out additional communication. This can be done by sim-
ply including, immediately after Line 15,h leaderp ←
min(h trustedp) (i.e., the smallest identifier inh trustedp)
andh multiplicityp ← multh trustedp

(h leaderp).

Corollary 1. The algorithm of Figure 2 can be changed to
implement a failure detector of the class HΩ in a system
HPS [∅] (homonymous system where processes are partially
synchronous and links are eventually timely), even if the
membership is not known initially.

Implementation of HΣ The algorithm in Figure 3 imple-
mentsHΣ in HSS[∅]] where processes are synchronous,
links are timely, and membership is not known. It runs in
synchronous steps. In each step every processp broadcasts
a (IDENT, id(p)) message. Then, processp waits for
(IDENT,−) messages sent through reliable links in this
synchronous step by alive processes. Processp gathers
in the multiset variablemsetp the identifiers id of all
(IDENT, id) messages received. At the end of this step,
variables h quorap and h labelsp are updated with the
value of msetp. Note that for processp the label x of
a quorum (x, m) is formed by the multisetmsetp (i.e,
x = m = msetp).

Theorem 5. The algorithm of Figure 3 implements a failure
detector of the class HΣ in a system HSS [∅] (homonymous
synchronous systems), even if the membership is not known
initially.

Proof: From the definition ofHΣ, it is enough to prove
the following properties.

Validity. Since h quorap is a set, and the elements in-
cluded in it are of the form(mset, mset) (see Line 6 in
Figure 3) there cannot be two pairs with the same label.

Monotonicity. The monotonicity ofh labelsp in Figure 3
holds becauseh labelsp is initially empty, and each step,
h labelsp either grows or remains the same (see Line 7 in
Figure 3). Similarly, the monotonicity ofh quorap in Figure
3 follows from the fact thath quorap is initially empty, and
any element(mset, mset) included in it is never removed
(see Line 6 in Figure 3).

Liveness. Let s be the synchronous step in which the
last faulty process crashed. Then, in every steps′ after s
only correct processes will execute. Consider any process
p ∈ Correct . In step s′ will receive messages from all
correct processes, and, hence,msetp = I(Correct). Then,
processp includes(I(Correct), I(Correct)) in h quorap,
and I(Correct) in h labelsp. Therefore, each correct pro-
cessp is in S(I(Correct)). So, after steps, for each correct
processp, the pair(I(Correct), I(Correct)) is in h quorap,
andI(Correct) = I(S(I(Correct)) ∩ Correct).

1 h labelsp ← ∅; h quora
p
← ∅;

2 for each synchronous stepdo
3 broadcast(IDENT , id(p));
4 wait for the messages sent in this synchronous step;
5 msetp ← multiset of identifiers received in(IDENT ,−) messages;
6 h quora

p
← h quora

p
∪ {(msetp, msetp)}

7 h labelsp ← h labelsp ∪ {msetp};
8 end for.

Figure 3. Algorithm to implementHΣ without knowledge of membership
(code for processp)

Safety. Consider two pairs(x1, x1) ∈ h quoraτ1

p1
and

(x2, x2) ∈ h quoraτ2

p2
, for any p1, p2 ∈ Π and anyτ1, τ2 ∈

N .
Let M1 be the set of processes from whichp1 received

(IDENT ,−) messages in the synchronous step in which
(x1, x1) was inserted for the first time inh quorap1

.
Observe thatCorrect ⊆ M1. Furthermore, any process
p ∈ S(x1) must also be inM1 (i.e., S(x1) ⊆ M1). Also,
x1 = I(M1), and, hence,|x1| = |M1|. Therefore, the only
set Q1 ⊆ S(x1) such thatI(Q1) = x1 is Q1 = M1.
We defineM2 similarly, and conclude that the only set
Q2 ⊆ S(x2) such thatI(Q2) = x2 is Q2 = M2. Since
Q1 ∩Q2 ⊇ Correct 6= ∅, the safety property holds.

V. SOLVING CONSENSUS INHOMONYMOUS SYSTEMS

We present in this section two algorithms. One algorithm
implements Consensus inHAS [t < n/2, HΩ], that is, in an
homonymous asynchronous system with reliable links, using
the failure detectorHΩ, and when a majority of processes
are correct. The other algorithm implements Consensus in
HAS [HΩ, HΣ], that is, in an homonymous asynchronous
system with reliable links, using the failure detectorHΩ
andHΣ.

Implementing Consensus inHAS [t < n/2, HΩ] Let
us considerHAS [t < n/2, HΩ] where membership is
unknown, but the number of processes is known (that is,n).
Let us assume a majority of correct processes (i.e.,t < n/2).
We say that a processp is a leader, if it is correct and, after
some finite time,D.h leader q = id(p) permanently for each
correct processq. By definition of HΩ, there has to be at
least one leader.

The algorithm of Figure 4 is derived from the algorithm
in Figure 4 of [20] (derived from an algorithm proposed in
[22]), proposed for anonymous systems. This algorithm has
been adapted to be used in a homonymous systems with a
failure detector of classHΩ (instead ofAΩ as used in [20]).
With HΩ, there can be several leaders permanently. To cope
with this, a new initial leaders’ coordination phase has been
added. The purpose of this initial phase is to guarantee that,
after a given round, all leaders propose the same value in
each round.

The algorithm works in rounds, and it has four phases
(Leaders’ Coordination Phase, Phase 0, Phase 1 and Phase

1 operation propose(vp):
2 est1p ← vp; rp← 0; start Tasks T1and T2;
3
4 Task T1
5 repeat forever
6 rp← rp + 1;
7 // Leaders’ Coordination Phase
8 broadcast(COORD, id(p), rp, est1p);
9 wait until (D.h leaderp 6= id(p))∨

10 (D.h multiplicity
p

messages(COORD, id(p), rp,−) received);
11 if (some message(COORD, id(p), rp,−) received)then
12 est1p← min{estq : id(p) = id(q)∧
13 (COORD, id(q), rp, estq) received} end if;
14 // Phase 0
15 wait until (D.h leaderp = id(p) ∨ ((PH0, rp, v) received);
16 if ((PH0, rp, v) received)then est1p ← v end if;
17 broadcast(PH0, rp, est1p);
18 // Phase 1
19 broadcast(PH1, rp, est1p);
20 wait until (PH1, rp,−) received fromn− t processes;
21 if (the same estimatev received from> n/2 processes)then
22 est2p← v
23 else
24 est2p← ⊥
25 end if;
26 // Phase 2
27 broadcast(PH2, rp, est2p);
28 wait until (PH2, rp,−) received fromn− t processes;
29 let recp = {est2 : message(PH2, rp, est2) received};
30 if ((recp = {v}) ∧ (v 6= ⊥)) then
31 broadcast(DECIDE,v); return (v) end if;
32 if ((recp = {v,⊥}) ∧ (v 6= ⊥)) then est1p← v end if;
33 if (recp = {⊥}) then skip end if;
34 end repeat.
35
36 Task T2
37 upon reception of (DECIDE,v) do
38 broadcast(DECIDE,v); return (v).

Figure 4. Consensus algorithm inHAS [t < n/2, HΩ] (code for process
p). It uses detectorD ∈ HΩ.

2). Every processp begins the Leaders’ Coordination phase
broadcasting a(COORD, id(p), r, est1p) message. If pro-
cessp considers itself a leader (querying the failure de-
tector D of class HΩ), it has to wait until to receive
(COORD, id(p), r, est1) messages sent by all its homony-
mous processes (also querying the failure detectorD of
classHΩ) (Lines 9-10). After that, processp updates its
estimateest1p with the minimal value proposed among all
its homonymous. Note that eventually all its homonymous
will be leaders too. Hence, eventually all leaders will also
choose the same minimal value inest1.

In Phase 0, if processp considers itself a leader (querying
the failure detectorD of classHΩ) (Line 15), it broad-
cast a(PH0, r, est1p) message with its estimate inest1p.
Otherwise, processp has to update itsest1p waiting until
a (PH0, r, est1l) message is received from one of the
leaders processesl (Lines 15-16). Note that after the Lead-
ers’ Coordination Phase, eventually each leaderl broadcast
(PH0,−, est1l) messages with the same value inest1l.

The rest of the algorithm is similar to the algorithm in

Figure 4 of [20]. We omit further details due to space restric-
tions. The following lemmas are the key of the correctness of
the algorithm. They show that, even having multiple leaders,
these will eventually converge to propose the same value at
each round.

Lemma 3. No correct process blocks forever in the Leaders’
Coordination Phase.

Proof: The only line in which processes can block
in Lines 6-13 is in Lines 9-10. A correct process that
is not leader does not block permanently in these lines,
because eventually the first part of the wait condition is
satisfied. Let us assume, for contradiction, that some leader
blocks permanently in Line 10. Let us consider the smallest
round r in which some leaderp blocks. By definition of
r, each leaderq eventually reaches roundr, and (even if
it blocks in r) broadcasts(COORD, id(q), r,−), where
id(q) = id(p), in Line 8. (Observe that all processes send
(COORD,−,−,−) messages in Line 8, even if they do
not consider themselves as leaders.) Eventually, all these
messages are delivered top and D.h multiplicityp is per-
manently the number of leaders. Hence, the second part
of the wait condition (Line 10) is satisfied. Thus,p is not
blocked anymore, and, therefore, we reach a contradiction.

Lemma 4. There is a round r such that at every round
r′ > r all leaders broadcast the same value in Phase 0 of
round r′.

Proof: Eventually all leaders broadcast the same value
because after some round, all leaders start Phase 0 with
the same value inest1. Consider a timeτ when all faulty
processes have crashed and the failure detectorD is stable
(i.e., ∀τ ′ ≥ τ, ∀p ∈ Correct , D.h leader τ ′

p = ℓ, being

ℓ ∈ I(Correct), and D.h multiplicityτ ′

p = multI(C)(ℓ)).
Let r be the largest round reached by any process at time
τ . Then, for any roundr′ > r, all leadersp have the
same estimateest1p at the beginning of the Phase 0 of
round r′ (Line 15), or there has been a decision in a
round smaller thanr′. To prove this, let us assume that
no decision is reached in a round smaller thanr′. Then,
since the leaders do not block forever in any round (see
previous paragraph 1), they execute Line 8 in roundr′.
Since the failure detector is stable, they also wait for the
second part of the wait condition of Lines 9-10 (since the
first part is not satisfied). When any leaderp executes the
Leaders’ Coordination Phase ofr′, it blocks in Lines 9-
10 until it receivesD.h multiplicityp messages from the
other leaders. By the stability of theHΩ failure detector,
D.h multiplicityp is the exact number of leaders. Also,
from the definition of τ and r, no faulty process with
identifierD.h leader p is alive and all the messages they sent
correspond to rounds smaller thanr′. Hence, each leaderp

will wait to receive messages from all the other leaders and
will set est1p to the minimum from the same set of values
(Line 13).

Theorem 6. The algorithm of Figure 4 solves consensus in
HAS [t < n/2, HΩ].

Proof: From the definition of Consensus, it is enough
to prove the following properties.Validity. The variableest1
is initialized with a value proposed by its process (Line 2).
The value ofest1 may be updated in Lines 13 or 16 with
values ofest1 broadcasted by other processes. The variable
est2 is initialized and updated withest1 (Line 22) or⊥
(Line 24). The value ofest1 may be updated in Line 32
with values ofest2 (different from⊥) broadcasted by other
processes. The value decided in Line 31 is the value ofest2
that was broadcasted by some process. As it is not possible
to decide the value⊥ (Line 31), then the value decided
has to be one of the values proposed by the processes.
Then, the validity property holds.Agreement. Identical to
the agreement property of Figure 4 of [20],Termination.
From Lemmas 3 and 4, after some roundr, all leaders hold
the same valuev in est1 when they start executing Phase 0
of round r′ (Line 15), and they broadcast this same value
v (Line 17). Note that it is the same situation as having
only one leader with valuev stored inest1 when Phase 0
is reached. Hence, as Phase 0 starts in the same conditions
as in the algorithm of Figure 4 of [20], the same proof can
be used to prove the termination property.
Implementing Consensus inHAS [HΩ, HΣ] Figure 5
implements Consensus inHAS [HΩ, HΣ]. Note that it is a
variation of the algorithm of Figure 3 of [17] (again inspired
in the leader-based algorithm of [22]), where, like in the
previous case, we have added a preliminary phase as a
barrier such that homonymous leaders eventually “agree” in
the same estimation valueest1 to propose. Once this issue
has been solved (as was proven for the previous algorithm),
the use that this algorithm makes of the failure detectorHΣ
is very similar to the use the algorithm of Figure 3 of [17]
makes of theAΣ failure detector.

Lemma 5. No correct process blocks forever in the repeat
loops of Phases 1 and 2.

Proof: Note that if a correct process decides (Line 50),
then the claims follows. Consider the repeat loop of Phase
1 (Lines 21-37). Let us assume that some correct process
is blocked forever in this loop. Then, let us consider the
first round r in which a correct process blocks forever in
r. Hence, all correct processes must block forever in the
same loop in roundr. Otherwise some process broadcasts a
message(PH2,−, r,−,−,−), and from Line 23 no correct
process would block forever in this loop of roundr. Let
us consider a correct processp, and the pair(x, m) that
guarantees the liveness property forp. Then, there is a time
in which (x, m) ∈ D2.h quorap and every correct process

1 operation propose(vp):
2 est1p ← vp; rp ← 0; start Tasks T1and T2;
3
4 Task T1
5 repeat forever
6 rp← rp + 1;
7 // Leaders’ Coordination Phase
8 broadcast(COORD, id(p), rp, est1p);
9 wait until (D1.h leaderp 6= id(p))∨

10 (D1.h multiplicityp messages(COORD, id(p), rp,−) received);
11 if (some message(COORD, id(p), rp,−) received)then
12 est1p← min{estq : id(p) = id(q)∧
13 (COORD, id(q), rp, estq) received} end if;
14 // Phase 0
15 wait until (D1.h leaderp = id(p) ∨ ((PH0, rp, v) received);
16 if ((PH0, rp, v) received)then est1p ← v end if;
17 broadcast(PH0, rp, est1p);
18 // Phase 1
19 srp← 1; current labelsp ← D2.h labelsp;
20 broadcast(PH1, id(p), rp, srp, current labelsp, est1p);
21 repeat
22 if ((PH2,−, rp,−,−, est2) received)then
23 est2p ← est2; exit inner repeat loop end if;
24 if ((∃(x, mset) ∈ D2.h quorap) ∧ (∃sr ∈ N)∧
25 (∃ setM of messages(PH1,−, rp, sr,−,−)), such that,
26 (∀(PH1,−,−,−, cl,−) ∈M, x ∈ cl)∧
27 (mset = {i : (PH1, i,−,−,−,−) ∈M})) then
28 if (all msgs inM contain the same estimatev) then
29 est2p← v elseest2p← ⊥ end if;
30 exit inner repeat loop;
31 else if (current labelsp 6= D2.h labelsp)∨
32 ((PH1,−, rp, sr,−,−) received withsr > srp) then
33 srp← srp + 1; current labelsp← D2.h labelsp;
34 broadcast(PH1, id(p), rp, srp, current labelsp, est1p)
35 end if
36 end if
37 end repeat;
38 // Phase 2
39 srp← 1; current labelsp← D2.h labelsp;
40 broadcast(PH2, id(p), rp, srp, current labelsp, est2p);
41 repeat
42 if ((COORD,−, rp + 1,−) received)then
43 exit inner repeat loop end if;
44 if ((∃(x, mset) ∈ D2.h quorap) ∧ (∃sr ∈ N)∧
45 (∃ setM of messages(PH2,−, rp, sr,−,−)), such that,
46 (∀(PH2,−,−,−, cl,−) ∈M, x ∈ cl)∧
47 (mset = {i : (PH2, i,−,−,−,−) ∈M})) then
48 let recp = the set of estimates contained inM ;
49 if ((recp = {v}) ∧ (v 6= ⊥)) then
50 broadcast(DECIDE,v); return (v) end if;
51 if ((recp = {v,⊥}) ∧ (v 6= ⊥)) then est1p← v end if;
52 if (recp = {⊥}) then skip end if;
53 exit inner repeat loop
54 else if ((current labelsp 6= D2.h labelsp)∨
55 ((PH2,−, rp, sr,−,−) received withsr > srp)) then
56 srp← srp + 1; current labelsp← D2.h labelsp;
57 broadcast(PH2, id(p), rp, srp, current labelsp, est2p)
58 end if
59 end if
60 end repeat
61 end repeat.
62
63 Task T2
64 upon reception of (DECIDE,v) do
65 broadcast(DECIDE,v); return (v).

Figure 5. Consensus algorithm inHAS [HΩ, HΣ] (code for processp).
It uses detectorsD1 ∈ HΩ andD2 ∈ HΣ.

q in S(x)∩Correct hasx ∈ D2.h labelsq. Note that, from
Lines 31-35, every change in the variableD2.h labels of
a process creates a new sub-round, and that all processes
broadcast their current value ofD2.h labels in each new
sub-round. Therefore, eventually,p will receive messages
(PH1,−, r, sr, cl,−) from all these processes such thatx ∈
cl. Hence, the condition of Lines 24-27 is satisfied, andp
will exit the loop of Phase 1. The argument for the repeat
loop of Phase 2 is verbatim.

Lemma 6. No two processes decide different values in the
same round.

Proof: Let us assume that processesp1 andp2 decide
valuesv1 and v2 in sub-roundssr1 and sr2, respectively,
of the same roundr (in Line 50). Let (x1, m1) and M1

be the pair in D2.h quorap1
and the set of messages

that satisfy the condition of Lines 44-47 forp1. Since
for each message(PH2,−, r, sr1, cl,−) ∈ M1, it holds
that x1 ∈ cl, if Q1 is the set of senders of the mes-
sages inM1, we have thatQ1 ⊆ S(x1). Additionally,
m1 = {i : (PH2, i,−,−,−,−) ∈ M1} = I(Q1). We
can define(x2, m2) and M2 analogously forp2. Then,
from the Safety Property ofHΣ, Q1 ∩ Q2 6= ∅. Let pl ∈
Q1 ∩ Q2. Then, processpl must have broadcast messages
(PH2, id(pl), r, sr1,−, v1) and(PH2, id(pl), r, sr2,−, v2)
(Lines 40 and 57). Since the estimateest2pl

of pl does not
change between sub-rounds (inner repeat loop, Lines 41-60),
it must hold thatv1 = v2. From the condition of Line 50,
recp1

= {v1} in sub-roundsr1 and recp2
= {v2} in sub-

roundsr2, and both processes decide the same value. Hence,
no two processes decide different values in the same round.

Theorem 7. The algorithm of Figure 5 solves consensus in
HAS [HΩ, HΣ].

Proof: The proof of this theorem is similar to the proof
of the corresponding theorem in [17], except that we need
to use Lemmas 3 and 4 (since the Leaders’ Coordination
Phase and Phase 0 of the algorithms in Figures 4 and 5
are the same). The proofs of the termination and agreement
properties are similar to those in [17].

The algorithm of Figure 5 can be easily transformed into
an algorithm that solves consensus inAAS [AΩ, HΣ] (an
anonymous system with detectorsAΩ and HΣ). For that,
given a failure detectorD3 ∈ AΩ, it is enough to remove
the Leaders’ Coordination Phase, and in Phase 0 to replace
(D1.h leaderp = id(p)) by (D3.a leaderp). The resulting
Phase 0 is the same as Phase 1 in the algorithm of Figure
3 of [17], and has the same properties.

REFERENCES

[1] N. A. Lynch, Distributed Algorithms. San Francisco (CA):
Morgan Kaufmann Pub., 1996.

[2] M. Raynal, Communication and Agreement Abstractions for
Fault-Tolerant Asynchronous Distributed Systems. Morgan
& Claypool Publishers, 2010.

[3] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, A.-M.Ker-
marrec, E. Ruppert, and H. Tran-The, “Byzantine agreement
with homonyms,” inPODC, 2011, pp. 21–30.

[4] E. Jiménez, S. Arévalo, and A. Fernández, “Implementing
unreliable failure detectors with unknown membership,”Inf.
Process. Lett., vol. 100, no. 2, pp. 60–63, 2006.

[5] D. Angluin, “Local and global properties in networks of
processors (extended abstract),” inSTOC, 1980, pp. 82–93.

[6] H. Attiya, M. Snir, and M. K. Warmuth, “Computing on an
anonymous ring,”J. ACM, vol. 35, no. 4, pp. 845–875, 1988.

[7] M. J. Fischer, N. A. Lynch, and M. Paterson, “Impossibility
of distributed consensus with one faulty process,”J. ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[8] M. Yamashita and T. Kameda, “Computing on anonymous
networks: Part i-characterizing the solvable cases,”IEEE
Trans. Parallel Distrib. Syst., vol. 7, no. 1, pp. 69–89, 1996.

[9] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest
failure detector for solving consensus,”J. ACM, vol. 43, no. 4,
pp. 685–722, 1996.

[10] T. D. Chandra and S. Toueg, “Unreliable failure detectors
for reliable distributed systems,”J. ACM, vol. 43, no. 2, pp.
225–267, 1996.

[11] M. Raynal, “Failure detectors for asynchronous distributed
systems: an introduction,” inWiley Encyclopedia of Computer
Science and Engineering, 2009, vol. 2, pp. 1181–1191.

[12] F. Bonnet and M. Raynal, “The price of anonymity: Opti-
mal consensus despite asynchrony, crash and anonymity,” in
DISC, LNCS 5805, 2009, pp. 341–355.

[13] C. Delporte-Gallet, H. Fauconnier, and A. Tielmann, “Fault-
tolerant consensus in unknown and anonymous networks,” in
ICDCS, 2009, pp. 368–375.

[14] F. Greve and S. Tixeuil, “Knowledge connectivity vs. syn-
chrony requirements for fault-tolerant agreement in unknown
networks,” inDSN, 2007, pp. 82–91.

[15] C. Delporte-Gallet, H. Fauconnier, and H. Tran-The, “Byzan-
tine agreement with homonyms in synchronous systems,” in
ICDCN, LNCS 7129, 2012, pp. 76–90.

[16] Z. Bouzid, P. Sutra, and C. Travers, “Anonymous agreement:
The janus algorithm,” inOPODIS, LNCS 7109, 2011, pp.
175–190.

[17] F. Bonnet and M. Raynal, “Anonymous asynchronous sys-
tems: The case of failure detectors,” inDISC, LNCS 6343,
2010, pp. 206–220. Full version to appear inDistributed
Computing.

[18] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui, “Tight
failure detection bounds on atomic object implementations,”
J. ACM, vol. 57, no. 4, 2010.

[19] ——, “A realistic look at failure detectors,” inDSN, 2002,
pp. 345–353.

[20] F. Bonnet and M. Raynal, “Consensus in anonymous dis-
tributed systems: Is there a weakest failure detector?” in
AINA, 2010, pp. 206–213.

[21] S. Arévalo, A. Fernández Anta, D. Imbs, E. Jiménez, and
M. Raynal, “Failure Detectors in Homonymous Distributed
Systems (with an Application to Consensus),”ArXiv, 2011.

[22] A. Mostéfaoui and M. Raynal, “Leader-based consensus,”
Parallel Processing Letters, vol. 11, no. 1, pp. 95–107, 2001.

