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Abstract— This paper is on homonymous distributed systems This paper is on agreement in crash-prone message-
where processes are prone to crash failures and have no imafi  passing distributed systems. While this topic has beenlgeep
knowledge of the system membership (*homonymous” means jnyestigated in the past in the context of asynchrony and

that several processes may have the same identifier). New fail 112 dditi I "
classes of failure detectors suited to these systems are firs process failures (e.g., [1], [2]), we additionally consitiere

defined. Among them, the classe&/Q and HY are introduced ~ that several processes can have the same identity, i.e., the
that are the homonymous counterparts of the classeQ and 3, additional static adversary that immonymy. A first model
respectively. (Recall that the pair (2, ) defines the weakest and the motivation for homonymous processes in distributed
failure detector to solve_consensus.) Then, the paper showsw systems can be found in [3] where, for example, users keep
HQ and HY can be implemented in homonymous systems - . . . . . -

without membership knowledge (under different synchrony their privacy ta_kmg their _domam as their identifier (the
requirements). Finally, two algorithms are presented thatuse ~ Same identifier is then assigned to all the users of the same
these failure detectors to solve consensus in homonymous domain). Observe that homonymy is a generalization of two

asynchronous systems where there is no initial knowledge tie cases: (1) having unique identifiers and (2) having the same

membership. One algorithm solves consensus witli/$2, 1Y), jgentifier for all the processes (anonymity), which are the
while the other uses onlyH (2, but needs a majority of correct ¢ t fh
processes. wo extremes of homonymy.

Observe that the systems with unique identifiers and anony- We also assume that the distributed system has to face
mous systems are extreme cases of homonymous systemsanother static adversary, which is the fact that, initiadgch
from which follows that all these results also apply to these process only knows its own identity. We say that the system

systems. Interestingly, the new failure detector clas& €2 can be . S .
implemented with partial synchrony, while the analogous css has to workwithout initial knowledge of the membership.

AQ defined for anonymous systems can not be implemented This static adversary has been recently identified as of
(even in synchronous systems). Hence, the paper provides us significant relevance in certain distributed contexts [4].

with the first proof showing that consensus can be solved

in anonymous systems with only partial synchrony (and a How to face adversaries It is well-known that lots of

majority of correct processes). problems cannot be solved in presence of some adversaries

Keywords-Agreement problem, Asynchrony, Consensus, Dis- (€.9-, [5], [6], [7], [8]). When considering process crash
tributed computability, failure detector, Homonymous sysem,  failures, thefailure detector approach introduced in [9], [10]

Message-passing, Process crash. (see [11] for an introductory presentation) has proved to be
very attractive. It allows to enrich an otherwise too poor
|. INTRODUCTION distributed system to solve a given problgm in order to

Homonymous systems Distributed computing is on mas- obtain a more powerful system in whidh can be solved.

tering uncertainty created by adversaries. The first advgrs A failure detector is a distributed oracle that provides
is of course the fact that the processes are geographicalffocesses with additional information related to failed-pr
distributed which makes impossible to instantaneously obc€sses, and can consequently be used to enrich the com-
tain a global state of the system. An adversary can be statieutability power of asynchronous send/receive message-
(e.g., synchrony or anonymity) or dynamic (e.g., asyncjron Passing systems. According to the type (set of process

mobility, etc.). The net effect of asynchrony and failures i identities, integers, etc.) and the quality of this infotioa,
the most studied pair of adversaries. several failure detector classes have been proposed. @fe ref
the reader to [2] where classes of failure detectors suited
This work has been partially funded by the Spanish Reseammd@ to agreement and communication problems, corresponding
(MICCIN) under projects TIN2010-19077 and TEC2011-2968®-01,  fajlyre detector-based algorithms, and additional beraVi
by the Madrid Research Foundation (CAM) under project SZO@3 . L .
1692 (cofunded by ERDF & ESF), and by the National Natrabsee ~ @ssumptions that (when satisfied) allow these failure detec

Foundation of China under grant 61020106002. tors to be implemented are presented. It is interesting to
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observe that none of the original failure detectors intomti  [17]) of the perfect failure detectoP introduced in [10].
in [10] can be implemented without initial knowledge of the A failure detector of classl P returns an upper bound (that
membership [4]. eventually becomes tight) of the current number of alive pro
Aim of the paper Agreement problems are central as cesses. The paper then shows that there is an inherent price
soon as one wants to capture the essence of distributédssociated with anonymous consensus, namely, while the
computing. (If processes do not have to agree in one way dewer bound on the number of rounds in a non-anonymous
another, the problem we have to solve is not a distribute@ystem enriched withP is ¢ + 1 (wheret is the maximum
computing problem!) The aim of this paper is consequentlynumber of faulty processes), it & + 1 in an anonymous
to understand the type of information on failures that isSystem enriched withi P. The algorithm proposed assumes
needed when one has to solve an agreement problem Knowledge of the parameter
presence of asynchrony, process crashes, homonymy, andMore general failure detectors suited to anonymous dis-
lack of initial knowledge of the membership. As consensudributed systems are presented in [17]. Among other results
is the most central agreement problem we focus on it.  this paper introduces the anonymous countergartof the
Related work As far as we know, consensus in anonymousduorum failure detector class [18] and the anonymous
networks has been addressed first in [12], [13]. (While [13]counterpartAQ of the eventual leader failure detector class
considers different synchrony assumptions, [12] consider(? [9]. It also presents the failure detector cla$® which
systems enriched with failure detectors.) Connectivity re is the complement ofAP. An important result of [17] is
guirements for agreement in anonymous networks is adthe fact that relations linking failure detector classes ar
dressed in [14]. not the same in non-anonymous systems and anonymous

To the best of our knowledge, up to now agreement insystems. This is also the case if processes do not know the
homonymous systems has been addressed only in [3], [15jumbern of processes in the system (unknown membership
and [16]. In the first paper the authors consider that, amonit anonymous systems). H is unknown, the equivalence
the n processes, up te of them can commit Byzantine betweend P andAP, shownin [17], does not hold anymore.
failures. The system is homonymous in the sense that there Regarding implementability, it is stated in [17] thf) is
arel, 1 < ¢ < n, different authenticated identities, each notrealistic (i.e., it can not be implemented in an anonymous
process has one identity, and several processes can shaggchronous system [19]). If the membership is unknown, it
the same identity. It is shown in that paper tiiat 3¢t and is not hard to show thatl P is not realistic either, applying
> 3”% are necessary and sufficient conditions for solvingsimilar techniques as those in [4]. On the other hand, while
consensus in synchronous systems and partially synchsonoulP can be implemented in an anonymous synchronous
systems, respectively. In [15] it is shown that this boundsystem, it is easy to show that it cannot be implemented
can be improved if the distribution of processes amongn most partially synchronous systems (e.g., in partiguiar
identifiers is known. those with all links eventually timely).

The latter paper [16] mainly explores consensus in a

shared memory system with anonymous processes, a,%ontributi_ons As mentioned, we explo_r(_e the consensus
bounds the complexity (namely, individual write and Stepproblem in homonymous systems. Additional adversaries

complexities) of solving consensus with the aid of anConsidered are asynchrony, process crashes, and lack of

anonymous leader electat(2 (see below). They show that INitial knowledge of the membership. We can summarize
if the system is homonymous instead of purely anonymoude Main contributions of this paper as follows.
these bounds can be improved. First, the paper defines new classes of failure detectors
The consensus problem in anonymous asynchronougHited to homonymous systems. These classes, deftited
crash-prone message-passing systems has been recently 88d /%, seem to be natural homonymous counterparts of
dressed in [12] (for the first time to our knowledge). In @andX, respectively (2 relaxes the restriction d@ that the
such Systems' processes have no |dent|ty é_t BHis paper identifier returned by the failure detector b8|0ngs to aleing
introduces an anonymous counterpddenotedA P later in  leader, allowing multiple homonymous leaders. Similarly,
. H?Y provides the quorum guaranteesXf but overcoming
They must also execute the same program, because othehejseduld ; ; ; s
use the program (or a hash of it) as their identity. We comgiuk it is the Fhe issue that unique |dent|f|(_ars ar? not guaranteed. The
same if processes have no identity or they have the sameitjdémt all interest on the latter classes is motivated by the fact that
processes, since a process that lacks an identity can chadefault value (3, Q) is the weakest failure detector to solve consensus in

(e'zg"i), as its identifier. _ _ crash prone asynchronous message-passing systems for any
In this paper, when we say that a failure detectos the counterpart of

a failure detectorB we mean that, in a classical asynchronous system (i.e.,number of process failures [18]- The paper also Investyate
where each process has its own identity) enriched with araitletector of ~ the relations linkingl/Y', AY and X, and shows that both
class A, it is possible to design an algorithm that builds a failustedtor HOQ and HY can be obtained fromd P in asynchronous

of the classB and vice-versa by exchangind and B. Said differently, .

A and B have the same computability power in a classical crashepron anonymous systems. As a byproduct, ive also introduce
asynchronous system. a new failure detector class denotedHd P, that is the



homonymous counterpart P (the complement of>P  The algorithm solves consensus in anonymous systems with
[10]), which we consider of independent interest. a pair of detectorsHX:, H2), and we describe how it
Then, the paper explores the implementability of thesecan be modified to solve consensus with a gaiix, AQ).
classes of failure detectors. It presents an implememtatioAdditionally, as mentioned, it is shown here thd®: can
of OHP in homonymous message-passing systems witle obtained fromAY, and both HX and HQ can be
partially synchronous processes and eventually timekslin  obtained fromAP. The conjecture issued in [17] was that
This algorithm does not require that the processes know théAX, AQ) @ AP 4 could be the weakest failure detector.
system membership. Sindé) can be trivially implemented Then, using the same algorithm described in [17] to combine
from © H P without communicationH 2 is realistic and can  the consensus algorithms faH Y, AQ) and(HX, HQ), the
also be implemented in a partially synchronous homonyfew candidate to be the weakest failure detector for consen-
mous system without membership knowledge. The papesus despite anonymity is noWH X, AQ) @& (HX, HQ).

also presents an implementation BfY in a synchronous Roadmap The paper is made up of V sections. Section Il
homonymous message-passing system without membershipesents the system model. Section Il introduces failere d
knowledge. tector classes suited to homonymous systems, and explores
Finally, the paper presents two consensus algorithmgeir relation with other classes and their implementgpbili
for asynchronous homonymous systems enriched With  Finally, Section V presents failure detector-based homony
Both algorithms are derived from consensus algorithms foimous consensus algorithms.
anonymous systems proposed in [20] and [17], respectively.
The main challenge, and hence, the main contribution of our Il. SYSTEM MODEL
algorithms, is to modify the original algorithms that usé@ 1}, 5nymous processes Let IT denote the set of processes
to useH (2 instead. In the second algorithm, also the use of;, 1| = n. We useid(p) to denote the identity of
AX has been replaced by the use/gt. processp € II. Different processes may have the same
The first algorithm assumes that each process knows th@entity, ie.p £ q % id(p) # id(q). Two processes
valuen and that a majority of processes is correct in all\yitn the same identity are said to H®monymous. Let
executiond. Since, as mentioned/(2 can be implemented ¢ 1 pe any subset of processes. We defl(i§) as the
with partial synchrony, the combination of the algorithms .1, 1tiset (sometimes also calletiag) of process identities
presented (to implement{2 and to solve consensus with S, I(S) = {id(p) : p € S}. Let us remember
Q) form a distributed algorithm that solves consensuspay, differently from a set, an element of a multiset can
in any homonymous system with partially synchronousappear more than once. Hence,J4§) may contain several
processes, eventually timely links, and a majority of ctiire {imes the same identity, we always hal®S)| = |S|.
processes. Applied to anonymous systems, this resulta®lax e multiplicity (number of instances) of identity in a
the known conditions to solve consensus, since previoug,itiset I is denotedmult; (7). When I is clear from the
algorithms were based on unrealistic failure detectdS)(  ontext we will use simplymult(i). P(I) C II is used to
or failure detectors that require a larger degree of symghro genote the processes whose identity is in the mulfisee.,
(AP). P(I) ={p:pe€ OAid(p) € I}. Every procesy € II
The second consensus algorithm presented works for anyhows its own identityid(p). Unless otherwise stated, a
number of process crashes, and does not need to knoﬁé\focessp does not know the system membershipl), nor
n, but assumes that the system is enriched with the paifhe system size, nor any upper boundon the number of
of failure detectors(HY:, H(2). This algorithm, combined  fayity processes. Observe that the Eets a formalization
with the algorithms to implement/3: and HS2, shows o] that is not known by the set of processes of the system.
that the consensus problem can be solvedyimchronous Processes are asynchronous, unless otherwise stated. We
homonymous systems subject to any number of crash failyssyme that time advances at discrete steps. We assume a
ures without the initial knowledge neither of the parameterg|ohal clock whose values are the positive natural numbers,
¢ nor of the membership. Applied to anonymous systemspyt processes cannot access it. Processes can fail by crash-
this result relaxes the known conditions to solve consensugg i e., stop taking steps. A process that crashes in a run
under any number of failures, since previous algorithmslusejs sajd to befaulty and a process that is not faulty in a run
unrealistic detectorsA(2) or required to know or an Upper s said to becorrect. The set of correct processes is denoted
bound on it. by Correct C 1.

This second consensus algorithms also forces us to reStaE?ommunication The processes can invoke the primitive
the conjecture of which could be the weakest failure detectobma dcast(m) to send a message to all processes of the

to solve consensus in asynchronous anonymous systems.
4@ represents a form of composition in which the resultingufail

3The knowledge of: can be replaced by the knowledge of a parameter detector outputsL for a finite time until it behaves at all processes as
such thate > n/2 and, in all executions, at leastprocesses are correct. one -and the same- of the two detectors that are combined.



system (including itself). This communication primitive i is a time after which, permanently, (1) there is a correct
modeled in the following way. The network is assumedprocess whose Boolean variable is true, and (2) the Boolean
to have a directed link from procegsto processq for  variables of the other correct processes are false.

each pair of processes ¢ € II (p does not need to be A failure detector of class AP [12] provides each process
different from q). Then,broadcast(m) invoked at process p € II with a variableanap, such that, ifanap;, and

p sends one copy of message along the link fromp Correct” denote the value of this variable and the number
to ¢, for eachgq € II. Unless otherwise stated, links are of alive processes at time, respectively, then [Safety]
asynchronous and reliable, i.e., links neither lose messagVp € II,¥7 € N,anap, > |Correct™|, and [Liveness]
nor duplicate messages nor corrupt messages nor generate ¢ N,Vp € Correct, V7' > T, anap;/ = | Correct]|.

spurious messages. If a process crashes while broadcastingA failure detector of class AY [17] provides each process
a message, the message is received by an arbitrary subsetyof 1T with a variablea_sigma, that contains a set of pairs
processes. of the form(z, y). The parametet is a label provided by the
Notation and time-related definitions The previous failure detector, ang is an integer. Let us denote sigma;,
model is denotedHAS[)] (Homonymous Asynchronous the value of variable_sigma, attimer. Let Sa(z) = {p €
System). We usd/PS[()] to denote a homonymous system Il | 37 € N : (z, —) € a_sigmay}. Any failure detector of
where processes are partially synchronous and links argassAY. must satisfy the following properties:

eventually timely. A process ipartially synchronous if the « Validity. No seta_sigma, ever contains simultaneously
time to execute a step is bounded, but the bound is unknown.  two pairs with the same label.

A link is eventually timely if there is an unknown global o Monotonicity. Vp € ILVr € N : (((z,y) €

stabilization time (denotedST) after which all messages a_sigmay) = (V7' > 7: 3 <y: (z,9) €
sent across the link are delivered in a bound¢iche, where a_sigma;/).
0 is unknown. Messages sent befarsT can be lost or o Liveness¥p € Correct,3r € N : V7' > 7: 3(z,y) €
delivered after an arbitrary (but finite) time. a_sigma;/  (|Sa(x) N Correct| > v).

AS[0] denotes the classical asynchronous system with , Safety. Vpi,po € ILVr,m» € N,V(z1,11) €
unigue identities and reliable channels. FinallyAS|[(] a_sigmall Y(za,12) € a_sigma? : YTy C

denotes the Anonymous Asynchronous System model [17]. S, (z;) : VT, C Sa(x2) : ((|T1] = 1) A (| T2
Observe thatd.S[)] and AAS[0] are special cases (actually y2)) = (TyNTy # 0).

extreme cases with respect to homonymy)HA.S[(] (an
anonymous system can be seen as a homonymous syst
where all processes have the same default identifjer

Failure detectors for homonymous systems Classical

$0ures detectors output a set of processes’ identifiers.
Our failures detectors extend this output to a multiset of
I1l. FAILURE DETECTORS processes’ identifiers, due to the homonymy nature of the

In this section we define failure detectors previously pro-system. The following are the new failure detectors progose
posed and the ones proposed here for homonymous systeni@l homonymous systems.

Then, relationships between these detectors are derined, a A failure detector of class ©H P eventually outputs for-
their implementability is explored. ever the multiset with the identifiers of the correct proesss

Failure detectors for classical and anonymous systems More formally, a failure detector of classH P provides

We briefly describe here some failure detector previoushfach Procese & II with a variable h—tr'“Ste‘%P' such
proposed. We start with the classes that have been defind@t [L|veTr)ess] vp € Correct,3r € N @ V7' > T,
for AS[0]. h_trusted, = I(Correct). This failure detector>H P is

A failure detector of class X [18] provides each process the counterpart of>P.
p € I with a variabletrusted, which contains a set of A failure detector of class /{2 eventually outputs the

process identifiers. The properties that are satisfied ethe S@Me identifier’ and number at all processes, such that
sets are [Livenessyp € Correct,3r € N : V' > 7, 18 the identifier of some correct process, ands the

trusted? C I(Correct), and [Safety]vp, q € IL V7,7 € number of correct processes that have this identifier
N trusted” A trust I 0 ’ T More formally, a failure detector of clas&Q provides
strustedy Ntrusted; # .

Afailure detector of class 2 [9] provides each procegse ~ ©2¢h procesg € II with two variablesh_leader, and
IT with a variableleader, such that [Election] eventually h_multiplicity,, such that [Election}l & 1 (C?WeCt)’HT €
all these variables contain the same process identifier of & : V7' = 7.Vp & Correct, h_leader; = (, and
correct process. h_multiplicity, = mult(correct) (£)-

The following failure detector classes have been defined Any correct proces® such thatid(p) = ¢ is called
for anonymous systemd AS|[()]. a leader. Note that this failure detector does not choose
A failure detector of class A2 [17] provides each process only one leader, like i) or in AQ, but a set of leaders
p € 11 with a variablea_leader,, such that [Election] there with the same identifier. When all identifiers are different,



the classH(2 is equivalent to2. Furthermore, a failure between . and H>: do not require initial knowledge of the
detector of clas§i(2 can be obtained from any detectbr  membership.
of class OHP without any communication (for instance,
setting at each procegs periodically %_leader, to the
smallest element iD.h_trusted,, and h_multiplicity,, —
MUl p . h_trusted, (h_leader,)).

A failure detector of class HY. provides each process
p € II with two variablesh_quora, and h_labels,, where — Theorem 2. Class HY can be obtained from class AX in
h_quora, is a set of pairs of the fornw, m) ( is a label, ~ AAS[0)] without communication.

f"‘”d m 1S @ multiset such that: < I,(H)) and h—la{)elsp Theorem 3. Classes ©H P and HY. can be obtained from
is a set of labels. Roughly speaking, each paitm) . 75 in AAS[D] without communication.
determines a set of quora, and the lselubels, of a process

p determines in which of these sets it participates. More
formal, let us denoté_quora, andh_labels, the values of (AT = o HY] -~ HY
v

In anonymous systems we have the following properties.
Recall that an anonymous system is assumed to be a
homonymous system in which every process has a default
identifier 15,

variablesh_quora,, and h_labels,, at time 7, respectively.

’
/
’

Let S(z) ={pell |37 € N :x € h_labels,}. Any failure )
detector of clas§7Y must satisfy the following properties: [ AP | [oHP| | AP k——»]OH?\

’
’
s

« Validity. No seth_quora,, ever contains simultaneously \

two pairs with the same label. 1 S
o Monotonicity. Vp € II,Vr € N,v7' > : ’AQ"—:‘ f “ﬁHQ‘

T C T,
(1) h—lafbds” C  hlabels; , and (2) ((x, T) € AS[0] system model AAS[0] system model
h_quomp) = Im' Cm: (z,m) € h_quora,, .
J leeness./Vp € Correct, 37 € N : V7' > 7,3(z,m) € Figure 1. Relations between failure detector classes imibeels AS|[(]
h_gquoral :m C I(S(xz) N Correct). and AAS[(]. There is an arrow from clas¥ to X’ if X is stronger that
. b - X'. Solid arrows are relations shown by Bonnet and Raynal ih Pa&shed

. Safety. Yp1,p2 € ILVm,m ¢ N;V(xl,ml) € arrows are relations shown here, while dotted arrows aviltnielations.
h_quoray, : V(w2,m2) € h_quora,l : VQi C

S(21),¥Qs € S(a2), (I(Q1) = ma A I(Qa) =

mz) = (Q1N Q2 #0). IV. |MPLEMENTING FAILURE DETECTORS IN
ComparingH > and AY, one can observe th&f} has pairs HOMONYMOUS SYSTEMS
(z,m) in which m is a multiset of identifiers, while4x In this section, we show that there are algorithms that

uses pairgz,y) in which y is an integer. However, a more jmplement the failure detectors classeésHP and HS
important difference is that, ifi/>:, each process has two jn HPS[(] (homonymous partially synchronous system).
variables. Then, the labels that a proces®s inh_quora,  We also implement the failure detectdfy in HSS[0]

can be disconnected from those it hastinlabels,. This  (homonymous synchronous system). In all cases they do not
allows for additional ﬂ8X|bI||ty inH. need to know |n|t|a||y the membership_

Reductions between failure detectors In this section we Implementation of CHP and H) The algorithm of
claim that it can be shown, via reductions, the relation ofFigure 2 implements>H P (and H) with trivial changes)
the newly defined failure detector classes with the preWyous in HPS[()] where processes are partially synchronous, links
defined classes. We use the standard form of comparing trere eventually timely, and membership is not known. It
relative power of failure detector classes of [10]. A faflur is a polling-based algorithm that executes in rounds. At
detector classX is stronger than classX’ in systemY [()] if every roundr, the Task 1 of each procegs broadcasts
there is an algorithn# that emulates the output of a failure (POLLING,r,id(p)) messages. After a tim@meout,, it
detector of classX’ in Y[X] (i.e., systemY'[)] enhanced gathers in the variablenp, (and, hence, also ih_trusted,,)
with a failure detectoiD of classX). We also say thak”’ a multiset with the senders’ identifieig, of processes from
can be obtained fronX in Y[(}]. Two classes are equivalent (P_REPLY,r',r",id(p), ids) messages received with <

if this property can be shown in both directions. r<r’.

Due to space restrictions, we only present the main results. Task 2 is related with the reception d?POLLING
The proofs and additional details can be found in [21].and P_REPLY messages. When a procgsgeceives a
The first result shows that, in classical systems with uniqué POLLING,r,id(q)) message from process processp
identifiers,X, HY, and AY are equivalent. has to respond with as man¥_RFEPLY as process;

) needs to receive up to round and not previously sent by
Theorem 1. Failure detector classes X, H>, and AY

are equivalent in AS[@]. Furthermore, the transformations S5Note that this differs from the assumption used in [17].
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Init there is a round r such that p does not receive any

h_trusted, < 0; I/ multiset of process identifiers P REPLY ! id id message from ¢ with p’ >
mshipp ;11 set of process identifiers £ - 220" 7(p), id(q)) q p=
rp «— 1; timeout, «— 1, start Tasks Tland T2; :
Task T1 Proof: There is a timer at which ¢ stops taking
repeat forever 4 steps. If ¢ ever sent a(P_REPLY,—,—,id(p),id(q))
\E\’/gf“if;se(oifﬂfnfgavT’Pv’d(p)); message, consider the largestsuch thatg sent message
tmpp — 0; //ptmpp’is an auxiliary multiset (P_REPLY, T, id(p),id(q)). Otherwise, letz = 0.
for each (P_REPLY ,r,r',id(p),id(q)) received Then, the claim holds for = = + 1. [ |
with (r < rp, <r’) do
add one instance 6fi(q) to tmpp; Lemma 2. Given processes p, ¢ € Correct, there is a round
‘Z”S for; , r such that, for all rounds ' > r, when p executes the loop
_trustedy < tmpp; . . ’ . R
Tp — rp+1; of Lines 12-14 with r, = »/, it has received a message
end repeat (P_REPLY ,p,p',id(p),id(q)) from ¢ with p <1’ < p'.
Tajgo?reception of (POLLING, v, id(q)) do Proof: Observe that, sincep is correct, it will
7T 77' q H H
it id(q) ¢ mship, then K repeat forever the .Ioop_ of Lmes_ 7-17, with _ the
mshipy — mshipp U {id(q)}; value of r, increasing in one unit at each iter-
leeatelateéctlJp[id(qg_]: ation. Hence, p will be sending forever messages
engtif.St—r”[’ @) =0 (POLLING, —,id(p)) after GST with increasing round
if latest_rp[id(q)] < rq then numbers, that will eventually be received &yThen,q even-
enzrci;édcaS(P_REPLYvlatest_rp[id(q)} +1,74,d(q), 1d(p)); tually will send infinite (P_REPLY,—,—,id(p),id(q))
latest_rp[id(q)] — max(latest_ry[id(q)], rq); messages aftefzST', with increasing round numbers. Let
(P_REPLY ,x,—,id(p),id(q)) be the first such message
upon reception of (P_REPLY ,r,r’,id(p), —) with (r < rp) do sent byq after GST. Then, for each round numbegr> x,
timeouty < timeoutp + 1.

there is some messa§®_REPLY , p,p',id(p),id(q)) sent
by ¢ with p <y < p/, and these messages are delivered at
p at mostd time after being sent.

Now, assume for contradiction that for each round =z,
there is a round)’ > y such that, wherp executes the
loop of Lines 12-14 withr, = g/, it has not received
?he messageé P_REPLY , p, p’,id(p),id(q)) from ¢ with
p <y < p'.But, every time this happens, when the message
is finally received,r, has been incremented in Line 16
and, hencetimeout, is incremented (in Lines 31-32). Then,
eventually, by some round the value oftimeout, will be
greater thar2d + -, where~ is the maximum time thag
takes to execute Lines 20-29. Thenwill receive message
(P_REPLY ,p,p,id(p),id(q)) with p < ¢/ < p' before
executing the loop of Lines 12-14 with, = ¢/, for all
" > r. We have reached a contradiction and the claim of
the lemma follows. |

Figure 2. Algorithm that implement$ HP (code for procesp).

proces® (Lines 26-28). Note that th?_ REPLY messages
are piggybacked in only one message (Line 27). Also not
that is in variabldatest_ry[id(q)] wherep holds the latest
round broadcast tad(q). If it is the first time that process
p receives a( POLLING, —,id) message from a process
with identifier id, then variabldatest_r,[id] is created and
initialized to zero (Lines 21-25).

It is important to remark that, for each different
identifier id, only one (P_REPLY,—,—,id(q),id) mes-
sage is broadcast by each processSo, if processes
v and w with id(v) = id(w) = =z broadcast two
(POLLING,r,z) messages, then each processonly
broadcast on¢ P_REPLY,r',r", x,q) message with’ <
r < r”. Note that eventually (at least after GST time) eachTheorem 4. The algorithm of Figure 2 implements a failure
P_REPLY message sent by any process has to be receivegktector of the class ©CHP in a system HPS[()] (homony-
by all correct processes. Hence, eventually processesd  mous system where processes are partially synchronous and
w will receive all P_REPLY messages generated due tolinks are eventually timely), even if the membership is not
POLLING messages. known initially.

Finally, Lines 31-32 of Task 2 allow process to
adapt the variableéimeout, to the communication latency
and process speed. When procgsgeceives an outdated
(P_REPLY,r,—,id(p), —) message (i.e., a message with
round r less than current round,), then it increases its
variabletimeout,,.

Proof: Consider a correct procegs From Lemma 1,
there is a roundr such thatp does not receive any
(P_REPLY ,p,p,—,—) message withp’ > r from any
faulty process. From Lemma 2, there is a rowhgduch that
for all roundsr” > r’, whenp executes the loop of Lines 12-
14 withr, = 7", it has received §?_REPLY ,p,p’, —, —)
Lemma 1. Given processes p € Correct and g ¢ Correct, — message withp < 7’/ < p’ from each correct process.



Hence, for every round” > max(r,7') when the Line 15is 1 h_labels, — 0; h_quora,, — 0;
executed withr, = 7, the variableh_trusted, is updated 2 for each synchronous stedo
with the multiset[(Cm"rect). u ; \?vz)i??gra?ﬁél)n?é\s/ga{sgépgéht in this synchronous step;

We can obtainf (2 from the algorithm of Fig. 2 with- 5 1set, — multiset of identifiers received it/ DENT, —) messages:
out additional communication. This can be done by sirfi-  h_guora, < h_quora, U{(mset,, msetp)}
ply including, immediately after Line 15h_leader, « ; en’&—flgrb@lsp « h_labelsp U {msetp};
min(h_trusted,) (i.e., the smallest identifier ih_trusted,,) '
and h_multzplzcztyp - mUlth—t““tedP (h_leaderp). Figure 3. Algorithm to implemeni/ > without knowledge of membership
Corollary 1. The algorithm of Figure 2 can be changed to ~ (code for procesp)
implement a failure detector of the class HS2 in a system
HPS[(] (homonymous system where processes are partially
synchronous and links are eventually timely), even if the

membership is not known initially.

Safety. Consider two pairs(zi,x1) € h_quomgl1 and
E\:?g,xg) € h_quoray, for anyp;,p» € I and anyry, 7> €
Implementation of HY The algorithm in Figure 3 imple- ~ Let M; be the set of processes from whiph received
ments HY. in HSS[0]] where processes are synchronous,(IDENT,—) messages in the synchronous step in which
links are timely, and membership is not known. It runs in(z1,21) was inserted for the first time ih_guora,, .
synchronous steps. In each step every propesmadcasts Observe thatCorrect C M;. Furthermore, any process
a (IDENT,id(p)) message. Then, procegswaits for P € S(z1) must also be inM/; (i.e., S(z1) € M). Also,
(IDENT,—) messages sent through reliable links in thisz1 = I(M1), and, hencejz:| = [M;]. Therefore, the only
synchronous step by alive processes. Progesgathers Set@Q1 C S(z1) such thatl(Q1) = z1 is Q1 = M.
in the multiset variablemset, the identifiersid of all ~ We define M, similarly, and conclude that the only set
(IDENT,id) messages received. At the end of this step@2 S S(z2) such that/(Q2) = x2 is Q2 = M. Since
variables h_quora, and h_labels, are updated with the @10 Q22 Correct 70, the safety property holds.  m
value of mset,. Note that for proces® the labelz of
a quorum(z,m) is formed by the multisetnset, (i.e,
r =m = msely).

V. SOLVING CONSENSUS INHOMONYMOUS SYSTEMS

We present in this section two algorithms. One algorithm
implements Consensus HAS[t < n/2, HQ), that is, in an
Theorem 5. The algorithm of Figure 3 implements a failure  homonymous asynchronous system with reliable links, using
detector of the class HY. in a system HSS[0)] (homonymous  the failure detectof/(2, and when a majority of processes
synchronous systems), even if the membership is not known  are correct. The other algorithm implements Consensus in
initially. HAS[HQ, HY)], that is, in an homonymous asynchronous

Proof: From the definition of7Y, it is enough to prove system with reliable links, using the failure detectdi
the following properties. and H.

Validity. Since h_quora,, is a set, and the elements in- Implementing Consensus in HAS[t < n/2,HQ] Let
cluded in it are of the form(mset, mset) (see Line 6 in us considerHAS[t < n/2,HQ)] where membership is
Figure 3) there cannot be two pairs with the same label. unknown, but the number of processes is known (that)is,

Monotonicity. The monotonicity ofi_labels, in Figure 3  Let us assume a majority of correct processes (i.€.7/2).
holds becausé_labels, is initially empty, and each step, We say that a procegsis a leader, if it is correct and, after
h_labels,, either grows or remains the same (see Line 7 insome finite timeD.h_leader, = id(p) permanently for each
Figure 3). Similarly, the monotonicity df_quora, in Figure  correct procesg. By definition of (2, there has to be at
3 follows from the fact that_quora,, is initially empty, and  least one leader.
any elementmset, mset) included in it is never removed The algorithm of Figure 4 is derived from the algorithm
(see Line 6 in Figure 3). in Figure 4 of [20] (derived from an algorithm proposed in

Liveness. Let s be the synchronous step in which the [22]), proposed for anonymous systems. This algorithm has
last faulty process crashed. Then, in every stemfter s been adapted to be used in a homonymous systems with a
only correct processes will execute. Consider any procesgilure detector of classl( (instead ofAQ2 as used in [20]).

p € Correct. In step s’ will receive messages from all With HQ, there can be several leaders permanently. To cope
correct processes, and, heneeset, = I(Correct). Then,  with this, a new initial leaders’ coordination phase hasrbee
processp includes (I(Correct), I(Correct)) in h_quora,, added. The purpose of this initial phase is to guarantee that
and I(Correct) in h_labels,. Therefore, each correct pro- after a given round, all leaders propose the same value in
cessp is in S(I(Correct)). So, after step, for each correct each round.

procesg, the pair(I(Correct), I(Correct)) is in h_quora,,, The algorithm works in rounds, and it has four phases
andI(Correct) = I(S(I(Correct)) N Correct). (Leaders’ Coordination Phase, Phase 0, Phase 1 and Phase



1 operation proposef):
2 estly < vp; rp— 0; start Tasks Tland T2;
3

4 Task T1

5 repeat forever

6 rp—1rp + 1,

7 /I Leaders’ Coordination Phase

8 broadcas{COORD, id(p), rp, estly);
9 wait until (D.h_leader, # id(p))V

10 (D.h_multiplicity,, messagesCOORD, id(p), p, —) received);
11 if (some messageCOORD, id(p), rp, —) received)then

12 estl,«— min{estq : id(p) = id(q)A

13 (COORD,1id(q), rp,estq) received} end if;

14 /I Phase 0

15 wait until (D.h_leader, = id(p) V ((PHO, rp,v) received);
16 if (PHO,rp,v) received)then estl, <« v end if;

17 broadcagtP HO, rp, est1p);

18 /I Phase 1

19 broadcagtPH1, rp, estly);

20 wait until (PH1,rp,, —) received fromn — t processes;

21 if (the same estimate received from> n/2 processesjhen
22 est2p— v

23 else

24 est2p— L

25 end if;

26 /I Phase 2

27 broadcagtP H2, rp, est2y);

28 wait until (PH2,rp, —) received fromn — t processes;
29 let recp = {est2 : messagd PH2, rp, est2) received};

30 if ((recp ={v}) A (v# 1)) then

31 broadcas{ DECIDE,v); return (v) end if;

32 if ((recp ={v,L})A(v# 1)) thenestl,— v end if;

33 if (recp, ={.L}) then skip end if;

34 end repeat

36 Task T2
37 upon reception of (DECIDE,v) do
38 broadcast DECIDE,v); return (v).

Figure 4. Consensus algorithm MAS[t < n/2, HQ] (code for process
p). It uses detectoD € HS).

Figure 4 of [20]. We omit further details due to space restric
tions. The following lemmas are the key of the correctness of
the algorithm. They show that, even having multiple leaders
these will eventually converge to propose the same value at
each round.

Lemma 3. No correct process blocks forever in the Leaders
Coordination Phase.

Proof: The only line in which processes can block
in Lines 6-13 is in Lines 9-10. A correct process that
is not leader does not block permanently in these lines,
because eventually the first part of the wait condition is
satisfied. Let us assume, for contradiction, that some teade
blocks permanently in Line 10. Let us consider the smallest
round r in which some leadep blocks. By definition of
r, each leader eventually reaches round and (even if
it blocks in r) broadcasts({COORD,id(q),r,—), where
id(q) = id(p), in Line 8. (Observe that all processes send
(COORD,—,—,—) messages in Line 8, even if they do
not consider themselves as leaders.) Eventually, all these
messages are delivered fioand D.h_multiplicity,, is per-
manently the number of leaders. Hence, the second part
of the wait condition (Line 10) is satisfied. Thys,is not
blocked anymore, and, therefore, we reach a contradiction.

[ |

Lemma 4. There is a round » such that at every round
r’ > r all leaders broadcast the same value in Phase O of
round 7’.

Proof: Eventually all leaders broadcast the same value
because after some round, all leaders start Phase 0 with
the same value irst1. Consider a timer when all faulty
processes have crashed and the failure detdetar stable

2). Every procesp begins the Leaders’ Coordination phase(i.e., V7' > 7,Vp € Correct, D.h_leader;l = /, being
broadcasting dCOORD, id(p),r, estl,) message. If pro- 4 ¢ 1(Correct), and D.h_multiplicity: = multyc(£)).
cessp considers itself a leader (querying the failure de-| ¢t ;- pe the largest round reached by any process at time

tector D of class H(?), it has to wait until to receive

7. Then, for any round”’ > r, all leadersp have the

(COORD, id(p),r, est1) messages sent by all its homony- same estimatest1, at the beginning of the Phase 0 of

mous processes (also querying the failure dete¢?oof
class HQY) (Lines 9-10). After that, process updates its

round ' (Line 15), or there has been a decision in a
round smaller than”’. To prove this, let us assume that

estimateest1, with the minimal value proposed among all no decision is reached in a round smaller thanThen,
its homonymous. Note that eventually all its homonymoussjnce the leaders do not block forever in any round (see
will be leaders too. Hence, eventually all leaders will alsoprevious paragraph 1), they execute Line 8 in round

choose the same minimal value dat1.

Since the failure detector is stable, they also wait for the

In Phase 0, if procegsconsiders itself a leader (querying second part of the wait condition of Lines 9-10 (since the

the failure detectorD of class HQ?) (Line 15), it broad-
cast a(PHO,r estl,) message with its estimate ¥t1,.
Otherwise, procesp has to update itgst1, waiting until

first part is not satisfied). When any leageexecutes the
Leaders’ Coordination Phase of, it blocks in Lines 9-
10 until it receivesD.h_multiplicity, messages from the

a (PHO,r estl;) message is received from one of the other leaders. By the stability of thH#Q failure detector,
leaders procességLines 15-16). Note that after the Lead- D.h_multiplicity, is the exact number of leaders. Also,

ers’ Coordination Phase, eventually each ledderoadcast
(PHO, —, estl;) messages with the same valueeist1;.

from the definition ofr and r, no faulty process with
identifier D.h_leader, is alive and all the messages they sent

The rest of the algorithm is similar to the algorithm in correspond to rounds smaller thah Hence, each leader



will wait to receive messages from all the other leaders and

will set est1, to the minimum from the same set of values operation propose):

(Line 13). [ | ;2>,

estly < vp; rp < 0; start Tasks Tland T2;

Theorem 6. The algorithm of Figure 4 solves consensusin 4 Task Tl

HAS[t < n/2, HQ)J. 2

Proof: From the definition of Consensus, it is enou
to prove the following propertie¥alidity. The variableestl g
is initialized with a value proposed by its process (Line 2.
The value ofest1 may be updated in Lines 13 or 16 wit
values ofest1 broadcasted by other processes. The varighle
est2 is initialized and updated witlest1 (Line 22) or 1. 14
(Line 24). The value ofstl may be updated in Line 322
with values ofest2 (different from L) broadcasted by otheg;
processes. The value decided in Line 31 is the valusstf 18
that was broadcasted by some process. As it is not posﬁEJIe
to decide the valuel (Line 31), then the value decide
has to be one of the values proposed by the procesRes.
Then, the validity property holdsAgreement. Identical to gi
the agreement property of Figure 4 of [20grmination. ;5
From Lemmas 3 and 4, after some roundill leaders hold26
the same value in est1 when they start executing Phase?
of roundr’ (Line 15), and they broadcast this same vaﬁge
v (Line 17). Note that it is the same situation as havisly
only one leader with value stored inest1 when Phase (21

is reached. Hence, as Phase 0 starts in the same condgtons

as in the algorithm of Figure 4 of [20], the same proof cah

be used to prove the termination property. [ | gg
Implementing Consensus in HAS[HQ, HY]  Figure 5 37

implements Consensus HAS[H(), HY]. Note that it is a38
variation of the algorithm of Figure 3 of [17] (again inspdrég

in the leader-based algorithm of [22]), where, like in the
previous case, we have added a preliminary phase 43 a
barrier such that homonymous leaders eventually “agreej’i’m
the same estimation valustl to propose. Once this issug
has been solved (as was proven for the previous algoritifn),
the use that this algorithm makes of the failure deteéior ,g

is very similar to the use the algorithm of Figure 3 of [1Z§

makes of thedX. failure detector. 51

Lemma 5. No correct process blocks forever in the repeat 5%

loops of Phases 1 and 2. 54

Proof: Note that if a correct process decides (Line 5
then the claims follows. Consider the repeat loop of Phese
1 (Lines 21-37). Let us assume that some correct proé8ss
is blocked forever in this loop. Then, let us consider
first roundr in which a correct process blocks forever g
r. Hence, all correct processes must block forever in §Re
same loop in rouna. Otherwise some process broadcas@a
messagéPH2, —,r,—, —,—), and from Line 23 no corrects
process would block forever in this loop of roumd Let
us consider a correct proceps and the pair(x, m) that
guarantees the liveness property fofThen, there is a time
in which (z,m) € D2.h_quora,, and every correct process

repeat forever

rp— rp + 1;
/I Leaders’ Coordination Phase
broadcas{COORD, id(p), rp, estly);
wait until (D1.h_leader, # id(p))V
(D1.h_multiplicity, message$COORD, id(p), p,
if (some messageCOORD, id(p), rp, —) received)then
estly«— min{estq : id(p) = id(q)A
(COORD,id(q), rp,estq) received} end if;
/I Phase 0
wait until (D1.h_leaderp, = id(p) V (PHO,rp,v) received);
if (PHO,rp,v) received)then estl, «— v end if;
broadcagtP HO, rp, est1p);
/I Phase 1
srp 1, current_labels, < D2.h_labelsp;
broadcas{PH1,id(p), rp, srp, current_labelsp, estlp);
repeat
if (PH2,—,rp,—,—,est2) received)then
est2, < est2; exit inner repeat loop end if,
if ((3(xz, mset) € D2.h_quorap) A (Isr € N)A
(3 set M of message$PH1, —,rp, sr,—,—)), such that,
(Y(PH1,—,—,—,cl,—) € M,z € cl)A
(mset = {i: (PH1,i,—,—,—,—) € M})) then
if (all msgs inM contain the same estimatg then
est2p— v elseest2,«— L end if;
exit inner repeat loop;
else if (current_labels, # D2.h_labelsy)V
((PH1, —,rp, sr,—, —) received withsr > srp) then
srp srp + 1; current_labelsp«— D2.h_labelsy;
broadcast PH1, id(p), rp, srp, current_labelsy, estly)
end if
end if
end repeat
/I Phase 2
srp<— 1; current_labelsy«— D2.h_labelsp;
broadcas{PH2,id(p), rp, srp, current_labelsp, est2p);
repeat
if (COORD, —,rp + 1, —) received)then
exit inner repeat loop end if
if ((3(x, mset) € D2.h_quorap) A
(3 set M of message$PH2, —, p, sr, —, —)), such that,
(Y(PH2,—,—,—,cl,—) € M,z € cl)A
(mset = {i: (PH2,i,—,—,—,—) € M})) then
let recp, = the set of estimates contained A;
if ((recy = {v}) A (v# 1)) then
broadcas{ DECIDE,v); return (v) end if;
if ((recp ={v, L}) A (v# 1)) then estl,— v end if;
if (rec, = {L}) then skip end if;
exit inner repeat loop
else if ((current_labelsp # D2.h_labelsy)V
((PH2,—,rp, sr,—,—) received withsr > srp,)) then
srp srp + 1; current_labelsp«— D2.h_labelsy;
broadcast PH2, id(p), rp, srp, current_labelsy, est2p)
end if
end if
end repeat

(3sr € N)A

end repeat

Task T2
upon reception of (DECIDE,v) do

broadcas{ DECIDE, v); return (v).

Figure 5. Consensus algorithm #AS[H2, HX] (code for procesp).
It uses detectord1 € HQ2 and D2 € HX.

—) received);



q in S(z) N Correct hasz € D2.h_labels,. Note that, from
Lines 31-35, every change in the variall®.h_labels of

a process creates a new sub-round, and that all processes

broadcast their current value @2.n_labels in each new

sub-round. Therefore, eventually, will receive messages

(PH1,—,r, sr cl,—) from all these processes such that

cl. Hence, the condition of Lines 24-27 is satisfied, and
will exit the loop of Phase 1. The argument for the repeat

loop of Phase 2 is verbatim. [ |

Lemma 6. No two processes decide different values in the
same round.

Proof: Let us assume that procesggsand p, decide
valuesv; and v in sub-roundssr; and srq, respectively,
of the same round (in Line 50). Let (xz1,m;) and M;

be the pair in D2.h_quora,, and the set of messages

that satisfy the condition of Lines 44-47 fqr. Since
for each messagéPH2, —,r,sry,cl,—) € My, it holds

that z; € cl, if Q1 is the set of senders of the mes-

sages inM;, we have thatQ; C S(zp). Additionally,
my = {Z : (PHQ,i,—,—,—,—) S Ml} = I(Ql) We
can define(z2, m2) and M, analogously forps. Then,
from the Safety Property off3, Q1 N Q2 # 0. Let p; €

Q1 N Q2. Then, proces®; must have broadcast messages

(PH2,id(py),r, sr1,—,v1) and(PH?2,id(p;),r, sra, —, v2)
(Lines 40 and 57). Since the estimate?2,, of p; does not

change between sub-rounds (inner repeat loop, Lines 41-6
it must hold thatv; = vy. From the condition of Line 50,

recp, = {v1} in sub-roundsr; andrec,, = {vs} in sub-
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