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0 Introduction

e Computer simulation of dendritic morphology

e “Gardener” classification of neurons
@ Introduction
@ Bayesian networks to model consensus among experts
@ EM-based subspace clustering for discovering new types of neurons
@ Bayesian classifiers for probabilistic class labels

o Neurodegenerative diseases: Parkinson and Alzheimer
@ Dementia: Prevalence, cost and invest in research
@ Supervised classification of dementia development in Parkinson’s disease
@ Multi-dimensional classification for EQ-5D from PDQ-39 in Parkinson’s disease
@ Knowledge discovery in Alzheimer’s disease

e The Bayesian brain

e Conclusions
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Intro

Cajal Blue Brain Project

K -C ial .
8L 0E BRAIN

@ At the end of 2008, Universidad Politécnica de Madrid (UPM) and Instituto
Cajal (IC) from the Spanish Research Council, until 2018

@ UPM: data analysis, optimization, image analysis and visualization
@ IC: morphology and function of neuronal cells

C. Bielza, P. Larrafaga Bayesian Networks in Neuroscience



Intro

The human brain

Brain lobes and layers

Frontal s Parietal lobe

lobe [ . ,
'ﬁ._ e \) . \-Oi'(:lprl:'ll

VO

@ Weight = 1.3kg, width = 140mm, length = 167mm, height = 93mm
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Intro

The human brain

Brain at microscopic level

dendrite

cell body

synapse
-___—__h__ 4
i
. - ~ e D myelin

@ Composed of neurons, blood vessels, glial cells

@ Neuron is the basic structural and functional unit of the nervous system —neuron
doctrine— (S. Ramén y Cajal, late 19th century)

@ Just 4 microns thick — could fit 30,000 neurons on the head of a pin
@ ~100,000 million neurons (more than known stars in the universe)

A
¥
blood uﬂ;e\
\
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Intro

The neuron

3 parts of a neuron: dendrites, soma and axon

Dendrites

. (2
Y ~Cell body
- \Axon

Direction of message
Dr 9

) Axon terminals synapse
- with dendrites on target cell

(/J’ .
X

f z;:‘;’{ ~ Axon
TAN

@ Axons fill most of the space in the brain — >150,000 km in the human brain!!
@ Each neuron connected to 1,000 neighboring neurons
@ 10,000 synaptic connections each
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Intro
Observing the neurons

Optical (or light) microscope. Stain the tissue

.

5 *\ R

Magnify image up to'2000 times 7 Golgi’s rriethod (1873)

Modern electron microscope

& rad
Magnify image up to 2 million times 3D from multiple 2D images
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Intro

“Visualizing” mental activities from brain images

Electrical activity directly or indirectly

Positron Emission Tomography (PET)

Functional NIR Single Photon Emission Computed Functional MRI (fMRI)
Spectroscopy (fNIRS) Tomography (SPECT)
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Dendrites

Outline

e Computer simulation of dendritic morphology
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Dendrites

Computer simulation of dendritic morphology

@ Tree shapes — interconnectivity and functional roles of neurons
@ Their normal function, in neurological diseases, under the effects of some drugs

@ Rough groups based on prominent geometrical features. No 2 neurons with the
same morphology — but branching patterns

= Anatomical characterization is statistical in nature
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Dendrites

Our proposal: advantages

S—
Measure Real
Variables /| Database

Real denditic tree /
BAYESIAN
NETWORK

S——
Simulated
Database

Virtual dendritic tree

B

...with Bayesian networks

@ (In)dependences between morphological properties automatically found from
real data (vs. prior conditional relationships ad hoc)

@ Model the joint probability distribution of all variables (vs. < trivariate and standard
distributions)

@ Reliable evaluation: statistical tests to compare original vs. simulated
distributions, both uni and multivariate (vs. on new 1D pars and visual inspection)

@ Lopez-Cruz, Bielza, Larrafaga, Benavides-Piccione, DeFelipe (2011). Models and simulation of 3D neuronal
dendritic trees using Bayesian networks, Neuroinformatics, 9, 347-369
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Dendrites

Data: pyramidal neurons

@ 3D reconstructions of 90 NN =
pyramidal neurons from the A\
mouse heocortex, traced with
Neurolucida package

@ Layer lll of different cortical
regions: M2, S2, V2L/TeA
= 3 databases

@ Each basal arbor with 6 (average)
main trunks —dendritic trees—,
each made up of several
dendrites

Dendritic tree 1
Dendritic tree 2
Denditic tree 3

\ == Dendritc tree 4
== Dendritic tree 5

8
i
i
H

RBAE=SA3BE

Cortex region Database # dendr. trees
Motor M2 104
Somatosensory S2 103
Lateral visual and V2L/TeA 156

association temporal
Publicly available at http: //neuromorpho.org as part of DeFelipe’s archive (same lab)
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Dendrites

Features

Morphological parameters

@ For each pair of sibling segments (line between two branch points), measure 41
variables

@ Widely used and also new, to capture context influence and neuritic competition

@ Construction variables: define the morphology of a segment (segment length,
orientation, bifurcation). Sampled by the model to incrementally construct trees

@ Evidence variables: measure the part of the tree previous to a pair of sibling
segments (subtree and subdendrite involved). Measured during the simulation,
used as information to sample construction variables

A B
N subtree
subdendrite
s subtree
subtree height
ibli subtree
sibling L max
sibling segments’ order
segments subtree
neighboring min 7
segment ; order subtree
» max
parent subtree length
segment min
length
root subtree
segment subtree width depth
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Dendrites

List of variables

No. Type Variable No. Type Variable
1 [= subtree degree (no. endings) 22 E neighbor distance
2 = subtree no. bifurcations (no. nodes) 23 = neighbor inclination
3 [= subtree total length 24 = neighbor azimuth
4 E subtree width 25 E neighbor extension
5 E subtree height 26 E neighbor angle
6 E subtree depth 27 E parent segment length
7 E subtree box volume 28 E parent segment inclination
8 E subtree max distance between nodes 29 E parent segment azimuth
9 E subtree max distance to soma 30 E root segment length
10 E subtree max length 31 E root segment inclination
11 E subtree min length 32 E root segment azimuth
12 E subtree max order 33 E segment centrifugal order
13 E subtree min order 34 C left segment length
14 E subdendrite length 35 C left segment inclination
15 E subdendrite width 36 C left segment azimuth
16 E subdendrite height 37 C left segment bifurcates
17 E subdendrite depth 38 C right segment length
18 = subdendrite box volume 39 C right segment inclination
19 E subdendrite distance to soma 40 C right segment azimuth
20 = subdendrite inclination 41 (¢} right segment bifurcates
21 E subdendrite azimuth
Variables discretized (2-3 values) trying to preserve empirical distributions
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Dendrites

Bayesian network learning

Overview of the learning

@ Learn and use a BN for each part of the dendritic tree, to allow specific
relationships at each part

Root Order 1 Order2 Order >2
segments segments segments segments

n=41
@ P(Xi,.... Xa1) = [] P(XiIN)) M; = parents of X; in the graph
i=1

@ Learn the structure via K2 algorithm

@ Ordering between nodes (evidence vars before construction vars)
@ Fix an upper bound on the max number of parents for any node (=3)

@ Learn the parameters (probabilities) via MLE

freq(X; = x;,N; = ;)

P(Xj = xi|N; = m;) = freq(Ml; = m7)
I — ]
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Dendrites

Bayesian networks learnt

For M2 database

o A, B, C, D — root segments, order 1, order 2, > 2 order, resp. Shaded = construction variables

@ Found relationships conform to biological knowledge, e.g.
Segment length (34, 38) and bifurcation (37, 41) occurrence — more bifurcations close to the soma and
shorter segments, whereas segments that do not branch spread away from the soma
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Dendrites

Simulation of virtual dendritic trees

Procedure (bread rst way)

@ Generate a root segment
@ Measure evidence variables from the dendritic tree built so far
Q Sample construction variable values from the Bayesian network

0 If a segment bifurcates, consider that the dendrite is still incomplete and go to 2.
Else, the dendrite has ended

DATA ACQUISITION BAYESIAN NETWORK SIMULATION OF VIRTUAL
AND PREPARATION LEARNING DENDRITIC TREES
Bl

Real dendritic tree

E Sampling

4
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Gardener Intro Consensus EM-subs P-labels

Outline

“Gardener” classification of neurons

@ Introduction
@ Bayesian networks to model consensus among experts
@ EM-based subspace clustering for discovering new types of neurons

@ Bayesian classifiers for probabilistic class labels
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Gardener Intro Consensus EM-subs P-labels

Outline

“Gardener” classification of neurons
@ Introduction
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Gardener Intro Consensus EM-subs P-labels

Classifying and naming neurons

@ An accepted catalog of neuron types and names, a debate for over a hundred
years since S. Ramon y Cajal

@ Amount of data has grown rapidly; better staining methods = harder
classification

@ Need of a consistent terminology for an effective communication and data
sharing [Petilla Terminology, Ascoli et al. (2008)]

@ Agreement: pyramidal neuron, non-pyramidal, interneuron, chandelier
(clear morphological attributes)

@ Disagreement: double bouquet, basket, Martinotti...

@ Virtually every neuroanatomist has his own classification scheme and
neuron terms
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Gardener Intro Consensus EM-subs P-labels

A ‘gardener’ classification of neurons

@ A ‘gardener’ approach (not a botanist), coarser and practical

@ Towards a consensus in naming GABAergic cortical interneurons
@ 10-30% of the total neuron population and main component of inhibitory

cortical circuits
@ Located in all cortical layers and with a great variety of morphological,

biochemical, and physiological characteristics

@ Goal: a community-based strategy for defining a morphological taxonomy,
establishing a list of terms to be used by all researchers to distinguish neuronal

morphologies

@ DeFelipe, Lopez-Cruz, Benavides-Piccione, Bielza, Larrafaga, et al. (2012). Classification and nomenclature
of cortical GABAergic interneurons, Nature Reviews Neuroscience, accepted

C. Bielza, P. Larrafaga ayesian Networks in Neuroscience



Gardener Intro Consensus EM-subs P-labels

Collecting the data: 320 interneurons, 42 exper

A GARDENER CLASSIFICATION
Neuron 3/320

Mouse, Visual, Layer V (150-300pm)

Intralaminar 2. © Translaminar 2
Intracolumnar 214 ' Transcolumnar
Centered 1. o Displaced 21 4
4. © Ascending
Descending
Neuron14 . TS
Neuron16
Neuron17
Neurontd : Chandelier 21 . Common Basket

Arcade B, Cajal-Retzius

Horse-tail 2] Large Basket [2]

Martinotti [ . Neurogliaform 2] 4

L

Common type

Neuron25 Other B1CL

Neuron26
Neuron27
Neuron28
Neuron2%
Neuron30 3 N ized: not enough

e
Sl

axonal features [ 4

< Go back | [ Clear form | | Go forward >

Neuron37
Neuron38
Neuron39
Neurond0
Neurond1

Neurond2
Neurond3
Neurond4
Neurond5
Neurond6

3D Visualization
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Gardener Intro Consensus EM-subs P-labels

Collecting the data: 320 interneurons, 42 experts

A GARDENER CLASSIFICATION

Feature 1 Feature 2 0
Intralaminar ~ Translaminar
. e )-300pm)
Intracolumnar
Intralaminar 2“4 © Translaminar
Intracolumnar (1 % Transcolumnar
g

o Displaced 21 4
Transcolumnar

4. © Ascending
Descendiny
Both 2] 4

Feature 3 and 4

Cajal-Retzius
Centered Displaced

Common Basket
Large Basket [2]

Martinotti Neurogliaform [ .

Commen type

Other 214

Feature 5 ized: not enough

Chandelier Large basket Horse-tail Martinotti axonal features [21 .

< Go back | | Clear form | | Go forward >

Common basket

Nouosistom S@?

Cajal-Retzius

Neurond6 HL%
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Gardener Intro Consensus EM-subs P-labels

Data

Feature 1

Neuron

1
2

320
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Gardener

Intro Consensus EM-subs P-labels
Data

Feature 1 Feature 5 Feature 6
Neuron E, - E,
1 0 - 1
2 1 .. 1

320 17 -~ 0

C. Bielza, P. Larraiiaga
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Gardener

Inter-expert agreement

Translaminar
Intracolumnar X
Transcolumnar Intralaminar Uncharacterized
Both Characterized

Ascending
Descending

Agreement
Medium

Other
Horse-tail Large basket Arcade
Martinotti Neurogliaform Common basket Cajal-Retzius
Common type

Chandelier

yesian Networks in Neuroscience



Gardener Intro Consensus EM-subs P-labels

A Bayesian network learnt for each expert

A 3 Featured
[scending  64% |

2 Features, [Both 25%|

arcade 0% [posconding 6%

[Chandelier 0% issin 9% J

Feature?

3 Features
handelier 0%
ommon_basket 0%
[Common_type 0%

ranscolumnar 74%

arge_basket 0%
Martinotti 100% [
issing 0% Featured

INeurogliaform 0% Ascending ~ 47% |l
fother 0% lBoth 37%

escending 8%;
lissing 7%|L d

Displaced 89%
issing 4%
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Gardener Intro Consensus EM-subs P-labels

A Bayesian network learnt for each expert

A 5 Foatured Foaturss c 5 Featured
[ascending  64% I haracterized  99% [pscending  79%]]
5 Feature5 [Both 25% 5 Features Both 8%
arcade 0%] [Pescending - 6% [Arcade 0% Pescending 21% i
[Chandelier 0% la—Missing %] d handelier 0% |o—Missing __ea% I |
[Common_basket 0% icommon basket 100% [IINT|
ommon_type 0% 2 Feature Feature3 ommon_type 0% 3 Feature1 Foature3
Horse_tai 0% Intralaminar %] ontered  6%]] Horse. tail %) Intraiaminar 45% ntered 50%
arge_basket 0% issing 1%) LLarge_basket 0% issing 1%) isplaced 49% |
Martinotti 100% Y| [Translaminar 96% issing 1% artinotti 0% ranslaminar 54% issing__0%| d
issing 0% issing 0%
0% A 0%
B D
5 Foatures g Features
handelier 0% ransochumnar 74%| fchandeier 3
ommon_basket 0% ICommon_basket 100% Y
[Common_type 0% common_type 0%
argo_basket 0% Large_basket 0%
Martinof 100% N artinott 0%
issing 0% fe Featured ssing 0% \E Featured
Neurogliaform 0% lnscending 47% Neurogliaform 0% fascending %]
Other 0% o ot 37%) Ether. 0% s [oth 36%
Descending 8% [Pescending 26% [l Feature3
issing ___ 7%|L issing __ 20% |8 d  [Centered 275

Pisplaced 71% I
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Gardener Intro Consensus EM-subs P-labels

Outline

e “Gardener” classification of neurons

@ Bayesian networks to model consensus among experts
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Gardener Intro Consensus EM-subs P-labels

Inducing a consensus Bayesian multinet from a set of expert opinions

Datasets BN EXPERT 1

EXPERT 1
— | BN LEARNING >

BN EXPERT 2
[ BN LEARNING >

BN EXPERT 42

BN LEARNING %

CLUSTERING |
v

BN CLUSTER1 BN CLUSTER K

v

’ CONSENSUS BAYESIAN MULTINET \

1

L
eee

S~ K
CCLUSTERD
=

-
-

@ Lopez-Cruz, Larranaga, DeFelipe, Bielza (2012). Bayesian network modeling of the consensus between
experts: An application to neuron classification, International J. of Approximate Reasoning, submitted
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Gardener

Intro Consensus EM-subs P-labels

Clustering of BNs encoding similar expert opinions

1. Compute the JPD encoded by each BN

'

2. Cluster the JPDs

3. Find a representative Bayesian network
for each cluster

3.1. Build a weighted sample from
each JPD in the cluster

3.2. Learn a BN from the samples of
the JPDs in the cluster

RESULT: A representative Bayesian
network for each cluster

ayesian Networks in Neuroscience



Gardener

Intro Consensus EM-subs P-labels

Clustering of BNs encoding similar expert opinions

1. Compute the JPD encoded by each BN

C

2. Cluster the JPDs

3. Find a representative Bayesian network
for each cluster

3.1. Build a weighted sample from
each JPD in the cluster

3.2. Learn a BN from the samples of
the JPDs in the cluster

RESULT: A representative Bayesian
network for each cluster

Steps 1 and 2

@ Dataset with 42 JPDs x 121 values

@ K-means algorithm (K = 6)

@ Jensen-Shanon divergence as dissimilarity
measure for JPDs

dys(P1, P2) = 0.5 (KL(p1||m) + KL(p2||/m))

where m = 0.5(py + p2)
@ Compute the cluster center p, from a set

{P1,.--,Pn,} in cluster k
LOGARITHMIC COMBINATION POOL:
Ny wj
% _ H,':1 ,0,-]-’
JLogOp — 121 1 Nx ,w;
v=1 [1iZy Py

with wj = 1/Nk

C. Bielza, P. Larraiiaga

yesian Networks in Neuroscience




Gardener Intro Consensus EM-subs P-labels

Clustering of BNs encoding similar expert opinions

1. Compute the JPD encoded by each BN

'

2. Cluster the JPDs

3. Find a representative Bayesian network Step 3

for each cluster .
- - @ For each cluster, sample from its JPDs.
3.1. Build a weighted sample from ! .
each JPD in the cluster Draw u; x M observations from each p; in
cluster k, where 7
= N1_dJS(PiaPk)
Z/’:k1 (1 _dJS(Pjyﬁk))
(degree of membership for p; to cluster k)

@ Learn a (representative) BN from the
RESULT: A representative Bayesian sample of size M
network for each cluster

3.2. Learn a BN from the samples of
the JPDs in the cluster

C. Bielza, P. Larrafaga ayesian Networks in Neuroscience



Gardener Intro Consensus EM-subs P-labels

Cluster labeling (with marginals)

Cluster  # experts
3

15

4

12

7

1

OO WD =
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Gardener Intro Consensus EM-subs P-labels

Cluster labeling (with marginals)

Cluster 4
Cluster  # experts = Xi
1 3 Characterized  95% [ |
> 15 Uncharacterized 5% =
3 4
4 12 =) X3 =) X2 ® X4
5 7 Intracolumnar 55% Intralaminar 24%[[iE] (Centered 43% [l |
Transcolumnar 40%|| [Translaminar 70%| Displaced 52%
6 1 Dummy 5% Dummy 5%|| A [pummy 5%[f o
[Common_type 40%
Horse_tail 6%
(Chandelier 4%|| S X
Martinott 10%(l [Ascending 1%
|Common_basket 14%|li Descending 20%
Arcade 2% ) Both 10%|
Large_basket 8%
Cajal_Retzius 1% Dummy 52 S
Neurogliaform  8%]
[Other 2%||
Dummy 5%|| 7

Coarse classification scheme. High P to Common type

elza, P. Larrahaga yesian Networks



Gardener Intro Consensus EM-subs P-labels

Cluster labeling (with marginals)

Cluster 5
Cluster  # experts S X1
1 3 Characterized  93%
> 15 Uncharacterized 7% =
4 12 =) X3 =) X2 B X4
5 7 Intracolumnar 48% Intralaminar 27% (] (Centered 27% ([l
6 1 Transcolumnar 45%| [ Translaminar 66%| Displaced 66%
Dummy 7%) Dummy 7%]1 & [Dummy 7% =
Horse_tail \ /
(Chandelier 3%|| S 5
Martinotii 1%l [Ascending 19% [l
(Common_besket 16%| [——p»{Descending 20%
|Arcade 2% Both 16%|8
o
Large_basket  12%|[] bummy 4% I
Cajal_Retzius 1%
Neurogliaform ~ 7%||
Other 2%/l
Dummy 7%l o

Detailed classification scheme, distinguishing between Common type,
Common basket and Large basket. Found the nomenclature incomplete
(high P to Other)

elza, P. Larrahaga yesian Networks



Gardener Intro Consensus EM-subs P-labels

Final consensus Bayesian multinet representing all the experts

N Py=representative BN

ﬁy

@ Finite mixture of Bayesian networks: P(X = x) = Zfﬂ 7k Px(X = x|C = k)
with Tk =

CONSENSUS BAYESIAN MULTINET

- -
e [ s

// N
BN CLUSTER1

X

/ N

} | BN CLUSTER K "
| | I
| | I
| L O | |
| | I
| | |
| | |
| i I
| |
/
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Gardener Intro Consensus EM-subs P-labels

Final consensus Bayesian multinet representing all the experts

@ Finite mixture of Bayesian networks: P(X = x) = Zfﬂ 7k Px(X = x|C = k)
with g = 42, Py=representative BN

CONSENSUS BAYESIAN MULTINET

/ N
} | BN CLUSTERK "
| | I
| | I
| eee | !
| | I
| | |
| | |
| i I
| |

Mﬁ |

@ Set evidence in X to infer agreed definitions for neuron types:
@ Martinotti: Translaminar (= .93), Displaced (= .88), Ascending (= .64)
@ Common type: Translaminar (= .71)

@ Etc.

C. Bielza, P. Larrahaga Bayesian Networks in Neuroscience



Gardener Intro Consensus EM-subs P-labels

Outline

e “Gardener” classification of neurons

@ EM-based subspace clustering for discovering new types of neurons
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Gardener Intro Consensus EM-subs P-labels

Data

Feature 1 Féature\ 5. Feature 6

Neuron E, - E,
1 I0 -1
2 1 .. 1
320 1 0
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Gardener

Intro Consensus EM-subs P-labels

Data

Feature 1 Feature 5. Feature 6

Neuron E, - E,
1 0 - 1
2 1 - 1

320 1 - 0

128 Axon, 86 Dendrite, 10 Soma 2 26 votes

Neuron| X, 5 Kooy
1 (84 7.1 2.1
2 |20 54 4.0
3 173 20 11
240 |37 2.8 - 52
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Gardener

Intro Consensus EM-subs P-labels

Data

Feature 1 Feature 5. Feature 6

Neuron E, - E,
1 0 - 1
2 1 - 1

320 1 - 0

128 Axon, 86 Dendrite, 10 Soma 2 26 votes

Neuron| X, 5 Kooy
1 (84 7.1 2.1
2 |20 54 4.0
3 173 20 11
240 |37 2.8 - 52

@ Unlabeled instances to be classified not only according to the known labels but
also discovering new unknown clusters — Semi-supervised clustering

C. Bielza, P. Larraiaga

Bayesian Networks in Neuroscience



Gardener

Intro Consensus EM-subs P-labels

Data

Feature 1 Feature 5. Feature 6

Neuron E, - E,
1 0 - 1
2 1 - 1

320 1 - 0

128 Axon, 86 Dendrite, 10 Soma 2 26 votes

Neuron| X, 5 Kooy
1 (84 7.1 2.1
2 |20 54 4.0
3 173 20 11
240 |37 2.8 - 52

@ Unlabeled instances to be classified not only according to the known labels but
also discovering new unknown clusters — Semi-supervised clustering

@ Localized FSS, each cluster described by a different FS — Subspace clustering

C. Bielza, P. Larraiaga
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Gardener Intro Consensus EM-subs P-labels

Semi-supervised subspace probabilistic clustering

@ Probabilistic clustering — Estimate a (finite mixture) model
@ Latent variables set —+ Z = ZX U ZY = {zq,...,2,} U{2;41,...,2n}

@ z, =(04,0p,...,1m, ..., 0) if instance i belongs to component m;
p(zZim=1)=7mm

K
@ p(x; | ©) =D mmp(X; | Bm) Density
m=1
N K
@ logl(®|X,2)= Z Z Zim(log mm + log p(X; | Om)) Complete-data log-lik
i=1 m=1
@ 90,01 = Ez v ot-1[10g L(© | X, Z)] its expectation (E-step)
@ O! = arg max 02(O, @F‘) Its max (M-step)

C. Bielza, P. Larrafiaga Bayesian Networks in Neuroscience



Gardener Intro Consensus EM-subs P-labels

Semi-supervised subspace probabilistic clustering

@ Subspaces: More latent vars V = {vy,...,Vk}, withvm = (04, 12,...,1,...,0F)
if features 2 and j are relevant to component m; p(Vpy; = 1) = ppy

@ 2z, indicates instance 's membership of component m; v,,; indicates feature j's
relevance to component m

® p(x0)
= 7 I (i (x510m) + (1 = )P Amy) )

Density (assume c.i. of the features given the component)
@ logLl(®|X,Z,V)
Ez v)x,ot-1
@ O = argmax o Q(©,0! 1)

@ Semi-supervised: include label info

@ Labeled - known classes {1, . . ., R};
Unlabeled — any {1, ..., R, ..., K}
Ez vix,ot-1 =Ezt yjxt ot-1 TEzu yxu gt—1

C. Bielza, P. Larrafaga Bayesian Networks in Neuroscience



Gardener Intro Consensus EM-subs P-labels

Semi-supervised subspace probabilistic clustering

@ Subspaces: More latent vars V = {v1,...,Vk}, withvm = (01, 12,...,1,...,0F)
if features 2 and j are relevant to component m; p(Vpy = 1) = py

@ 7z, indicates instance 's membership of component m; v,,; indicates feature j's
relevance to component m

0
R comp
® p(xi[©) T
= S 7 TT; (i 6316m) + (1 = )05 Am)) M.
Density (assume c.i. of the features given the component) I
o |Og L(@ ‘ X7Z,V) Ay Ag0 N StopM
KeepA7°®
o ]EZ VlX et—] min BIC
9 s VES|
@ of = argmax gQ(©,0! 1) M?

R+2 comp

I
v

@ Semi-supervised: include label info
Semb-supervised MM S

@ Labeled - known classes {1, . . ., R}; i BIG
Unlabeled — any {1, ..., R, ..., K} =
]EZ,V|X,Gf*1 :]EZL,V|XL,@t_1 +E2U’V‘XU’QP—1 R+3 comp

l
v

@ Guerra, Bielza, Robles, Larrafaga (2012). Semi-supervised subspace model-based clustering,
Data Mining and Knowledge Discovery, submitted
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Gardener Intro Consensus EM-subs P-labels

Martinotti and Basket cells

@ Take Martinotti and Basket (common and large basket: distinction not clear)

@ Which parts of the neurons (axon, dendrites) are more important for
distinguishing them and finding new subtypes

128 Axon, 86 Dendrite, 40-Sema = 26 votes

Neuron| X, X, - X,y
1 [84 7.1 21
2 20 54 - 40 22M
3 173 20 - 11 228
240 137 2.8 - 52

C. Bielza, P. Larrahaga Bayesian Networks in Neuroscience



Gardener Intro Consensus EM-subs P-labels

Martinotti and Basket cells

@ Take Martinotti and Basket (common and large basket: distinction not clear)

@ Which parts of the neurons (axon, dendrites) are more important for
distinguishing them and finding new subtypes

128 Axon, 86 Dendrite, 40-Sema = 26 votes

Neuron| X, X, - X,y
1 [84 7.1 21
2 20 54 - 40 22M
3 173 20 - 11 228
240 137 2.8 - 52

@ Since labeled instances don’t change their labels, we look at the unlabeled
instances

1. Hiding M: C-column with {B,?} 2. Hiding B: C-column with {M,?}

C. Bielza, P. Larrahaga Bayesian Networks in Neuroscience




Gardener Intro Consensus EM-subs P-labels

Martinotti and Basket cells

2. Hiding B
All Axon Dendrites
M M
1 new subtype; 1 error 1 new subtype; 1 error 3 new subtypes; 0 errors
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Gardener Intro Consensus EM-subs P-labels

Martinotti and Basket cells

2. Hiding B
All Axon Dendrites
M M
1 new subtype; 1 error 1 new subtype; 1 error 3 new subtypes; 0 errors
A B C
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Gardener Intro Consensus EM-subs P-labels

Martinotti and Basket cells

2. Hiding B
All Axon Dendrites
M M
1 new subtype; 1 error 1 new subtype; 1 error 3 new subtypes; 0 errors
A B C

@ Axonal features traditionally considered the most important to classify neurons

@ However, dendritic features identified new B groups, while the main
characteristics of them are related to the axon

= Dendritic characteristics in neurons could be more related to axonal than
previously believed

C. Bielza, P. Larrafaga esian Networks in Neuroscience




Gardener Intro Consensus EM-subs P-labels

Outline

e “Gardener” classification of neurons

@ Bayesian classifiers for probabilistic class labels

C. Bielza, P. Larraiiaga yesian Networks in Neuroscience



Gardener

Intro Consensus EM-subs P-labels
Data

Féature\T Feature 5 Feature 6

Neuron E, - E,
1 o - 1
2 1 . 1
320 1 .- 0

C. Bielza, P. Larraiaga
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Gardener Intro Consensus EM-subs P-labels

Data

Féature\T Feature 5 Feature 6

Neuron E, - E,
1 o - 1
2 1 . 1
320 1 .- 0

Count vector Probability
with votes distribution
Neuron| X, X, Xsss6
1 84 71 - 21
2 20 54 ... 40

3 73 20 - 11

240 |37 2.8 .. 52
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Gardener Intro Consensus EM-subs P-labels

Data

Féature\T Feature 5 Feature 6

Neuron E, - E,
1 o - 1
2 1 . 1
320 1 .- 0

Count vector Probability
with votes distribution

Neuron X1 X2 X2886
1 84 71 - 21
2 20 54 .- 40
3 73 20 - 1.1

240 |37 2.8 .. 52

@ A probability distribution over the class labels p; = {pic}ccq, for each
instance / J

C. Bielza, P. Larraiiaga

Bayesian Networks in Neuroscience



Gardener Intro Consensus EM-subs P-labels

Probabilistic label EM: PLEM algorithm

@ Framework for learning Gaussian (mixture) classifiers [Come et al., 2009]
K

f(X) = mefyjo(X: mxjer Exjo)
=il
where the class information is modeled as probability distributions
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Gardener Intro Consensus EM-subs P-labels

Probabilistic label EM: PLEM algorithm

@ Framework for learning Gaussian (mixture) classifiers [Come et al., 2009]
K

f(X) = mefyjo(X: mxjer Exjo)
=il
where the class information is modeled as probability distributions

N K
@ LL=In(p(®|D)) = Z In (Z Picmefx|c(Xis x| cs ZX|C)) Generalized log-lik

i=1 @=il

C. Bielza, P. Larrafaga Bayesian Networks in Neuroscience



Gardener Intro Consensus EM-subs P-labels

Probabilistic label EM: PLEM algorithm

@ Framework for learning Gaussian (mixture) classifiers [Come et al., 2009]

K
X) =D Tofkjo(X: bxjer Exc)
=il
where the class information is modeled as probability distributions
N K
@ LL=In(p(®|D)) = Z In ZpicWCfX\c(xH HX|c> ZxX|c) | Generalized log-lik
i=1 =il

Generalized EM

Piem <D fx o (Xi; ”X\c’ Exq\)c)
DA Pfcf”f;/)fXIC’ (x;; “g(\)C”Egg)c')

@ E-step: t,.(cq) = . We set t,.(co) “ Pic

1 1
@ M-step: ﬂ'CCH) N Zl 1 I ' “SZ) ZN SN @ ZI 1 /c)x” and
i=1"ic
+1 +1 (g+1)
= = v it e 0 — e )k — )T
i=1 IC

@ Lopez-Cruz, Bielza, Larrafiaga (2012). Learning conditional linear Gaussian classifiers from class label
counts using finite mixture models, Journal of Artificial Intelligence Research, submitted
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Gardener Intro Consensus EM-subs P-labels

Learning Bayesian classifiers with PLEM

@ NB classifier:

fx(x) :ZWCHfX/\c(Xj) Y }(
j=1

c=1

C. Bielza, P. Larrahaga Bayesian Networks in Neuroscience



Gardener Intro Consensus EM-subs P-labels

Learning Bayesian classifiers with PLEM

@ NB classifier:

K n .
fx(x) ZWCHfX\C X/ Xi/ ); )‘( \;(
c=1

@ AODE classifier, averaging the n predictions of:

Z“CfX\c X;) H 1,0 (Xk) X,) (X, <%, X,

k=1,k#j

C. Bielza, P. Larrahaga Bayesian Networks in Neuroscience



Gardener Intro Consensus EM-subs P-labels

Learning Bayesian classifiers with PLEM

@ NB classifier:

fx(x) = chfow X;) TYY
c=1
@ AODE classifier, averaging the n predictions of:

Z“CfX\c X;) H 1,0 (Xk) X,) (X, <%, X,

k=1,k#j

@ Multivariate Gaussian classifier:

K
= Zﬂ'cfx\c(x) X
c=1

C. Bielza, P. Larrahaga Bayesian Networks in Neuroscience



Gardener Intro Consensus EM-subs P-labels

PLEM vs EM

@ EM: Set initial posterior probabilities (in E-step) as pj.
@ First, 3 FSS methods: CFS, NBWrapper, TANWrapper

Results on classification error: compare Mode in p; wi

=% -MM PLEM % NB PLEM =¥ AODE PLEM

-©-MMEM O NBEM <O~ AODE EM
Intralaminar-Translaminar
70r
Q
,‘e .........
P

o
=]

s

5 2
s o

o

© 40

o]

= *,
Q .
o

‘D

a

w
=3
e}

20+

CfsSubset NBWrapper TANWrapper
FSS Method

v
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Gardener

PLEM vs EM

Results on mean sq

Intro Consensus EM-subs P-labels

- % -MM PLEM
-©-MMEM
05¢
0451

0.4+

o
w
&

0.3

Mean squared error

% NB PLEM
O 'NBEM

Intralaminar-Translaminar

=¥ AODE PLEM
-O- AODE EM

5
CfsSubset

NBWrapper
FSS Method

TANWrapper
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Dementia PD EQ-5D AD

Outline

0 Neurodegenerative diseases: Parkinson and Alzheimer
@ Dementia: Prevalence, cost and invest in research
@ Supervised classification of dementia development in Parkinson’s disease
@ Multi-dimensional classification for EQ-5D from PDQ-39 in Parkinson’s disease

@ Knowledge discovery in Alzheimer’s disease

C. Bielza, P. Larrafaga ayesian Networks in Neuroscience



Dementia PD EQ-5D AD

Outline

0 Neurodegenerative diseases: Parkinson and Alzheimer
@ Dementia: Prevalence, cost and invest in research
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PD-AD Dementia PD EQ-5D AD

Dementia: Prevalence, cost and investment in research

Diagnosed/undiagnosed  Economic costs How the costof Costof one Investment
dementia cases in the UK  of dementia dementiais met dementia patient in research

Prevalence of dementia cases in the UK

Male -

0.16% 0.09%

o
4
@
@
=
)
=3}
o
=}
@©
©
=
©
=}
©
@

EEGEEN 6064 6569 7074 7579

http://www.alzheimersresearchuk.org/dementia-statistics/
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PD-AD Dementia PD EQ-5D AD

Dementia: Prevalence, cost and investment in research

Diagnosed/undiagnosed  Economic costs How the costof Costof one Investment
dementia cases in the UK of dementia dementia is met dementia patient  in research

Prevalence of dementia cases in the UK

&

==
-

1.58%

http://www.alzheimersresearchuk.org/dementia-statistics/
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PD-AD Dementia PD EQ-5D AD

Dementia: Prevalence, cost and investment in research

ses  Diagnosed/undiagnosed Economic costs How the costof Costof one Investment
dementia cases in the UK of dementia dementiais met dementia patient  in research

Prevalence of dementia cases in the UK
ffi $

2.17%

30-59 60-64 TN 7074 7579 80-84 8580 90-94 9599

http://www.alzheimersresearchuk.org/dementia-statistics/
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PD-AD Dementia PD EQ-5D AD

Dementia: Prevalence, cost and investment in research

Diag i d_ _Ei ic costs How the costof Costof one Investment
dementia cases in the UK of dementia dementiais met dementia patient in research

Prevalence of dementia cases in the UK

peeee Pheé

30-59 ZH 7579 80-84 8589 9094 9500

2
&
@
&

@
£l
B

http://www.alzheimersresearchuk.org/dementia-statistics/
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PD-AD Dementia PD EQ-5D AD

Dementia: Prevalence, cost and investment in research

ases  Diagnosediundiagnosed Economic costs How the costof Cost of one Investment
dementia cases in the UK of dementia dementia is met dementia patient in research

Prevalence of dementia cases in the UK
predt Peetige

Vaie

5.04%

Age 30-59 60-64 6569 70-74 WETEM 60-84 8580 900-94 9509

http://www.alzheimersresearchuk.org/dementia-statistics/
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PD-AD Dementia PD EQ-5D AD

Dementia: Prevalence, cost and investment in research

ses  Diagnosediundiagnosed Economic costs How the costof Costof one Investment
dementia cases in the UK  of dementia dementiais met dementia patient  in research

Prevalence of dementia cases in the UK

PEEERRIEeE  dedpbieiie
it & & o

12.12% 13.50%

Age 30-59 60-64 6569 70-74 7579 (ENEZE 8559 9094 9599

http://www.alzheimersresearchuk.org/dementia-statistics/
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PD-AD Dementia PD EQ-5D AD

Dementia: Prevalence, cost and investment in research

Diagnosed/undiagnosed  Economic costs How the costof Costof one Investment
dementia cases in the UK  of dementia dementiaismet dementia patient  in research

Prevalence of dementia cases in the UK

treteeeeee  feeeeeeite
PReeeneets feeeeetees

ot e

18.45% 22.76%

30-50 60-64 6560 7074 7579 80-84 [EEETN o094 0509

http://www.alzheimersresearchuk.org/dementia-statistics/
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PD-AD Dementia PD EQ-5D AD

Dementia: Prevalence, cost and investment in research

Diagnosediundiagnosed  Economic costs How the costof Cost of one Investment
dementia cases in the UK of dementia dementia is met dementia patient in research

Prevalence of dementia cases in the UK

(IXIIITITITT R
*?: 32‘23...

30-59 6084 B5-89 7074 7579 B80-B4 85-89 95-99

http://www.alzheimersresearchuk.org/dementia-statistics/
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PD-AD Dementia PD EQ-5D AD

Dementia: Prevalence, cost and investment in research

Diagnosediundiagnesed  Economic costs How the costof Cost of one Investment
dementia cases in the UK  of dementia dementia is met dementia patient in research

Prevalence of dementia cases in the UK

PEEPEEEeY  BEeeeeRbEE
PTT1110000 F900000088
R LTI TITTTTEEE

waE 48 (ITYYY

e 30-59 60-64 6569 7074 7579 B80-84 85-89 90-94

http://www.alzheimersresearchuk.org/dementia-statistics/
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PD-AD Dementia PD EQ-5D AD

Dementia: Prevalence, cost and investment in research

Dementia cases  Diagnosed/undiagnosed
in the UK dementia cases in the UK

How the costof Cost of one Investment
dementia is met dementia patient in research

Economic costs of dementia per year

20
o 15
0
0

Dementia

http://www.alzheimersresearchuk.org/dementia-statistics/
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PD-AD Dementia PD EQ-5D AD

Dementia: Prevalence, cost and investment in research

Investment

Dementia cases  Diagnosed/undiagnosed  Economic costs How the cost of
in research

in the UK dementia cases in the UK of dementia dementia is met  de

Annual cost (£) of one dementia patient

30,000
25,000
20,000

15,000

£ thousands

10,000

5,000 I
0 I

Dementia ancer Heart Disease

http://www.alzheimersresearchuk.org/dementia-statistics/
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PD-AD Dementia PD EQ-5D AD

Dementia: Prevalence, cost and investment in research

Dementia cases  Diagnosed/undiagnosed  Economic costs How the costof Cost of one Inv:
in the UK dementia cases in the UK of dementia dementia is met dementia patient

Annual government and charity investment in research

140,000

120,000
100,000
80,000
80,000
40,000
20,000
0 - ]
Cancer

Dementia Heart Disease

http://www.alzheimersresearchuk.org/dementia-statistics/
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PD-AD Dementia PD EQ-5D AD

Web of Knowledge (Thomson Reuters):

“Bayesian network + ” on Sept 1, 2012

Disease No. articles No. citations
Alzheimer 23 426
Parkinson 13 96
Autism 2 8
Schizophrenia 24 116
Multiple sclerosis 6 21

C. Bielza, P. Larrafaga Bayesian Networks in Neuroscience



Dementia PD EQ-5D AD

Outline

0 Neurodegenerative diseases: Parkinson and Alzheimer

@ Supervised classification of dementia development in Parkinson’s disease
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PD-AD Dementia PD EQ-5D AD

Supervised classification of dementia development in Parkinson’s disease

Dementia development in Parkinson’s disease (PD

Rigidity and
trembling of head

@ PD: 1% of the population > 60 years old
@ Dementia affects ~40% of PD patients
@ Objectives:

@ Discriminate between PD patients
cognitively intact, mild cognitive
impairment (MCIl) and dementia

@ Identify the most predictive
neuroanatomic biomarkers
(vs previous MRI studies with
assumed preselected structure)

@ Morales, Larrafiaga, Bielza, et al. (2012). Predicting dementia development in Parkinson’s disease using
Bayesian network classifiers, Psychiatry Research. Neuroimaging, accepted
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PD-AD Dementia PD EQ-5D AD

Supervised classification of dementia development in Parkinson’s disease

45 Patients

mMCT

dementia

Hospital Santa Creu i Sant Pau FreeSurfer: 112 variables

£
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PD-AD Dementia PD EQ-5D AD

Supervised classification of dementia development in Parkinson’s disease

ccuracy results, w

@ Kruskal-Wallis non-parametric test with o = 0.05

Classifier intact-dementia intact-MCI MCI-dementia intact-MCI-dementia
Naive Bayes 93.33+ 9.12 86.66+13.40 96.55+ 7.85 64.44+14.48
Selective NB-filter 93.33+10.66 89.00+14.48 96.66+10.33 70.00+26.66
Selective NB-CFS 97.00+ 6.74 90.09+ 8.40 96.55+ 7.85 68.88+16.48
SVM 96.67+10.82 84.10+15.94 79.31+13.84 62.221+18.59

@ FSS improved performance in general

@ Different relevant variables in each classification problem are automatically
identified

C. Bielza, P. Larrafaga ayesian Networks in Neuroscience



PD-AD Dementia PD EQ-5D AD

Supervised classification of dementia development in Parkinson’s disease

Selected features

White matter

o intact vs dementia: left and right inferior lateral ventricles (+), left white
matter (-), left hippocampus (-), right lateral ventricle (-), left cerebellum white
matter (-), and right entorhinal (-)

9 intact vs MCI: brain stem and left hippocampus

© w1 vs dement ia: left cerebral cortex, left caudate, right inferior lateral ventricle
and left entorhinal

o intact vs MCI vs dementia: left thalamus proper, right inferior lateral
ventricle, left caudal anterior cingulate, left entorhinal and left fusiform

C. Bielza, P. Larrafiaga yesian Networks in Neuroscience



Dementia PD EQ-5D AD

Outline

0 Neurodegenerative diseases: Parkinson and Alzheimer

@ Multi-dimensional classification for EQ-5D from PDQ-39 in Parkinson’s disease
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

PDQ-39 and EQ-5D: quality of life instruments to measure the degree of disability

PDQ-39

PDQ-39 captures patient’s perception of his illness covering 8 dimensions:
@ robility @ PDQ-39 QUESTIONNAIRE
@ activities of daily
Please complete the followin
living Please tick gne box for sach question
© Emotional well-being Bt iy ks o
St lgma 1 :aj:ﬂﬁcuhy‘dunng e Hca‘“
o i Vo woud ke 10407 o o O 0o o
° Social support 2 b dificuty kg ater
e o) by oo
o Cognitions )
> om0 O OO
o Communication 4 Had problems waiking half 0 n O O O
0 Bodily discomfort 5 badpctems wakng 00 I [ ‘ |
¢ mmemmmesy O O O O
Pty
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

EQ-5D is a generic measure of health for clinical and economic appraisal

Mobility
| have no problems in walking about

| have some problems in walking about B
| am confined to bed

Self-care

| have no problems with self-care

| have some problems washing and dressing myself
| am unable to wash and dress myself

(N

Usual activities (eg. work, study, housework, family or leisure activities)
| have no problems with performing my usual activities

| have some problems with performing my usual activities
| am unable to perform my usual activities

Pain/discomfort

| have no pain or discomfort

| have moderate pain or discomfort
| have extreme pain or discomfort

o) O

Anxiety/depression

| am not anxious or depressed

| am moderately anxious or depressed ﬁ
| am extremely anxious or depressed

C. Bielza, P. Larrafiaga yesian Networks in Neuroscience




PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

Mapping PDQ-39 to EQ-5D

PDQ; PDQ, .. .. PDQy | EQy EQ EQ3 EQ EQs
3 1 3 1 3 3 2 1
2 3 2 1 1 2 3 2
5 2 4 1 3 3 1 2
4 4 3 3 2 3 2
4 4 3 3 1 2 3 2
5 5 4 2 2 3 3

h: (PDO1,..., PDng) — (EQ1,..., EQs)

@ Borchani, Bielza, Martinez-Martin, Larranaga (2012). Multidimensional Bayesian network classifiers applied

to predict the European quality of life-5 dimensions (EQ-5D) from the 39-item Parkinson’s disease
questionnaire (PDQ-39), Journal of Biomedical Informatics, accepted
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

Multi ensional Bayesian network classifier (MBC)

@ The set of variables V is partitioned into:

@ Ve ={C;y,...,Cyq} of class variables and
@ Vr ={Xj,..., Xm} of feature variables

f class:

\feature:@ Q@' @; (X)) v/X»\ ’\/i\%\

Most probable explanation (MPE)

(cfs...cq) = qn_@xCd p(Ci =c1,...,Cq = Cy| X1 = X1, .oy Xm = Xm)

<

@ Bielza, Li, Larranaga (2011). Multi-dimensional classification with Bayesian networks, International Journal
of Approximate Reasoning, 52(6), 705-727
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

Four MBC learning algorithms

o Markov blanket - Multi-dimensional Bayesian classifier
(MB—MBC) [Borchani et al., 2011]
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

our MBC learning algorithms

o Markov blanket - Multi-dimensional Bayesian classifier
(MB-MBC) [Borchani et al., 2011]
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

ur MBC learning algorithms

o Markov blanket - Multi-dimensional Bayesian classifier
(MB-MBC) [Borchani et al., 2011]
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

Four MBC learning algorithms

o Markov blanket - Multi-dimensional Bayesian classifier
(MB—MBC) [Borchani et al., 2011]

Class-Bridge - Multi-dimensional Bayesian classifier
(CB—-MBC) [Borchani et al., 2010]
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

Four MBC learning algorithms

o Markov blanket - Multi-dimensional Bayesian classifier
(MB-MBC) [Borchani et al., 2011]

Class—-Bridge - Multi-dimensional Bayesian classifier
(CB—-MBC) [Borchani et al., 2010]
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

Four MBC learning algorithms

o Markov blanket - Multi-dimensional Bayesian classifier
(MB-MBC) [Borchani et al., 2011]

Class—-Bridge - Multi-dimensional Bayesian classifier
(CB—-MBC) [Borchani et al., 2010]

bdgbyd
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

Four MBC learning algorithms

o Markov blanket - Multi-dimensional Bayesian classifier
(MB-MBC) [Borchani et al., 2011]

Class—-Bridge - Multi-dimensional Bayesian classifier
(CB—-MBC) [Borchani et al., 2010]

bdgbyd
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

Four MBC learning algorithms

o Markov blanket - Multi-dimensional Bayesian classifier
(MB-MBC) [Borchani et al., 2011]

Class—-Bridge - Multi-dimensional Bayesian classifier
(CB—-MBC) [Borchani et al., 2010]
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

Four MBC learning algorithms

o Markov blanket - Multi-dimensional Bayesian classifier
(MB—MBC) [Borchani et al., 2011]

Class-Bridge - Multi-dimensional Bayesian classifier
(CB—-MBC) [Borchani et al., 2010]

e Independent Markov blanket classifiers with HITON algorithm
(Indep-MB-HITON) [Aliferis et al., 2010]
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

Four MBC learning algorithms

" Markov blanket - Multi-dimensional Bayesian classifier
(MB—MBC) [Borchani et al., 2011]

Class-Bridge - Multi-dimensional Bayesian classifier
(CB—-MBC) [Borchani et al., 2010]

G, Independent Markov blanket classifiers with HITON algorithm
(Indep-MB-HITON) [Aliferis et al., 2010]

Independent Markov blanket classifiers with PC algorithm
(Indep-MB-PC) [Le and Doctor, 2011]
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

Four MBC learning algorithms

o Markov blanket - Multi-dimensional Bayesian classifier
(MB—MBC) [Borchani et al., 2011]

Class-Bridge - Multi-dimensional Bayesian classifier
(CB—-MBC) [Borchani et al., 2010]

o Independent Markov blanket classifiers with HITON algorithm
(Indep-MB-HITON) [Aliferis et al., 2010]

Independent Markov blanket classifiers with PC algorithm
(Indep-MB-PC) [Le and Doctor, 2011]

- Borchani, Bielza, Larrafiaga (2011). Probabilistic Problem Solving in Biomedicine. Workshop in the 13th
Conference on Artificial Intelligence in Medicine, 29-40

- Borchani, Bielza, Larranaga (2010). Proc. of the 5th Workshop on Probabilistic Graphical Models, 25-32
- Aliferis et al. (2010). Journal of Machine Learning Research, 11, 235-284
- Le and Doctor (2011). Medical Care, 49(5), 451-460
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

Parkinson 488 patients. Estimated accuracies over 5-fold cross-validation

Method

Mean accuracy

Global accuracy

MB-MBC

CB-MBC
Indep-MB-HITON
Indep-MB-PC

0.7119 += 0.0338
0.6807 + 0.0285
0.7009 + 0.0427
0.6587 + 0.0636

0.2030 4+ 0.0718
0.1865 + 0.0429
0.2051 + 0.0835
0.1867 4+ 0.0937

MNL
OLS
CLAD

0.6926 + 0.0430
0.4201 + 0.0252
0.4254 + 0.0488

0.1802 + 0.0713
0.0123 4 0.0046
0.0143 + 0.0171

@ Mean accuracy over the d class variables: Accm = P Z

d

i=1 1=1

N
. . ) 1 A
@ Giobal accuracy over the d-dimensional class variable: Accg = N E 4(€, ¢
=1

1N
N 25(@,‘7 Cii)

)
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PD-AD Dementia PD EQ-5D AD

Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson

MB-MBC graphical structure

Painfdiscomfart Selfcare — Mobility Anxiety/depression

\

IJsual activities
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Dementia PD EQ-5D AD

Outline

0 Neurodegenerative diseases: Parkinson and Alzheimer

@ Knowledge discovery in Alzheimer’s disease

C. Bielza, P. Larrafaga ayesian Networks in Neuroscience



PD-AD Dementia PD EQ-5D AD

Knowledge discovery in Alzheimer’s disease

Alzheimer’s disease

@ Primarily affects the elderly and manifests through memory disorders, cognitive
decline and loss of autonomy

2000 2007 2030, “
— W
—

Alois Alzheimer (1864-1915)
@ In 2011, 33.9 million cases worldwide. Predicted to affect 1 in 85 people by 2050
@ Every 70 seconds, someone is diagnosed with Alzheimer’s
@ Seventh-leading cause of death
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PD-AD Dementia PD EQ-5D AD

Knowledge discovery in Alzheimer’s disease

Alzheimer’s disease and DNA microarrays

@ Idea in [small et al.,, 2005]: microarray data selectively from the brain site most

@ vulnerable to AD to maximize expression differences between AD and
controls: entorhinal cortex (EC)

@ 6 AD brains + 6 control brains = 12 tissue samples and 7,610 variables

Small et al. (2005). Model-guided microarray implicates the retromer complex in Alzheimer’s disease, Annals of
Neurology, 58(6), 909-919

C. Bielza, P. Larrafaga Bayesian Networks in Neuroscience



PD-AD Dementia PD EQ-5D AD

Knowledge discovery in Alzheimer’s disease

= Re-analyze the data differently to gain robustness (small sample size!)

=- Find out explicit new (or validate old) biological relationships and genes not
previously reported

Reliable-kDB classifier with robust gene interactions

@ Learn a Bayesian network classifier. We use kDB structures with at most k
parents (excluding the class)

6&’!@@ ()

St
@ Induce many kDB by a resampling method (bootstrap) with an inner FSS

@ Output a network with those arcs above a reliability threshold t:
arcs occurring > t times are retained

@ Approach is a consensus feature selection on the final gene interaction network

@ Armafanzas, Larraiaga, Bielza (2012). Ensemble transcript interaction networks: A case study on
Alzheimer’s disease, Computer Methods and Programs in Biomedicine, 108, 442-450
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Reliable-kDB classifier —An example
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PD-AD Dementia PD EQ-5D AD

Reliable-kDB classifier —An example
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PD-AD Dementia PD EQ-5D AD

Reliable-kDB classifier —An example

800
798
790 <

700
600
500
400

100

G 1

C. Bielza, P. Larrafaga Bayesian Networks in Neuroscience
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Reliable-kDB classifier —An example
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PD-AD Dementia PD EQ-5D AD

Reliable-kDB classifier —An example
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PD-AD Dementia PD EQ-5D AD

Reliable-kDB classifier —An example
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Reliable-kDB classifier —An example
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Reliable-kDB classifier —An example
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PD-AD Dementia PD EQ-5D AD
Reliable-kDB classifier —An example
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Bayesbrain

Outline

e The Bayesian brain
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Bayesbrain

The Bayesian brain

—— | Likelihood ° A-Posteriori
Measgrement | py1x,) pX, 1Y)
Prior
pX, 1Y)

- Kording (2007). Decision theory: what “should” the nervous system do? Science, 318, 606-610
- Colombo, Series (2012). Bayes in the brain. On Bayesian modelling in neuroscience, The British Journal for
the Philosophy of Sciences, in press
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The Bayesian brain: books

DBCapHON

i S OF THE BRAIN
Bayesian :
Inference,

Lifedy .
David € il
Whitman Richard
Cambridge University Press (1996) The Mit Press (2002) The Mit Press (2007)
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Bayesbrain

Alan Turing and Bayesian statistics

Biometrika (1979), 66, 2, pp, 393-6
Printed in Great Britain

Studies in the History of Probability and Statistics, XXXVII
A. M. Turing’s statistical work in World War II

By I. J. GOOD

@ Weight of evidence, or log (Bayes) factor, in favour of a hypothesis, H, provided

by evidence, E: log ﬁgg:g;

@ Banburismus algorithm:

@ Weight of evidence (H possible configurations of the Enigma machine, and
E matches under the hypothesis)

@ Update the weight of evidence with more evidence

@ A decision rule (for deciding between two hypotheses, H; and H»)
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Alan Turing and Neuroscience
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- Gold, Shadlen (2002). Banburismus and the brain: decoding the relationship between sensory stimuli,
decisions, and reward, Neuron, 36, 299-308

- Larrafiaga, Bielza, DeFelipe (2012). Alan Turing and neuroscience, Investigacion y Ciencia, in press
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End

Bayesian networks in neuroscience

Challenging machine learning problems in modeling the brain

@ JOINT PROBABILITY DISTRIBUTION: Bayesian networks (dendritic morphology)

@ SEMI-SUPERVISED WITH CLASS DISCOVERY: EM based subspace clustering
(new types of neurons)

@ SUPERVISED CLASSIFICATION WITH PROBABILISTIC LABELS: Bayesian classifiers
(neuron class with probabilistic labels)

@ CONSENSUS OF PROBABILISTIC MODELS: Bayesian networks (a neuroscientist =
a model)

@ BAYESIAN CLASSIFIERS: Selective naive Bayes (dementia development in
Parkinson’s disease)

@ MULTI-DIMENSIONAL CLASSIFICATION: multi-dimensional Bayesian classifiers
(from PDQ-39 to EQ-5D in Parkinson’s disease)

@ BOOTSTRAP FOR RELIABLE MODELS: k-DB Bayesian classifiers (knowledge
discovery in Alzheimer’s disease)
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