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Abstract-This paper present an environmental contingency 
forecasting tool based on Neural Networks (NN). Forecasting 
tool analyzes every hour and daily Sulphur Dioxide (S02) 
concentrations and Meteorological data time series. Pollutant 
concentrations and meteorological variables are self-organized 
applying a Self-organizing Map (SOM) NN in different classes. 
Classes are used in training phase of a General Regression Neural 
Network (GRNN) classifier to provide an air quality forecast. 
In this case a time series set obtained from Environmental 
Monitoring Network (EMN) of the city of Salamanca, Guana­
juato, Mexico is used. Results verify the potential of this method 
versus other statistical classification methods and also variables 
correlation is solved. 

I. INTRODUCT ION 

In polluted countries like Mexico a continuos monitoring of 

the air quality to take forecast measures on possible negative 

effects in the population health is necessary. Air pollution 

is one of the most important environmental problems and is 

the result of human activities. Pollution has diverse causes 

and sources, such as industrial, commercial, agricultural and 

domestic activities. Combustion, used to generate heat, elec­

tricity or movement, is the process in which many pollutants 

are produced. Other activities like foundry and chemical 

production can induce to a deterioration of the air quality if it 

isn't controlled. Now a days, many first world countries make 

big efforts to minimize the effects of this activity (Kyoto) [1]. 

Although environmental management in Mexico began in 

1971 with the Law to Prevent and Control Environmental 

Pollution, in the last decade Mexico began its efforts to 

generate and compile environmental information. A special 

case with great pollution is the city of Salamanca. A great 

quantity of industries are located in Salamanca, in many cases 

are chemical industries and also of electricity generation. A 

pollution alert has been recorded in last years in Salamanca, 

when in several times the Ecological Mexican Standard NOM-

085, has been surpassed [2]. Nine years ago, an Environmental 

Monitoring Network (EMN) was installed in which time series 

about pollutant concentrations like Sulphur Dioxide (S02) and 

Particulate Matter less than lO micrometers in diameter PMlO 
among other meteorological variables are obtained. This article 

focuses the analysis on S02 concentrations. 
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A. Case of Study 

Salamanca is a city in the state of Guanajuato with a 

popUlation of approximately 234,000 inhabitants and located 
around 350 Ian to the northwest of Mexico city [3]. In 

recent years, the city of Salamanca has been catalogued as 

one of the most polluted cities in Mexico [4]. Currently, an 

Environmental Monitoring Network (EMN) is installed in 

Salamanca. EMN is composes for three monitoring stations. 

Time series of criteria pollutants among other meteorological 

variables are obtained in each monitoring station. Figure 1 

shows the EMN distribution. 
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Fig. I. Monitoring distribution 

In Salamanca, the Program to Improve the Air Quality 

(ProAire) is composed of measures that affect transportation, 

industry, the service sector, natural resources, health, and 

education. The ProA ire program integrate the urgent and 

immediate reduction of S02 emissions when measurements 

of these pollutants register levels above those established by 

Health Authorities. Local Air Quality Index (AQI), provides 

daily information in a simple and uniform way on the air 

pollution concentration. The AQI is a value to inform at 

the popUlation on the actions to reduce the air pollution or 

environmental forecasting. The AQI is a simple number into 

a scale from 0 to 500 [5]. Intervals in AQI scale related to 

the health concerns on the popUlation are defined in Table I, 

and explained as follow: 
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Good: AQI units between 0 and 50 are considered 
satisfactory and the air pollution possesses little or few risk. 

Moderate: AQI units between 51 and 100 are acceptable; 

However, for some pollutants it can have a health concern for 

a small nwnber of population. 

Unhealthy for Sensitive Groups: When AQI units are between 

101 and 150, members of sensitive groups can suffer effects 

in their health. 

Unhealthy: All the population can suffer dangerous effects in 

the health when AQI values are between 151 and 300. 

Dangerous: For a superior AQI values of 300 a warning 

alarm is emitted for health conditions, the whole population 

will be more probably affected. 

TABLE I 
HEALTH LEVELS AND AIR QUALITY INDEX (AQI) 

Health Concern Levels 
Air Quality AQI values 

Good 0 to 50 
Moderate 51 to 100 

Unhealthy for sensitive groups 101 to 150 
Unhealthy 151 to 300 
Dangerous 30 I to 500 

In the air quality evaluation for S02 concentrations, a 
daily mean estimation (24 hrs.) of 340 JLgjm3 (0.13 ppm) 

is considered and equivalent to 100 AQI units. 

B. Pollutant concentrations and meteorological data 

Clean air is a gassy mixture composed by Nitrogen 

(78%), Oxygen (21%), Argon, Carbon Dioxide, Ozone 

and other gases in small quantities (1 %). Therefore, the 

atmospheric pollution can be defined as the emission of 

great quantities of substances that perturb the physical and 

chemical air properties. Pollutants are classified in primary 

and secondary. Primary pollutants are in the atmosphere 

when they are originally emitted by the source. Secondary 

pollutants are those that experience chemical changes as 

a result of the meteorological effects or combination with 

other pollutants (as photochemical oxidizers) and some 

radicals like Ozone. S02 is one air pollutants with the 

highest concentration in Salamanca, where three monitoring 

stations have been installed in order to know the level of air 

pollution; the measure records of each monitoring station are 

handled separately. Actually, an environmental contingency 

alarm is activated when daily average pollutant concentration, 

in a single monitoring station, exceeds a established threshold. 

Meteorology is well known to be an important factor 

contributing to air quality [6], [7]. It is extremely impor­

tant to consider the effect of meteorological conditions on 

atmospheric pollution, since they clearly influence dispersion 

capability in the atmosphere. It is well known that severe 

pollution episodes in the urban environment are not usually 

attributed to sudden increases in the emission of pollutants, but 
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to certain meteorological conditions which diminish the ability 

of the atmosphere to disperse pollutants [8], [9]. However, 

the concentrations of air pollutants usually vary randomly 

and are correlated with several factors such as types of fuels 

conswned, geographical and topographical peculiarities, town 

planning and meteorological factors, etc. [10]. 

II. MODEL AND THEORET ICAL FUNDAMENT 

The proposed method considers an automatic multivariate 

data analysis of time series obtained from EMN on monitoring 

points A, B and C geographically distributed in dominant 

winds direction and bigger population concentration (see Fig­

ure 1). The problem is to determine the correlation among 

all the variables involved in the decision making exercise 

on health risk for the popUlation. Each monitoring point is 

considered like a sample point build with different sensors 

and also with its own perception field. Therefore, each point 

showed can be seen as a sensors fusion of where the time series 

are obtained. In problem solution a self-organized method 

that uses a Self-Organized Map (SOM) Neuronal Network 

has been proposed in order to build an automatic noise 

suppression method. Neural Networks (NN) are computational 

structures and they can learn from examples [5]. In some 

multi-dimensional engineering problems (like air pollution) is 

necessary to recognize certain patterns without the necessity 

of knowing of data nature or their statistical distribution. Some 

patterns recognition techniques apply NN to solve problems 

without the necessity of a prior data distribution knowledge 

or to make statistical suppositions. Other techniques in pattern 

recognition have the necessity to make statistical assumptions 

about data nature like Bayes theorem [11], [12]. Consequently, 

NN is an ideal tool to solve the problem here exposed due 

to their operation which is analyzed like a black box that 

minimizes the energy function [13], [14]. 

Black-Box 

SOM GRNN 

Air Quality 
Index (AQI) 

Fig. 2. Proposed Model to estimate the AQI 

A. Variables definition 

Variables definition is considered like normalized concen­

tration values about pollutants and normalized meteorological 

values (Wind Speed, Temperature and Relative Humidity). In 

Table II, variables are defined in order to build a feature vector 

Xj and to define a pattern set X* = {Xl,X2, .. ,Xj, .. ,xn}. 
Let Xso2 be a Sulphur Dioxide set concentration and their 

corresponding pattern is defined as Xj = {Xl, X2, X3, X4}. 



TABLE II 

VARIABLES DEFINITION: S02 CONCENTRATION, T; TEMPERATURE, RH; 
RELATIVE HUMIDITY, WS; WIND SPEED. 

XS02 
Variables Xi xi Xl S02 

X2 T 

X3 RH 
X4 WS 

B. Proposed Model 

1) Data Base and Pre-processing: In this work, a real 

and historical time series database from the EMN has been 

used. Data series of three months from December to February 

in three years from 2002 to 2005 have been analyzed. During 

Winter the pollutant and the meteorological conditions have 

major health concern. Time series consider a total of 6,480 

multidimensional patterns about pollutant and meteorological 

variables. In Figure 3, a typical day data concentrations for 

S02 and its correlation with meteorological variables (Tem­

perature and Relative Humidity) is shown. In this figure it is 

possible to appreciate the complicated nature of this problem. 
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Fig. 3. Graph with S02 correlation and Meteorological variables, and Self­
Organized Map. 

2) Clustering Method: In this research a prior knowl-

edge about patterns is unavailable. Therefore, in the classifier 

design, the pattern classes obtained applying the clustering 

method are used. Unsupervised learning is popularly adopted 

in data clustering where a prior class information is un­

available. SOM Neural Network is good for mapping similar 

patterns in a high dimension feature space to a much lower 

dimension output map while preserving the topological order. 

Due to data nature is unknown a Self-Organized method 

has been proposed. In order to group the patterns in six 

classes according to health concern levels and noisy patterns 

(as shown in Table III), a SOM Neural Network is apply as 

it is shown in Figure 4. The idea is to build different training 
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pattern sets in order to design a classifier based on a NN . A 

SOM structure with euclidian distance function and hexagonal 

topology and 3:2: 1: 1 structure has been proposed [15]. In order 

to have six clusters and therefore six prototypes or weights 

(Zi), one per class or AQI (as shown in Figure 3), which have 

a representation that involved variables in NN training phase 

and which was mentioned in Section II-Bl. 

Pollutant � 3 Z;4 � 5 
Unknown Pattern Class Concentration 1.2 r=::='" ;::=:c.=:-'t:::===n 

SOM 

0.2 10 .• I I 
Zl 

0.6 0.8 t 
W(�I) 

Wind Speed 

Fig. 4. Self-Organized Neural Network 

In Table III, the classification for each health concern 

level of S02 in function of their AQI intervals and their 

corresponding class Zi (or category in a Self-Organized Map) 

are shown. Therefore, the center for each class is build as 

Zi={f.Lli,f.L2i,f.L3i,f.L4;}, where Zj is the class center i of each 
type of AQI pattern, f.Lli is the pollutant concentration level 

prototype (S02 concentration if the pattern belong to Xs02 
set), f.L2i is the Temperature prototype, f.L3i is the Relative 

Humidity prototype and f.L4i is the Wind Speed prototype. 

TABLE III 

HEALTH CONCERN LEVELS RESPECT TO AIR QUALITY INDEX AND THEIR 

CATEGORY MAP REPRESENTATION FOR S02 AND PMlO 

Index Classification levels for S02 
Air Quality AQI Cluster Pro-

totype 
Good o to 50 Zl 
Moderate 51 to 100 Z2 
Unhealthy for sensi- 101 to 150 Z3 
tive groups 
Unhealthy 151 to 300 Z4 
Dangerous 301 to 500 Z5 
* Noise Z6 

3) Classifier Design: In the classifier design, the pattern 

classes of the clusters with center Zi, obtained by means 

of clustering method are used for this purpose. A General 

Regresion Neural Network (GRNN) with clustering structure 

which is shown in Figure 5, is trained to obtain a continuos 

estimation for the AQI in two models. A first model is 

trained for S02 concentrations set (Xs02). The GRNN was 

introduced by Donald F. Specht [16]. The main advantage of 

GRNN over a Multi-Layer Perceptron (MLP) is that, unlike 

the MLP which need a larger number of iterations to be 

performed in training phase to converge to a desired solution, 



the GRNN needs only a single learning pass to achieve optimal 

performance in classification. 

Fig. 5. GRNN cluster structure 

In general, the GRNN operation is described. Let x be 

a feature vector and y be a scalar and f(x, y) the joint 

probability density function (pdt) of x and y. The expected 

value of y given x is defined as 

E[y I xl = J;yf(x,y)dy 
Lao f(x, y)dy (1) 

the pdf is unknown, therefore it must be estimated from 

sample values of Xi and Yi from a kernel function estimator 

proposed by Parzen, see [16]. The estimator is defined as a 

reduced gaussian kernel exp( -�� ). Thus, is possible to obtain 

a discrete conditional mean of y given x or an estimation of 

fj as, 

n D2 
Li=l Yi exp( -2(l: ) 

E[y I xl = fj(x) = n D2 i (2) 
Li=l exp( -2iif) 

where Pi is the kernel width, n is the number of all the patterns 

in the Zi clusters and Di is the euclidian distance among the 

input pattern and the i-th training pattern or Di
2 = (x­

Xi)T (x - Xi). The GRNN operation is simple, the input layer 

simply passes the patterns x to all units in the hidden layers 

composed by kernels functions exp( -��) and computes the 

squared distances among the new pattern x and Xi training 

samples; the hidden-to-output weights are just the targets Yi, 
thus the output fj(x), is simply a weighted average of the target 

values Yi of the training cases Xi close to the given input case 

x. The only parameters P that need to be learned are adjusted 

using the algorithm proposed for us in [17]. 

In some problems like this research, the number of obser­

vations obtained can be sufficiently large that it is no longer 

practical to assign a separate node (or neuron) to each ith 

sample. Clustering method is used to group samples so that 

the group can be represented by only one node or prototype Zi 
that measures distance of the input vector x from the cluster 

center Zi. However the cluster prototypes are determined, let 
us assign a new variable, m, to indicate the number of samples 

that are represented by the ith cluster center Zi. The estimation 
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equation can then be rewritten as 

(3) 

and 

(4) 

where m < n is the number of clusters, and Ai(k) and 

Bi (k) are the values of the coefficients for cluster i after k 
observations. Ai(k) is the sum of the Yi values and Bi(k) 
is the number of samples assigned to cluster i. The method 

of clustering can be as simple as establishing a single radius 

of influence, r. Starting with the first sample point (Xi, Yi), 
establish a cluster center, Xi at x. All future samples for which 

the distance Ix - xi i , is less than the distance to any other 

cluster center and is also ::; r would update equations (4) 

for this cluster. A sample for which the distance to the nearest 

cluster is > r would become the center for a new cluster. Note 

that the numerator and denominator coefficients are completely 

determined in one pass through the data and no iteration is 

required to improve the coefficients [16]. 

4) Classifier Optimization: A problem in the estimations 

based in a GRNN is the adjustment of Perception Parameter 

(PP) of the neurons. Perception parameter is controlled by the 

P parameter to obtain a minimum classification error. It is 

solved using a multidimensional gradient algorithm and has 

been proposed by authors in [17]. 

III. RESULTS 

A. Data Clustering for S02 concentrations 

In the experiments, a real time series data base for 
S02 concentrations have been analyzed every minute. The 

meteorological variables used were Wind Speed, Temperature 

and Relative Humidity, creating 6,480 four dimensional pattern 

vectors Xi, for the S02 set pollutant (Xso2), as is shown 

in Table II. Both pollutant concentrations like meteorological 

variables are provided by the EMN from Salamanca. In the 

clustering method, six clusters have been performed from time 

series of years 2002, 2003, 2004. The clusters centers Zi (or 

weights in the SOM) are analyzed according its features to 

determine the label or class of each prototype like in Table 

III. Each prototype Zi, is used to build a GRNN in a cluster 

structure. Table III, also shows the classification for each 

AQI level for S02 concentrations in a Self-Organized Neural 

Network, where the center for each class is Zi and as well 

is defined like Zi={/Lli,/L2i,/L3i,/L4d, where, Zi is the class 

center i, /Lli is the S02 concentration level according set, /L2i 
is the Temperature, /L3i is the Relative Humidity and /L4i is 

Wind Speed. 

B. AQI estimation for S02 and Meteorological variables 

The complicated interpretation of the correlation among 

S02 pollutant concentrations and meteorological variables like 

Temperature (T) and Relative Humidity (RR) is shown in 

Figure 3. In contrast, in Figure 7, is easy to appreciate and 



to classify the health concern levels of S02 concentrations. 

Figure 7, shows that the complexity is minimized using the 

classes or categories related to each prototype Zi. In this 

case a GRNN estructure has been applied. GRNN is trained 

using the cluster prototypes Zi. Time series from 2005 in AQI 

estimation (direct mode of GRNN) have been used. When a 

pattern is presented in the GRNN input the AQI estimation it 

is immediate and is necessary only one pass. When a noisy 

pattern x is detected, the GRNN output is inhibited. Noise 

suppression is an innovation in this research because in the 

current method it is not considered. 

Class Good --+ 1 

Class Moderate --+ 2 

X GRNN 

New 

Pattern 

Cluster Class 
Knowledge 

Class Noise --+ To inhibit 

Fig. 6. GRNN operation in direct phase 

Noisy pattern is an inconsistent element in the time series 

and it is caused by blasts of wind. Noisy elements can cause 

bad estimates about AQI, so with this method a better estimate 

is obtained. The GRNN operation in direct phase is shown in 

Figure 6. 

SO 2 concentrations and health levels 
500 �----------�----------�----------, Dangerous 450 
400 
350 Unhealthy 300 ------------------------------------
250 
200 

Unhealthy for sensitive groups 1�·------------------------------------· 
______________________ f.!�e�a!e _________ _ 

1500 Time 

Fig. 7. AQI estimation for S02 concentrations. 

The complexity is solved with this method using the classes 

corresponding to Zi. 

IV. CONCLUSIONS 

In this work a vector set for S02 pollutant concentrations 

and meteorological variables has been built. In order to solve 

the AQI estimation considering S02 pollutant concentrations 

and meteorological variables a combination between Self­

Organized Neuronal Network (SOM) and a General Re­

gression Neural Network (GRNN) has been proposed. Both 
Neural Networks were trained and proven with multidimen­

sional patterns of pollutants and meteorological variables. A 
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correlation problem solution is given and results show the 

easy interpretation using the discrete classes for the AQI 

estimation. Concluding that the representation of values shown 

in Figure 7, allow to classify the patterns in function of 

their prototypes in a simple way than the multidimensional 

representation, therefore it is a good tool for making decisions 

in environmental forecasting. 
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