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Abstract—A novel formulation for the surface impedance cha-
racterization is introduced for the canonical problem of surface
fields on a perfect electric conductor (PEC) circular cylinder
with a dielectric coating due to a electric current source using
the Uniform Theory of Diffraction (UTD) with an Impedance
Boundary Condition (IBC). The approach is based on a TE/TM
assumption of the surface fields from the original problem. Where
this surface impedance fails, an optimization is performed to
minimize the error in the SD Green’s function between the
original problem and the equivalent one with the IBC. This
asymptotic method, accurate for large separations between source
and observer points, in combination with spectral domain (SD)
Green’s functions for multidielectric coatings leads to a new
hybrid SD-UTD with IBC to calculate mutual coupling among
microstrip patches on a multilayer dielectric-coated PEC circular
cylinder. Results are compared with the eigenfunction solution
in SD, where a very good agreement is met.

I. INTRODUCTION

Recently, a new Uniform Theory of Diffraction (UTD)

based asymptotic solution with impedance boundary condi-

tions (IBC) has been introduced for surface field determination

on a circular cylinder [1]. UTD with IBC Green’s functions

combined with Method of Moments (MoM) are able to obtain

the mutual coupling between patches. Nevertheless, although

some progress has been done to calculate efficiently proper

Green’s functions [2], very few attention has been paid about

how to figure out surface impedance for each specific case,

because it must change with the inclination angle of the

geodesic rays along the structure.

In this paper, the surface impedance is derived in the SD

by performing a TE/TM decomposition of the surface fields.

UTD based asymptotic Green’s functions with IBC are slightly

modified to include the surface impedance dependence with

the geometrical parameters of the rays upon the cylinder.

Since UTD with IBC solution would be valid only for one

dielectric layer and for a large separation between the source

and the observation point, it is proposed its hybridization with

a SD approach [3], thus extending the method to multilayer

structures and increasing the accuracy of the surface fields

calculated. Here, nonparaxial region has only been considered.

II. METHOD OF ANALYSIS

The geometry of the problem is a perfectly conducting patch

located over the surface of a multilayer dielectric-coated PEC

circular cylinder. It is assumed that the cylinder is infinite in

the axial direction. The Electric Field Integral Equation (EFIE)

solved by MoM can be accelerated combining an asymptotic

UTD based solution of the surface fields, as it was proposed in

[4] for aperture conformal array antennas. The hybrid method

consists into a extraction procedure of the Green’s function in

the MoM matrix element, as
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where Ge,J

asym
is the asymptotic UTD based Green’s function.

To simplify the computation of this asymptotic part, the

boundary conditions on a dielectric coated PEC surface can

be approximated by an IBC [1]. In this work, two different

surface impedances have been used depending on the electric

and magnetic field ratios. This method consists into assume

a TE/TM decomposition of the fields propagating along the

cylinder. The IBC suggests that this approximation is ac-

ceptable. TE/TM surface impedance, from the eigenfunction

solution, is expressed in terms of Bessel functions of first and

second kind as
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where subscript 0 denotes the upper dielectric slab and 1
the lower dielectric layer. This TE/TM surface impedance is

shown to be valid for low α angles and only for for zz′ and

φφ′ field and source orientation. It is possible to make an opti-

mization of the TE/TM surface impedance for the cases where

they fail by shifting the root of the TE surface impedance

and tracking its slope to minimize the average relative error

between the amplitudes of the SD Green’s function for the

original problem and for the equivalent problem.

Furthermore, to increase the computation efficiency in the

surface impedance formulas when calculating Fock-type inte-

grals, they can be approximated with a ratio of two nth-order

polynomials as a function of the spectral variable kt = m/d.

III. RESULTS AND CONCLUSIONS

To validate the TE/TM surface impedance hypothesis some

results have been performed. Fig. 1 shows a comparison of

the SD Green’s functions in amplitude and phase between

the eigenfunction solution and the IBC with a second-order

polynomial interpolation and without it. Surface impedance

optimization is needed for angles larger than 25o for zz′

and φφ′ cases and for all α angles for zφ′ component. A

very good agreement is met in SD, even for φφ′ where non-

optimized TE/TM surface impedance approach is not valid

because couplings between modes are very strong.

The mutual impedance between two sinusoidal electric

current modes for two small dipoles, by taking the second

term of equation (1), is shown in Fig. 2, whose values are

comparable with results in reference [5]. For these geometry,

surface impedance optimization is not necessary, and a fourth

order polynomial interpolation has been used.
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Fig. 1. SD Green’s function for φφ′ component, with f = 4GHz, a = 3λ0,
εr1 = 2.2, εr0 = 1, t = 0.762mm and α = 40o.
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Fig. 2. Mutual impedance for zz′ component, with a = 3λ0, εr1 = 3.25,
εr0 = 1, t = 0.06λ0, W = 0.02λ0, L = 0.05λ0 and α = 55o.
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