
A platform for the development of patient applications in 
the domain of personalized health 

Dario Salvi , Joe Gorman, Maria Teresa Arredondo, Cecilia Vera-Muñoz, 
Manuel Ottauiano, Sergio Salui 

A B S T R A C T 

Personalized health (p-health) systems can contribute significantly to the sustainability of 
healthcare systems, though their feasibility is yet to be proven. One of the problems related 
to their development is the lack of well-established development tools for this domain. As 
the p-health paradigm is focused on patient self-management, big challenges arise around 
the design and implementation of patient systems. This paperpresents a reference platform 
created forthe development of these applications, and shows the advantages of its adoption 
in a complex project dealing with cardio-vascular diseases. 

1. Introduction 

Western societies are currently facing severe socio-
economical challenges that are threatening current health 
care provision models. Specifically, the ageing population 
and the global financial crisis increase the demand for more 
efficient and sustainable healthcare, i.e. better healthcare 
for lower costs. Current systems have been created and 
optimized to handle acute illnesses, but most healthcare 
expenditure is due to chronic diseases, which are likely to 
increase in the near future. It is recognized that the incidence 
of these kinds of diseases can be reduced with proper early 
prevention [1], by means, for instance, of health promotion 
and empowering citizens in the management of their own 
health. This requires a shift in the current health provision 
from an illness-centric to a patient-centric model. 

Personalized health arose as the paradigm that embraces 
this concept and its implementation in practice is now 
strongly supported [2,3]. The main principles of p-health can 
be summarized as follows: 

• Treatments must be personalized, based on the physiology 
of the patient, including clinical history, environmental fac­
tors, and genetics. 

• Continuous management of patients' health through their 
whole life, which includes continuous monitoring of the 
patient in all possible environments (at home, at work, 
doing sport, etc.), allowing early detection of risky situa­
tions. 

• Adherence to treatment is seen as a key aspect that must be 
improved [4], for instance, by motivating patients towards 
a more active management of their health and adopting a 
healthy lifestyle. 



• Lifestyle is as important as genetics when dealing with 
diseases [5], thus prevention is a key factor that can be 
implemented through education. 

The implementation of these strategies requires an 
important effort on the political, societal, economic and tech­
nological levels. It is recognized that ICT has a major role to 
play in this scenario [6-8], and this is leading to an increasing 
interest by industry. In support of this, the European Com­
mission has funded around 40 research projects since 2007 
within a specific objective of Seventh Framework Programme 
named Personal Health Systems (ICT Challenge 5: Objective 
ICT-2011.5.1) [9] and has included e-health in the "Lead Mar­
ket Initiative For Europe" [10] as a major player in the future 
industrial development of Europe. 

The main challenges introduced by the p-health concept 
are on the patient side, as the patient is put in the centre 
of the care process. The development of patient applications 
involves many actors (e.g. interaction designers, software 
designers, programmers, algorithm specialists, instructional 
designers), each with different methodologies, languages and 
points of view. Facilitating the work of such complex teams 
is a big issue. While the development of clinical applica­
tions for health professionals can exploit experience from 
more established contexts like e-health and clinical engi­
neering, the development of patient applications still lacks 
well-established methodologies and tools. 

In p-health applications user experience is of vital 
importance in engaging patients to use the system, and con­
sequently improve their compliance to prescribed treatments. 
For this reason user centred design (UCD) methodologies have 
been successfully adopted in different initiatives in this area 
[11-14]. At the same time, Agile methodologies [15] are becom­
ing very popular in the software industry as they emphasize 
the involvement of stakeholders in a context where require­
ments change continuously. As p-health is a complex and 
multi-disciplinary domain, Agile methodologies have shown 
to be suitable for this domain [16]. More recently, the combina­
tion of both methodologies (UCD and Agile) has shown great 
promise [17], nonetheless the integration between user inter­
action specialists and programmers is recognized as still being 
an issue [18,19]. 

An emerging area in software development that addresses 
these issues is model driven engineering [20] (MDE). MDE pro­
motes the use of visual, technology-independent design tools 
which are able to automatically generate part of the appli­
cation. This method can be especially useful when coupled 
with UCD, as it offers tools for representing user interaction 
paths. More specifically, interaction paths can be represented 
by machine-readable workflows, which can then be directly 
converted into code, automating the step between UI design 
and implementation [21,22]. 

In this spectrum of multiple methodologies, SW archi­
tectures play a fundamental role as they are the centre of 
the development process. Based on the project architecture, 
teams are selected, the work is organized among developers, 
and documentation and code repositories are established [23]. 
Thus, a proper software architecture must be coupled with the 
development methodology (UCD [24], Agile or model driven), 

and must support separation of roles within the development 
team. 

This paper presents a development platform for creating 
patient applications intended to facilitate team-working in 
complex and multidisciplinary p-health projects. The design 
of the architecture took into account UCD and MDE method­
ologies, and was based on the idea of separating modules to 
suit the expertise and level of abstraction p-health engineers 
are used to work with. 

The structure of the paper is as follows: in Section 2 we 
explain how we designed and implemented the development 
platform; Section 3 provides a proof of our solution in a case 
study related to cardio-vascular diseases (CVD); and, finally, 
Section 4 provides the conclusions and some possible future 
refinements of this work. 

2. Methods 

The work here presented was conducted using an Agile 
methodology. The first step was to conduct a survey to 
gather general requirements and to identify the needs of the 
developers working in the p-health domain. Based on these 
requirements we designed a first version of the platform to 
specifically address the separation of concerns according to 
how teams are usually organized. 

The first prototype was then adopted in HeartCycle [25], a 
project partially funded by the European Commission with the 
aim of providing solutions for fighting cardiovascular diseases. 
During the development of the project's use cases, all the arte­
facts, from requirements to platform implementation, were 
continuously refined and improved. Programming was con­
ducted in a continuous integration [26] environment, meaning 
that the development of the code was accompanied by the 
creation of automatic tests both at unit and integration level. 
The complete project was periodically compiled on a server 
that was also in charge of running all the tests, publishing test 
reports and deploying the latest version of the application on 
a website. 

At the end of the implementation of the HeartCycle appli­
cations, an evaluation of its performances as an instrument for 
developing p-health applications was conducted. The project's 
developers were interviewed about their experience with the 
platform, and subjective feedbacks were collected and ana­
lyzed. 

The following paragraphs detail how requirements were 
obtained and how the platform was designed and imple­
mented. 

2.1. Requirements 

A first version of requirements was created by analyzing 
relevant literature. In order to confirm and complete our 
assumptions we complemented this analysis with a survey we 
submitted to senior engineers working in the field of p-health. 
The objectives of the survey were: 

• to generate a profile of the common expertises in the field; 
• to identify the most common problems in the development 

of p-health patient applications; 



• to determine preferences related to the adoption of archi­
tectural designs; 

• to collect the needs of developers concerning development 
tools; 

• to identify the common sources of data used in the domain. 

We interviewed 11 software engineers who had been work­
ing in the domain in the last 5 years, including contacts 
from both research institutions and industry. In total 2 pro­
grammers, 1 designer and 8 people who covered both profiles 
were included; their roles spanned from project managers and 
developers to specialists in user interaction and educators. 

The main findings of the survey were: 

1. The use of a well defined architecture is considered impor­
tant (7 of 11), and a relaxed model is preferred over a strict 
one (7 of 11). The design of the architecture is considered 
important, especially for structuring team working and for 
documenting and communicating the design among devel­
opers. 

2. Both designers and programmers use visual tools (11 of 11) 
and consider their use especially useful for making devel­
opment more intuitive, and for shortening the distance 
between design and development. They also aim at hav­
ing improved tools (10 of 11) for their work, especially the 
programmers (8 of 10). 

3. The use of tools is especially appreciated for designing the 
graphical user interface (GUI) and the data model (8 of 10). 
Regarding data models, both relational databases (5 of 10) 
and OWL ontologies (2 of 10) are used as formalisms. 

4. Contextual information is considered very useful for 
improving the design of applications (4 of 9) or at least of 
some help (5 of 9). 

5. Both programmers and designers identified unclear (8 of 10) 
or continuously changing requirements (8of 9) as the major 
threats to their work. In particular, requirements regarding 
user interaction seem to be the most volatile (6 of 11) as 
their changes are frequent and small. They also consid­
ered that user interaction must be the central aspect in the 
development of this kind of applications (7 of 11). 

The analysis of these results led to identification of the 
following high-level requirements for creating the platform: 

1. Clear and simple architectural design. 
2. Clear separation among: (a) management of data; (b) devel­

opment of user interfaces; (c) design of user interaction 
flows; (d) business logic. 

3. Provision of visual tools for programming. 
4. Ability to exploit contextual data. 

2.2. Design and implementation of the development 
platform 

The design of the architecture of our platform was based on 
the separation of concerns suggested by requirement number 
2. We identified four main modules whose functionalities are 
detailed in the following paragraphs. The synthetic represen­
tation of the architecture is shown in Fig. 1. 

1 
GUI Engine 

ft 

W o r k f l o w Engine 

H 
When: 
Then: 

• |H" I I I W M I 

1 

V_ 
Rule Engine ¡ne 

O 
S t r u c t u r e d D a t a V ^ O T , 

Data 
Access 3 Data 

Source 

Source D 
Data Col lect ion Engine 

Fig. 1 - The architecture of the platform. 

The architecture specifically supports UCD methodologies 
by placing interaction flows at the centre of development. Con­
cretely, flows are implemented by means of workflows which 
communicate with two other modules via simplified inter­
faces. 

The final implementation of the platform comprises: 

1. A set of interfaces and abstract classes that reflect the 
architectural design. 

2. A set of development tools, including MDE visual tools. 
3. A set of unit tests and examples. 
4. A tutorial and documentation of the API. 

While high-level interfaces were abstracted and simplified, 
the inner implementation of the modules was obtained by 
reusing state-of-the-art libraries whenever possible. Most of 
the libraries already included visual tools while some others 
were developed ad-hoc. As programming language we chose 
Java because of the wide availability of libraries, tools, IDEs 
and because of an explicit preference given in the results of 
the initial survey (6 developers out of 10). 

2.2.1. Data collection engine 
Many authors recognize that future p-health applications will 
integrate many sources of information, like bio-sensors, per­
sonal profiling, and clinical servers, as well as contextual 
information [27,28]. The data collection engine (DCE) is the 
module responsible for acquiring and storing data from these 
multiple sources, and for making the data available to external 



modules. The design of this module has been inspired by typ­
ical architectures for context aware systems [29]. It provides a 
complete set of interfaces for gathering, processing and ana­
lyzing data, using both event based and synchronous calls as 
interaction mechanisms. The module comprises the following 
constructs: 

a) An abstraction named structured data that represents any 
piece of information. It implements an entity-relationship 
model that can be easily mapped to tables in a relational 
database, to classes in an ontology, or to objects in object 
oriented languages. 

b) Data sources: abstractions that generate information as 
instances of structured data. They can be of two types: 
(i) Synchronous data sources, which generate data on 

demand. An example can be a temperature sensor that 
is activated by the system to gather a measurement. 

(ii) Asynchronous data sources, which launch events 
whenever new data is available. An example can be a 
weight sensor that is activated when a person steps on 
it. 

c) Data aggregators, data sources that create new semantics 
from other connected data sources. An example can be a 
module that retrieves data from a localization system and a 
weight scale and identifies the exact user whom the weight 
corresponds to. 

d) The Data Access, a module that implements persistence 
and provides common access to stored data. It offers a 
method to retrieve and filter data by means of a query 
language and methods to insert, update and delete single 
pieces of information. 

These modules are meant to be used by developers who 
have more technical tasks, such as defining the data model 
of the application, or developing specific data sources to inte­
grate sensors, servers or processing algorithms. The provided 
abstractions help developers in separating concerns, storing 
and retrieving data and being alerted when events are gen­
erated. Queries are the main mechanism used for external 
communication with the data collection engine, and for inter­
nal communication amongst the modules. Queries are used 
to explore the stored data, to create filters on events and to 
identify the data sources to be invoked for performing a mea­
surement. 

The DCE module has been implemented on top of both 
a relational database (using the HSQL library1), and OWL 
ontologies (using Jena2). Both relational databases and OWL 
ontologies have their own graphical editors for modeling data 
structures. 

In order to simplify the development of data sources, a tool 
for converting structured data to Java objects and vice-versa 
was also created. This allows developers of the data sources 
to work with standard Java objects, while others can use SQL 
or ontologies as their formalism for querying or defining the 
data model. 

rule "patient decompensation" 

when: 

Patient weight is increasing 

Bioimpedance is decreasing 

then: 

Ask for liquid intake 

Send alarm to physician 

Fig. 2 - An example of a rule defined with a 
domain-specific language. 

2.2.2. Rule engine 
The Rule engine provides a means to program the application's 
logic through the definition of human-readable rules, in the 
form of "if-then" clauses. It is intended to be used by high-level 
designers like interaction designers or instructional designers, 
who are willing to implement logic without having to program 
low level code. It can be used, for instance, to generate a higher 
level of knowledge about patients and their environment, for 
generating messages, or for inferring simple logic that can be 
used by the interaction flows. 

The module is interfaced with the data collection engine 
in the following way: the conditions in the rules, namely the 
facts, are expressed by means of queries. The rule engine reg­
isters each query as an event filter to the DCE. Thus, each time 
a piece of data that is filtered by one of these queries changes, 
an event is raised and the collection of facts in the rule engine 
is updated. This mechanism minimizes the number of times 
the rules are evaluated by only launching them when facts are 
actually detected. 

As output, the rule engine can insert or update data behav­
ing as an asynchronous data source of the DCE; this way 
external modules can access these results by registering to 
events with other appropriate queries. 

The rule engine was developed on top of the JBoss Drools3 

library. Drools was chosen for the availability of visual editors 
and also for the possibility of creating domain-specific lan­
guages that make rules very easy to be read by people with 
limited technical skills. 

Fig. 2 shows an example of a rule using a domain-specific 
language (DSL). With DSL it is possible to express even quite 
complex logic in a form easily understood by humans. 

2.2.3. GUI engine 
The GUI engine is intended to help interaction and graphical 
designers develop the building blocks of the user interface, 
the GUI components. A GUI component, similar to the con­
cept of widget, represents a piece of graphical information that 
groups basic parts of a GUI, like buttons or labels, here called 
GUI Elements (examples are shown in Fig. 3). 

The interface to the external modules includes methods to 
load a GUI component, to set its GUI elements' content (text 
or image) and to register to user interaction events, e.g. mouse 
clicks. 

1 http://hsqldb.org/ 
2 http://jena.sourceforge.net/ 3 http://www.jboss.org/drools/drools-expert 

http://hsqldb.org/
http://jena.sourceforge.net/
http://www.jboss.org/drools/drools-expert


S e s i ó n 

Exercise 1 

Exercise 2 

Exercise 3 

Day of Week 

Monday 

Wednesday 

Not scheduled 

Hour 

14:40 

1M ao 

-

Alarm 

-

n*g-w nc&Mjrn 

Fig. 3 - Examples of GUI components. 

The GUI engine was developed with the Java Swing graph­
ical library. The library was chosen because of its long 
established tradition and for being cross platform; however, 
when the graphic was highly customized (with many images 
and colors), performance started to be an issue. Interaction 
designers and developers can use the visual tools provided 
with the NetBeans and Eclipse IDEs, which make develop­
ment simple and completely graphical. Moreover, a tool for 
automatically mapping standard JPanels to our GUI compo­
nent interface was created in order to develop the interface 
entirely with visual tools without any explicit programming. 

2.2.4. Workflow engine 
This module is for interaction designers. It provides central 
coordination of the system; its role is to execute interaction 
workflows. A workflow is composed of three elements: nodes, 
which are calls to specific methods or to sub-workflows; arcs, 
which define the direction of the flow, and decision points, 
which examine a workflow variable to decide which arc to 
choose next (an example workflow is shown in Fig. 4). In this 
architecture a node can call the GUI engine to show messages 
and interact with the user and the data collection engine to 
gather old and new data. 

Interaction flows have fixed parts that deal with the exe­
cution of a task, like performing a measurement, guiding an 
exercise, filling a questionnaire or showing some content, 
while decision points make it possible to have context-aware 
decision branches, like switching among different options 
on the basis of the result of a query (e.g. deciding between 
an indoor or outdoor activity depending on the weather), or 
responding to contextual events (e.g. a bed sensor detects the 
user is waking up and the application launches a reminder for 
a morning drug intake). 

The workflow engine was developed using the freely avail­
able Jboss JBPM framework 4. This implementation benefits 
from the good quality of the libraries and the availability of a 
user friendly graphical workflow editor. The basic implemen­
tation comprises only two nodes: a wrapper of the GUI engine 
for setting the content of the GUI elements, and a wrapper of 

http://www.jboss.org/jbpm 

Fig. 4 - Graphical example of a workflow. 

the DCE for handling events, querying for data and starting 
measurements. 

When the use cases to be implemented are complex, it may 
be necessary to extend this set of nodes in order to embed 
part of the logic in Java code instead of delegating all of it 
to the workflows. This makes workflows more readable and 
easy to create without loosing the possibility of quickly editing 
them when a requirement changes, although it requires the 
intervention of a programmer to implement the new nodes. 

3. Results 

Our development platform was used to implement part of 
HeartCycle, a project which aims at providing a closed-loop 
disease management solution able to serve cardio vascular 
disease (CVD) patients. 

HeartCycle's use cases cover the typical problems of the 
p-health domain: performing measurements, visualizing 
contents, communicating with clinical servers, event based 
logic and exploitation of contextual data. More specifically, 
the project defines six different use cases in order to meet 
the goals and needs of heart failure and coronary artery 
disease patients. These use cases address intake of diuretics, 
self-management of blood pressure medicines, exercise or 
physical activity, improvement of the patient's educational 
and motivational level, continuous assessment of the disease 
and the management of worsening heart failure. Our platform 
was used in the implementation of two of them: worsening 
heart failure and guided exercise. These are presented in 

http://www.jboss.org/jbpm


Sections 3.1 and 3.2. The final evaluation of the suitability of 
the platform in relation to these implementations is shown 
in Section 3.3. 

3.1. Worsening heart failure 

The worsening heart failure use case is about monitoring heart 
failure patients, and required measurement of vital signs, 
dynamic provision of medication and symptom question­
naires, as well as the provision of personalized educational 
and motivational material depending on the patient's current 
health and motivational status. 

The scenario can be summarized as follows: at a certain 
time, the user interaction device reminds the patient to mea­
sure his weight. Following instructions from the system, the 
patient steps on an electronic weight scale and the system 
stores the patient's weight. If this value is above or below a 
threshold defined by the doctor, the system triggers a screen 
warning the patient that his weight is out of range. Then the 
system triggers some questionnaires that aim at finding out 
the reasons for the weight change. Depending on the answers, 
the system displays some feedback to promote healthy behav­
ior. 

For the realization of this use case two data sources had to 
be developed, one in charge of communicating with the weight 
scale sensor and the other taking care of synchronizing the 
local database with a remote clinical server. The developed 
GUI components were quite limited as the user interaction 
was simplified to just a few messages, therefore the workflows 
were also linear and simple. In addition, a small set of rules 
to launch motivational messages was developed, based on the 
weight values and on the answers given to the questionnaires. 

3.2. Guided exercise 

The guided exercise use case defines a more complex scenario 
which addresses post-infarction patients in their rehabilita­
tion phase. It comprises an embedded sensor that measures 
ECG and other relevant physiological parameters, a PDA that is 
used to guide the user during outdoor exercises and a PC appli­
cation, programmed with our platform, which is used to allow 
the patient to configure his exercise sessions and to receive 
useful feedback and motivational and educational messages. 

An example scenario can be described as follows. It is a 
sunny day and the PC suggests that the patient go out for a run­
ning session. The PDA starts the exercise routine by prompting 
the user to measure his blood pressure; the user enters the 
blood pressure values in the PDA and then answers a ques­
tionnaire about any possible symptoms. The system analyses 
these inputs and decides that it is safe for the user to train 
today. The user then puts on the sensor and the PDA starts 
instructing him about performance of the exercise - whether 
he needs to go faster or slower, depending on the target heart 
rate set by the doctor. Once the exercise is finished the patient 
connects the PDA to the PC which receives the session mea­
surement and shows graphs of user's performance. Based on 
these data, a message is shown for motivating the user to do 
better, and educational content is presented to explain the 
benefits of regular physical exercise. 

EKcieae Plan Weekly Piogreii. Global Pragren 

Fig. 5 - Screenshots of the guided exercise application. 

The implementation of this use case was more challeng­
ing than the previous one. A richer user interaction had to be 
designed, which implied a wider set of GUI components (Fig. 5 
shows two screen-shots) and a set of ad-hoc nodes to be used 
in quite complex workflows. There was a need for more data 
sources: one for synchronizing the PDA, created with web ser­
vices; one for scheduling changes to the exercise plan; one 
for synchronizing with the clinical server; one for logging user 
activity and one for getting contextual information such as 
weather or public holiday dates from free on-line services. The 
set of rules was also richer, including actions depending on the 
frequency with which the user accesses the application, the 
educational information to send depending on exercise per­
formance, and advising changes to the exercise plan whenever 
a suitable new one becomes available. 

3.3. Evaluation results 

In a standard ad-hoc implementation the described use cases 
would require the implementation of user interaction in a set 
of classes that would interact with the sensors, the database, 
and the GUI forms. By separating user interaction flows and 
high level rules from lower level implementation details, our 
framework allowed people with limited technical skills to eas­
ily map user requirements to workflows and rules without 
dealing directly with programming code. 

The implementation of these use cases involved a sys­
tem designer who collected the requirements, a developer 
who implemented the data sources for the data collection 
engine, a graphic designer who created the look and feel of the 
application and implemented the GUI components, a moti­
vation and education specialist who programmed the rules 
and a business logic developer who created custom nodes for 
the workflow engine and implemented the workflows. The 



development was conducted in three main iterations each 
one comprising requirements collection, implementation and 
partial evaluations. However, during all the iterations, require­
ments on specific details (mostly related to the flow of the 
application) were continuously coming from all stakeholders, 
and were dealt with as they arose. 

Once the implementation was finalized a focus group was 
run with the development team for evaluating its experience 
with the platform, and identifying strength and weaknesses. 
The assessment protocol was semi-structured. It included 
an open discussion session and a set of prepared questions 
related to how the platform fits into the development process, 
and how the productivity of the group was influenced. 

The main results can be summarized as follows: 

1. The architecture was correctly mapped to the use cases. 
2. The architecture eased the separation of work among the 

different profiles of developers. 
3. The use of visual and programming tools was particularly 

appreciated. 
4. The centrality of workflows in the architecture was consid­

ered appropriate for the application. 
5. The platform eased the work with respect to unstable user 

requirements. 
6. The maturity of the platform was poor at the beginning, 

but it improved over time. 

Unfortunately, no formal loggingof development effort was 
conducted, therefore objective statistics cannot be provided. 
As a rough estimation it can be said that the first collection of 
requirements lasted two months, the first working prototype 
of the platform was built in one year with one man-year of 
effort, while the development of the HeartCycle applications, 
together with the refinement of the platform, took around two 
and a half years. 

The user experience of the guided exercise application was 
also tested by 12 real patients who were asked to perform con­
crete tasks and invited to express their opinions about the 
usefulness and the usability of the application. The overall 
assessment was that the system is very easy to use and that 
patients feel they will be helped and motivated by it during 
the rehabilitation process. The application proved to be stable 
and is currently adopted within a clinical trial which involves 
60 patients split across three different European countries. 

4. Conclusions and future work 

This paper shows how the implementation of complex and 
dynamic interaction flows is easily translated into a real 
implementation in terms of workflows and rules. Event-based 
interaction, event filtering and structured workflows have 
been shown to be beneficial in providing an appropriate envi­
ronment for developing rich user experience. 

The development of the HeartCycle use cases demon­
strated how the proposed platform could be successfully 
integrated with the methodology adopted by a diverse, 
multi-disciplinary team of engineers. The main advantage 
introduced by the adoption of the platform was that, thanks 
to its clear separation of concerns and the use of visual tools, 

it allowed people with low technical skills to implement part 
of the solution, releasing the programmers from part of the 
burden of the development and enabling other stakeholders 
to directly influence the implementation in accordance with 
their wishes. The main drawbacks are related to the choice of 
the imported libraries which were under utilized with respect 
to their potential, and made the system very demanding in 
terms of computing resources and not portable, for instance, 
to mobile environments like J2ME or Android. 

The scope of this work is limited to a particular project and 
medical area. Future work will aim at expanding the collec­
tion of requirements and validating the platform with more 
use cases from other medical fields (e.g. diabetes, Parkinson 
disease), or other related technological domains (e.g. Ambient 
Assisted Living) to prove the suitability of the platform in an 
extended range of scenarios. 

REFERENCES 

[1] F. Sassi, J. Hurst, The prevention of lifestyle-related chronic 
diseases: an economic framework, Technical report, OECD, 
2008. 

[2] The case for personalized medicine, Technical report, 
Personalized health coalition, 2009. 

[3] Personalized health care pioneers, partnerships, progress, 
Technical report, United States Department of Health and 
Human Services, 2008. 

[4] E. Sabaté, Adherence to Long-Term Therapies: Evidence for 
Action, World Health Organization, 2003. 

[5] W.C. Willett, Balancing life-style and genomics research for 
disease prevention, Science 296 (2002) 695-698. 

[6] K. Dean, EU: connected health essays from health 
innovators, Technical report, Cisco systems, 2008. 

[7] J. Bowis, et al. eQuality in eHealth - stakeholders' reflections 
on addressing e-health challenges at the European level 
improved healthcare, Technical report, Health First Europe, 
2011. 

[8] V. Kamat, Connected health: can it save the US healthcare 
system ?, Technical report, Cambridge Consultants, 
Cambridge, England, 2010. 

[9] European Commission, let challenge 5: objective 
ict-2011.5.1: personal health systems (phs), 
http://cordis.europa.eu/fp7/ict/programme/challenge5-
objective5-l_en.html, 2012, Accessed on January 31, 
2012. 

[10] European Commission, Industrial innovation, ehealth, 
http://ec.europa.eu/enterprise/policies/innovation/policy/ 
lead-market-initiative/ehealth/index_en.htm, 2012, 
Accessed on January 31, 2012. 

[11] A. de Vito Dabbs, B.A. Myers, K.R.M. Curry, J. Dunbar-Jacob, 
R.P. Hawkins, A. Begey, M.A. Dew, User-centered design and 
interactive health technologies for patients, CIN: 
Computers, Informatics, Nursing 27 (2009). 

[12] M. Rodriguez, G. Casper, P. Flatley-Brennan, Patient-centered 
design: the potential of user-centered design in personal 
health records, Journal of American Health Information 
Management Association (2007). 

[13] E. Villalba, D. Salvi, M. Ottaviano, I. Peinado, M.T. Arredondo, 
A. Akay, Wearable and mobile system to manage remotely 
heart failure, Transactions on Information Technology in 
Biomedicine 13 (2009) 990-996. 

[14] A. Sutcliffe, S. Thew, O. de Bruijn, I. Buchan, P. Jarvis, J. 
McNaught, R. Procter, User engagement by user-centred 
design in e-health, Philosophical Transactions of the Royal 

http://cordis.europa.eu/fp7/ict/programme/challenge5
http://ec.europa.eu/enterprise/policies/innovation/policy/


Society A: Mathematical, Physical and Engineering Sciences 
368 (2010) 4209^224. 

[15] C. Larman, Agile and Iterative Development: A Manager's 
Guide, Addison-Wesley Professional, 2003. 

[16] A. Qumer, B. Henderson-Sellers, A framework to support the 
evaluation, adoption and improvement of agile methods in 
practice, Journal of Systems and Software 81 (2008) 
1899-1919. 

[17] Z. Hussain, H. Milchrahm, S. Shahzad, W. Slany, M. Tscheligi, 
P. Wolkerstorfer, Integration of extreme programming and 
user-centered design: lessons learned, Agile Processes in 
Software Engineering and Extreme Programming 31 (2009) 
174-179. 

[18] J.O. Borchers, A pattern approach to interaction design, in: 
Proceedings of the 3rd Conference on Designing Interactive 
Systems: Processes, Practices, Methods, and Techniques, DIS 
'00, ACM, New York, NY, USA, 2000, pp. 369-378. 

[19] S. Blomkvist, User-centred design and agile development of 
IT systems, Licentiate thesis, Department of Information 
Technology, Uppsala University, 2006. 

[20] S. Kent, Model driven engineering, in: IFM '02 Proceedings of 
the Third International Conference on Integrated Formal 
Methods, Springer-Verlag, London, UK, 2002, pp. 286-298. 

[21] S. Jeschke, H. Vieritz, O. Pfeiffer, Developing accessible 
applications with user-centered architecture, in: Computer 
and Information Science, 2008. ICIS 08. Seventh IEEE/ACIS 
International Conference on, 2008, pp. 684-689. 

[22] D. Salvi, I. Peinado, S. Salvi, M.T. Arredondo, An 
implementation framework for personalized health 

applications, in: MEDICON 2010, XII Mediterranean 
Conference on Medical and Biological Engineering and 
Computing, Conference Program, Chalkidiki, Greece, 2010. 

[23] Z. Qin, J. Xing, X. Zheng, Software Architecture, 1st ed., 
Springer, 2008. 

[24] M. Büscher, M. Christensen, K.M. Hansen, P. Mogensen, D. 
Shapiro, Bottom-up, top-down? Connecting software 
architecture design with use, in: A. Vol?, M. Hartswood, K. 
Ho, R. Procter, M. Rouncefield, R. Slack, M. Büscher (Eds.), 
Configuring User-Designer Relations: Interdisciplinary 
Perspectives, Springer Verlag, 2007. 

[25] H. Reiter, N. Maglaveras, HEARTCYCLE Consortium, The 
overall concept of heartcycle for phealth delivery to chf and 
cad patients through new multiparametric methods, in: 
Proceedings of pHealth 2010. 

[26] P. Duvall, S. Matyas, A. Glover, Continuous Integration: 
Improving Software Quality and Reducing Risk, first edition, 
Addison-Wesley Professional, 2007. 

[27] N. Briconsouf, C. Newman, Context awareness in health 
care: a review, International Journal of Medical Informatics 
76 (2007) 2-12. 

[28] D. Zhang, Z. Yu, C.-Y Chin, Context-aware infrastructure for 
personalized healthcare, Studies in Health Technology and 
Informatics 117 (2005). 

[29] D. Salvi, M. Ottaviano, I. Peinado, M. T. Arredondo, An 
architecture for data collection and processing in 
context-aware applications, in: Adjunct Proceedings of the 
3rd European Conference on Ambient Intelligence, AmI09, 
Salzburg, Austria. 


