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Assortative and modular networks are shaped by adaptive synchronization processes 
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Modular organization and degree-degree correlations are ubiquitous in the connectivity structure of biological, 
technological, and social interacting systems. So far most studies have concentrated on unveiling both features 
in real world networks, but a model that succeeds in generating them simultaneously is needed. We consider 
a network of interacting phase oscillators, and an adaptation mechanism for the coupling that promotes the 
connection strengths between those elements that are dynamically correlated. We show that, under these 
circumstances, the dynamical organization of the oscillators shapes the topology of the graph in such a way 
that modularity and assortativity features emerge spontaneously and simultaneously. In turn, we prove that such 
an emergent structure is associated with an asymptotic arrangement of the collective dynamical state of the 
network into cluster synchronization. 
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Natural networking systems [1] are vastly characterized by 
a modular organization of their connectivity structure [2], and 
by nontrivial correlation features in the way units with a given 
number of connections (degree) tend to link with members 
of the same degree (assortativity), or with units with different 
degrees (disassortativity). Modularity is clearly the result of 
the need for social, biological, and technological systems to 
optimize their parallel, yet integrated, functioning [3,4] by 
means of an organization into mesoscale structures, such as 
communities, i.e., groups of highly interconnected nodes that 
are sparsely connected to the rest of the graph [5]. Degree-
degree correlation reflects the observed tendency of natural 
networks to organize the main topology on top of a backbone 
of nodes that may be starlike (disassortativity) or of highly 
connected hubs (assortativity). 

Whereas the emphasis typically has been on devising suit­
able tools and algorithms to unveil, identify, and quantify both 
modular and correlation features in real world networks [1,2], 
a model that has proven to be capable of generating these fea­
tures simultaneously is needed. Modularity and assortativity 
are usually imposed separately, in a second step, on top of 
already generated networks by means of ad hoc algorithms 
and methods [6,7]. 

In this Rapid Communication, we show that all these 
features may spontaneously emerge in an adaptive network 
of interacting oscillators as the result of a delicate interplay 
between synchronization processes and coevolution of the 
connectivity structure. When the connectivity dynamics is 
such that links coupling the nodes with synchronous (non-
synchronous) dynamics are promoted (weakened), we prove 
that an initially unstructured clique configuration evolves in 
time toward an emerging structured network displaying both 
modularity and assortativity. 

Let us then start by considering an initial ensemble of N 
all-to-all coupled Kuramoto oscillators [8,9]. Each unit of the 
ensemble n = 1,..., N is characterized by its phase 9„, whose 

dynamics is ruled by 

Q.n + 
N ^-^ 

m=1 

wnm sin(0m — 6„), (1) 

where £2n is the natural frequency of the wth oscillator (taken at 
random from a uniform distribution in the interval [0.8,1.2]), 
wnm e [0,1] is the weight of the connection between the units 
n and m, and a is the coupling strength, which here acts as a 
first global parameter. 

In turn, we suppose that the connection weights coevolve 
with the dynamics of the units. Namely, they are taken to 
be time dependent variables [w„m = w„m(t)] that obey the 
following equation: 

Wn (Pnm — Pc) U)nm(1 — W„m), (2) 

where p„m is the instantaneous phase correlation between 
units n and m, resulting from 

Pnm (t) 1\e i8n(t) _i_ e i8m(t)i 
2 (3) 

and pc (the correlation threshold) is the second parameter of 
the model. 

It is worth noticing that, from Eq. (3), pnm is exactly one 
for all pairs of units with equal phases, while it vanishes for 
pairs of oscillators with opposite phases, 9„ =6m±n. The 
parameter pc has the following meaning: A link weight is 
reinforced at all times at which pnm > pc, whereas it weakens 
when p„m(t) < pc. Thus, connections improving (reducing) 
the degree of synchronization between a pair of oscillators 
are reinforced (weakened). The driving force for the weight 
dynamics [the right-hand side of Eq. (2)] has two attractors, 
leading each weight to asymptotically converge to either one 
of the values in {0,1}. 

As a consequence, for any given choice of a and pc, a 
generic random initial condition for all 9„(0) and for all wnm(0) 
results in a progressive pruning of the units’ connections, up to 

A" 

1539-3755/2012/86(1)/015101(4) 015101-1 ©2012 American Physical Society 

http://dx.doi.org/10.1103/PhysRevE.86.015101


RAPID COMMUNICATIONS 

VANESA AVALOS-GAYTAN et al. PHYSICAL REVIEW E 86 , 015101(R) (2012) 

when, ultimately, Eqs. (1) and (2) stick into an asymptotic state 
(defined as wnm = 0, Wn,m), which corresponds to a specific 
dynamical organization of the ensemble, and to the sponta­
neous emergence of a given, unweighted, network topology. 

Attainment of the asymptotic state is numerically verified 
by checking either w„m(t) > 1 -eorw n m ( t ) < e from a given 
time on (in all our trials e = 10-3), ensuring that the original 
all-to-all weighted connectivity matrix is sufficiently close to 
a network adjacency matrix. We further require wnm < e to 
check the stability of the convergence process. Upon reaching 
a link configuration fulfilling the above conditions, we proceed 
to round each wnm to its nearest integer value. Numerical 
evidence shows that the model always fulfills the stopping 
criterion, though the convergence time crucially depends on 
the specific values of pc and a (being, in only a few cases, one 
or two orders of magnitude longer than a characteristic time 
scale of the order of 1000 cycles of the oscillator with lower 
natural frequency). 

It is also crucial to stress that here the phase correlation 
[Eq. (3)] is an instantaneous measure, not depending on 
any long-term synchronization processes. This constitutes a 
qualitative difference between the present study and the one 
conducted in Ref. [10], where it was shown that memory 
dependent adaptation mechanisms may induce clustering 
synchronization and the simultaneous appearance of a scale-
free distribution for the weights of a network. Here, instead, 
the adaptive nature of the interactions directly shapes the 
topology of a network, and below we will only be discussing 
the connectivity properties of the emergent network structure. 

As for the asymptotic dynamics, the degree of global 
synchronization in the Kuramoto model is traditionally mea­

sured in [0,1] by means of the order parameter RG := 
(u\y^„ 1 el6n( ) \ ) t (with RG ss 1 indicating a fully synchro-
nized graph, and RG ^ 0 corresponding to an asynchronous 
behavior). However, relevant situations may occur in which the 
network is globally unsynchronized and yet groups of nodes in 
it display a high level of local synchrony. To measure the degree 
of local synchronization around node n, here we consider 

Ri := 
N ie (t) 

1 *-*-^fJ1Tl 

(4) 

and, consequently, the average degree of local synchronization 
over the whole network is 

RL 
:= 

1 
N IX (5) 

n=1 

In Fig. 1 we report RG [Fig. 1(a)] and RL [Fig. 1(b)] vs 
Pc, characterizing the asymptotic dynamics of the network 
for different values of a. Each point in it, as well as in the 
rest of the figures, is the ensemble average of 100 independent 
realizations, each one starting from different initial conditions. 
At low values of pc, a clear transition from a local and global 
unsynchronized to a synchronized behavior is observed at 
a ss 0.26 [see Fig. 1(d)]. Such a critical coupling strength very 
much coincides with that characterizing the original all-to-all 
Kuramoto model [11], ac = 0.8/JT ~ 0.2547. On the contrary, 
the range pc > 0.6 is characterized by a decreasing degree of 
global order, associated, however, with an initially decreasing 
and lately increasing degree of local synchronization. This 
is evidently marking the raising of cluster synchronization, 
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FIG. 1. (Color online) Top: (a) Global synchronization indicator RG (see text for definition), (b) local synchronization indicator, from 
Eq. (5), and (c) modularity index M, from Eq. (6), vs pc. Each curve corresponds to a different value of the coupling strength a, represented 
with the symbols and colors shown in the legend of (c). Bottom: (d) Transition to synchronization in the model, using the coupling strength a 
as the order parameter, for pc = 0.25, and typical network configurations obtained for (e) pc = 0.7, (f) pc = 0.8, and (g) pc = 0.9 (in all cases 
a = 0.2). The three specific values of the correlation threshold are marked with red upward pointing arrows in all the three top panels. 
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where oscillators form communities of given frequencies (and 
then there is a high level of local synchronization), which, 
however, are unsynchronized between them. 

One of the major results of our study is that, as a 
consequence of the adaptive evolution of the ensemble, 
specific mesoscales are shaped in the final topology. To 
properly visualize the presence of communities, we measure 
the modularity index [12] of the network in its asymptotic 
state, defined by 

M := 
1 

2M E ( kmk„ \ 

\ 2M J 
S(cm,c„). (6) 

In this expression amn is the asymptotic value of the weight 
wmn (i.e., 0 or 1), the index c„ refers to the cluster which the 
node n belongs to, k„ is the degree of the nth node, 5 is the 
Kronecker delta function, and M is the total number of links 
in the graph. The clusters c„ in the community structure are 
obtained by means of the fast algorithm described in Ref. [13]. 

The results are shown in Fig. 1(c). The remarkable result 
is that there is an absence of modularity for all those values 
of pc where global and local synchronization values are high, 
whereas M exhibits a rapid transition where pc is around 
0.6-0.7, i.e., for low global, but high local, values of the 
synchronization indicators. 

While a transition to a modular structure is a generic 
feature, the specific transition value of pc depends instead 
on the type of initial distribution of the natural frequencies. 
In particular, for Gaussian distributions, we found wider 
ranges for the transition point around pc ~ 0.6-0.8, while 
for a double-peaked distribution, the transition range is rather 
narrow, close to pc = 0.6. 

A second inspected structural feature of the emerging 
network is represented by assortativity, i.e., the correlation 
features of the degrees of neighboring nodes. For this purpose, 
we measure the assortativity coefficient r [14], which is 
essentially the Pearson correlation coefficient of the degree 
between pairs of linked nodes, and it is given by 

r := 
1 ^-^ 

nm(enm — q„qm). (7) 

q„ is the distribution of the remaining degree, and it can be 
obtained from the degree distribution p„ as q„ := v! + . enm 

n n l^ mmpm 

is the joint probability distribution of the remaining degrees 
of the two vertices, and er2 is the variance of the distribution 
q„. The assortativity coefficient r always lies in [—1,1], and if 
r > 0, the network is said to be assortative. 

An alternative way to quantify the degree correlation is to 
compute the average degree of the neighbors of a node with 
given degree k [15], 

n(k) := ^ k'P(k'\k), (8) 

where P(k'\k) is the conditional probability for a node with 
degree k to have a neighbor with degree k'. If knn(k) is 
a monotonically increasing function, then the network is 
assortative. 

In Fig. 2 we report the assortativity coefficient r vs 
Pc, for different values of a [with the same color and 
symbol stipulations used for the curves in Figs. 1(a)–1(c)]. 

FIG. 2. (Color online) Assortativity coefficient r [as defined in 
Eq. (7)] vs pc, for different values of a (same stipulations for colors 
and symbols of the curves as in the caption of Fig. 1). The plot 
in the inset depicts the slope of the best linear fit of the function 
knn(k) vs Pc. Notice that both plots clearly indicate a transition to an 
assortative configuration for pc > 0.6, i.e., in correspondence with the 
transition to increasingly pronounced modular networks highlighted 
in Fig. 1(c). 

Furthermore, the plot in the inset shows the slope of the best 
linear fit of the function knn(k) (in the vertical axis) versus pc 

(in the horizontal axis). Remarkably, for pc > 0.6, in perfect 
correspondence with the transition to increasingly pronounced 
modular structures already observed in Fig. 1(c), here both 
plots also indicate a transition to an assortative configuration 
of the network in its final state. This latter transition (from a 
nonassortative to an assortative topology) is moreover rather 
independent of the value of a, and is always observed in the 
range pc = 0.6-0.7. 

The last result that is worth mentioning is about the long 
transient behaviors observed in those cases, where the time 
needed to attain the final network structure is very long. 
This transient behavior is essentially due to the persistent 
frustration of a few links in the network (typically less 
than 100). The results of Ref. [16] indicate that, indeed, 
in networks consisting of two modules of interacting phase 
oscillators, most oscillators are locked to the synchronous 
behavior of one of the modules, but a few oscillators are 
in a frustrated situation as they receive inputs from nodes 
belonging to different clusters. As a consequence, if nodes 
in the core of the two modules have frequencies &21 and &2, 
the instantaneous frequency of the frustrated nodes is time 
dependent, and oscillates around the value (&21 + £22)/2 with 
frequency (&21 — £22)/2. 

We check now if a similar switching process here is 
affecting the frustration of the link weight along the transient 
before the ensemble collapses into the final network structure. 
If the weight wnm is oscillating, we can calculate its actual 
frequency of oscillation £2̂ „ from the data, and compare it 
to the theoretical value, which is half the difference between 
the instantaneous frequencies of the linked nodes, £2t h

m := 
0n — Sm)/2. For all those values of a and pc for which 
the transient is especially long, we repeated the simulation 
of Eqs. (1) and (2) several times, each time starting from a 
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FIG. 3. (Color online) Frequency of the oscillating links in the 
network £2expt vs the theoretically predicted frequency Qth (see text 
for the definition of both quantities). When the Pearson’s linear 
correlation coefficient is calculated, a p value of 3 x 10-10 is found, 
indicating that the trend is significative. The red solid line is the best 
fit of our data, while the blue dashed line is the theoretical prediction 
fromRef. [16]. 

different random initial condition for all 9„(0) and all w„m(0), 
expt and measured both Q.„m and £l„m. The results are shown in 

Fig. 3, where each point is one of the (randomly chosen) 

frustrated links found in those simulations. A Pearson’s linear 
correlation coefficient test for the trend using the method of 
Ref. [17] yielded a best fit with a slope of 0.970, with a Pearson 
coefficient of 0.662, and a p value of 3 x 10-10, showing 
that the length of the transient is related to the presence of 
frustrated links. This represents an interesting extension of 
Ref. [16], where frustration was found for nodes. In the present 
study, each node is perfectly integrated in its cluster, and 
frustration instead affects the links between nodes in different 
communities. 

In conclusion, we have shown that an initial ensemble 
of interacting phase oscillators can be suitably shaped into 
a complex and structured networked system, under the ac­
tion of an adaptation mechanism that promotes (weakens) 
those interactions between elements that are synchronized 
(unsynchronized). In particular, we have characterized how the 
dynamical organization of the oscillators leads to modularity 
and assortativity features which emerge spontaneously and 
simultaneously. In turn, we also proved that such an emergent 
structure is associated with a cluster synchronization of the 
network. Our results can increase the understanding of the 
mechanisms at the basis of the connectivity and dynamical 
organization of some relevant cases in biology (as, e.g., brain 
structures), where, indeed, both partial synchronization and 
modular and correlated structure of the connectivities have 
been largely unveiled [18-20]. 
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