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Focus

• Disruption in tokamaks devices are 
unavoidable and can have catastrophic 
effects. So it is very important to have 
mechanisms to predict this phenomenon.

• These mechanisms have to be:
– Accurate and reliable

• High success rate
• Low false alarms

– With enough time in advance
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Methodology

• Three steps approach
– First: Architecture design

• Model selection and off-line training

–Second: Real-time simulator
• Simulate the real time acquisition using constraints 

in JET real-time network
– Third: Implementation in MARTe framework



Background: Advanced Predictor Of DISruptions 
(APODIS)

• As a discharge is in execution, the most recent 32 ms temporal segments are 
classified as disruptive or non-disruptive

• The three models may disagree about the discharge behaviour          2nd layer
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Background: Advanced Predictor Of DISruptions 
(APODIS)

• The objective of the training process is to determine a 
‘predictor model’

• In principle, the predictor model is assessed in terms of 
success and false alarms rates

• Once determined that balanced datasets are superior to 
unbalanced ones in relation to training, the real training 
process started

• 3 sets of features have been used as inputs to the first layer 
classifiers

– 14, 16 and 24 features respectively

• 50 random training datasets per set of features were defined 
for training

– 100 non-disruptive discharges (randomly selected from 2312)
– 125 unintentional disruptive discharges (all available disruptions)

• 7500 predictors per set of features have been developed
– They require a CPU time of 900 h to train the first layer classifiers
– They require a CPU time of 30 minutes to train the second layer classifier
– CIEMAT HPC has been used
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• 240 nodes
• Processors: 2 Quad-Core Xeon 
(X5450 and X5570) 3.0 GHz
• RAM memory: 16 GB



Background: Advanced Predictor Of DISruptions 
(APODIS)

7 jpf signals
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9 jpf signals +
3 calculated signals

Poloidal beta
Plasma vertical centroid position
Plasma inductance time derivative
Poloidal beta time derivative
Vertical centroid position time derivative
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Data pre-processing for training

Make uniform sampling frequency at 1 ms

Sample acquired by the digitizer

Real sampling period

Interpolation

Non homogeneous sampling rate 



Data pre-processing for training

• In a real time discharge

– No prior knowledge of windows alignment
– Time from left to right
– Fix a threshold trigger to start SVM classifier 

Alarm time

t

t = 32 ms
• The training process is quite different to the real 

time behaviour 

– Some data manipulation is done to optimize it.
– Previous knowledge of kind of discharge at 

disruption time



Real-time Simulator

• A software (C language) in the JAC cluster has been developed to simulate 
the real-time computations

– The predictor starts when Ip < Threshold ( -750 kA)
• This time instant defines the beginning of the 32 ms long time windows

– The predictor finishes when Ip > Threshold
– Input signal from JET Databse 
– Not interpolation but truncation (in some signals, the real sampling period does 

not meet our sampling requirements)
• If a sample is request to JET ATM Real Time Network and the sample is not available, then the 

last one is provide. 

Real sampling period Sampling period required

Sample acquired by the digitizer

Sample used by the predictor



Real-time Simulator

• First layer implementation
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• Decision function
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Real-time Simulator

• The simulator is fully configurable by means of text files to select models, 
signal thresholds, sampling rates, etc



C28 (jpf + ppf) and RT simulation
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It is estimated that 30 ms is a 
sufficient time to take 

protective actions

Non-ILW data for training and jpf signals

Discharge range: 80128 – 81051 [678 discharges analyzed]



Sumary

• Tool to test Apodis results using JET Database
– Works with data files
– User configurable 
– Can work in background mode (Script )

• Simulate the JET ATM Real Time Network 
behavior 

• Model validation before use the real time 
application under MARTe framework 

• The results are equal that obtained in training 
phase. 
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Data pre-processing for training

• Resampling at 32 ms

Real sampling period

Sample acquired by the digitizer

Real sampling period



• Backup



Data pre-processing for training

This situation is not real during a discharge
– Time from left to right
– Threshold trigger

• No prior knowledge of windows alignment

Data window alignment

32 ms Data window from left to right32 ms Data window from left to right

Alarm time

t

t = 32 ms

Data preprocessing to optimize the training time
– Data regularity

• Data resampling at 1 ms 
• Data right alignment to the end pulse
• Files with complete data window shift evolution

Files with complete data window and 
shift evolution


