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ABSTRACT 

In this study we analyze the electrical behavior of a junction formed by an 

ultraheavily Ti implanted Si layer processed by a Pulsed Laser Melting (PLM) and the 

non implanted Si substrate. This electrical behavior exhibits an electrical decoupling 

effect in this bilayer that we have associated to an Intermediate Band (IB) formation in 

the Ti supersaturated Si layer. Time-of-flight secondary ion mass spectrometry (ToF-

SIMS) measurements show a Ti depth profile with concentrations well above the 

theoretical limit required to the IB formation. Sheet resistance and Hall mobility 

measurements in the van der Pauw configuration of these bilayers exhibit a clear 

dependence with the different measurement currents introduced (1µA-1mA). We find 

that the electrical transport properties measured present an electrical decoupling effect 

in the bilayer as function of the temperature. The dependence of this effect with the 

injected current could be explained in terms of an additional current flow in the junction 

from the substrate to the IB layer and in terms of the voltage dependence in the junction 

with the measurement current. 

INTRODUCTION 

In the last few years, an increasing effort has been made to improve the efficiency 

of the solar cell technology. The intermediate band solar cell (IBSC) has been proposed 

as one of the most promising candidates to increase the photovoltaic efficiency in the 

third generation of solar cells [1]. An intermediate band (IB) semiconductor presents a 

new electronic energy band of allowed states between the conventional conduction band 

and valence band. This IB could permit sub-band gap photon absorption by means of 

valence-to-IB and IB-to-conduction band transitions. This mechanism could overcome 

the Schockley-Queisser thermodynamical efficiency limit (30-40%) for single junction 

solar cells [2].  

Deep-level impurities are known to act generally as a non-radiative recombination 

centers that reduce carrier lifetime and the efficiency of the solar cell. However, the 

introduction of an impurity concentration above the Mott limit (5.9x10
19

 cm
-3

)
 
could 

form an IB, which would reduce this non radiative recombination [3]. Commonly, the 

Mott limit is several orders of magnitude above the solid solubility limit of deep level 

impurities in semiconductors. Therefore, the combination of two non equilibrium 

fabrication processes: ion implantation followed by pulsed laser melting (PLM) has 

been used to achieve these concentrations with high crystal quality [4]. Deep-level Ti 

impurity is being investigated as candidate to form an intermediate band (IB) material in 

Si [5]. The fabricated bilayers with this deep-level impurity are formed by the Ti-

supersaturated Si layer on the top of a Si substrate. The electrical transport 
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measurements in the van der Pauw configuration have revealed an electrical decoupling 

effect in the junction of this bilayer [5]. This electrical decoupling effect has been 

satisfactorily explained and modeled assuming the formation of the IB in the Ti 

supersaturated Si. For the measurements at very low temperatures the decoupling 

electrical effect between the layers allows to measure only the electrical transport 

properties in the Ti supersaturated Si layer where the IB is formed [6].  

In this work, we have investigated the effect of the measurement current (1µA-1mA) 

over the transport electrical properties measured in the van der Pauw configuration in 

the 14-300 K temperature range. We have analyzed the measurement current effect in 

the electrical decoupling behavior in the junction between the Ti supersaturated Si 

layers and the Si substrate. 

EXPERIMENTAL 

Single crystal n-Si (111) samples with a thickness of 300 µm (µ=1450 cm
2
/Vs; 

n=2.2×10
13

 cm
3
 (at room temperature), were doubly implanted with 

48
Ti

+
  at 35 and 150 

keV, with doses of 10
15

 cm
2
 and 4×10

15
 cm

2
, respectively, in an IBS refurbished 

VARIAN CF3000 ion implanter. The samples were tilted 7° with respect to the incident 

beam axis to minimize channeling effects. All these implantation parameters have been 

selected in order to obtain a homogeneous impurity implanted profile. The PLM was 

performed with a KrF excimer laser (one pulse, 248 nm, 20 ns total duration) at J.P. 

Sercel Associates, Inc. (New Hampshire, USA) with an energy density of 1.8 J/cm
2
 

Depth profiles of Ti concentration in the Si lattice were obtained by Time-of-Flight 

Secondary Ion Mass Spectrometry (ToF-SIMS) characterizations. These were carried 

out with a TOF_SIMS IV system manufactured by ION-TOF, using a 25 keV positive 

primary ion pulsed Bi
3+

 beam at 45º incidence that scanned an area of 250 × 250 µm
2
. 

The secondary ions generated were extracted with a 10 keV voltage and their time of 

flight from the sample to the detector was measured in a reflection mass spectrometer. 

The Ti concentration profiles were calibrated using the non saturated signal of Si
28

. 

The samples were electrically characterized with a Keithley SCS 4200 model with 

four Source and Measure Units. The sheet resistance and Hall effect measurements were 

carried out using the van der Pauw configuration at variable temperature in the 14-300 

K range in a closed-cycle Janis cryostat. Samples were 1×1cm
2
 pieces with four Ti/Al 

metallic electrodes evaporated in the corners. The magnetic field used in the Hall effect 

measurements was 0.88 T. Measurements were performed in the four van der Pauw 

configurations. For each configuration the polarity of the current source and the 

direction of the magnetic field were changed in order to minimize spurious thermo-

galvanomagnetic effects. OFHC cooper sample holder coated with Au was used to 

minimize the temperature differences between the thermocouple measurement and the 

sample. Electrical currents in the range of (1 µA-1mA) were injected to analyze the 

effect in the electrical decoupling behavior of the transport properties measured. 

 

RESULTS 

Figure 1 shows the Ti concentration depth profile obtained by means of ToF-SIMS 

measurements of the sample double implanted with the doses of 10
15

 and 4×10
15

 cm
2
, 

the SRIM simulation for this profile and the profile for the sample after PLM process at 

1.8 J/cm
2
. The as-implanted sample displays the Ti concentration with the expected 

double Gaussian-like profile as corroborates the Ti profile simulation obtained with the 

SRIM software [7]. However the as-implanted sample presents a tail for the deeper 

region that is not reproduced by the simulation. That is because although the sample 
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was tilted 7° during the implantation to minimize the channeling effects, this channeling 

is not completely avoided. On the other hand the SRIM program only simulates ion 

implantation processes in amorphous layers where the channeling effects are not 

possible. After the PLM process the sample shows a Ti concentration profile clearly 

above the theoretical Mott limit for the IB formation in a thickness of about 130 nm. 

The PLM process produce a strong push out effect of the Ti impurities toward the 

surface producing a redistribution of the Ti concentration profile. TEM images and the 

electron diffraction (ED)  patterns of this sample show an excellent single Si crystal 

recovery without any kind of silicide secondary phase formation, Ti clustering or Ti 

precipitates [8].  

 

Figure 1. ToF-SIMS profiles of the double implanted sample with the doses of 10
15

 and  

4×10
15

 cm
2
 at 32 and 135 keV respectively, the SRIM simulation for this implanted doses 

and energies, and the profile for the Ti implanted Si sample after PLM process at 1.8 J/cm
2
 

Figure 2a displays the sheet resistance measured in the 14-300 K range for the Ti 

supersaturated Si samples with different currents (1 µA-1mA). A scheme of the bilayer 

in the van der Pauw configuration is detailed in the inset of this figure. Figure 2b shows 

the sheet resistance of the sample measured with the lowest current compared with the 

unimplanted Si substrate. The sheet resistance of this unimplanted reference sample 

shows from 300 to 50 K the expected decrease as the temperature is reduced due to the 

decrease of the phonon scattering [9] and from 50 to 14 K the increase of the sheet 

resistance due to the increase of the freeze out. The sheet resistance of the Ti 

supersaturated Si samples exhibit an interesting rectifying effect due to the electrical 

decoupling in the bilayer. This electrical decoupling effect has been observed previously 

and has been satisfactorily explained in terms of the IB formation in Ti supersaturated 

Si layers [10]. The sheet resistance of a sample implanted with a Si dose comparable to 

the dose of the Ti implanted sample followed by a PLM process and a sample 

unimplanted but PLM processed, show the same behavior of the Si reference substrate 

(not shown here). This rules out the attribution of this unusual electrical effect to defects 

produced during the implantation or PLM process. The sheet resistance in figure 2a of 

the Ti supersaturated Si sample measured in the van der Pauw configuration shows a 

clear dependence in the electrical decoupling effect with the current introduced. As it 

can be observed the sheet resistance minimum located around 225 K is progressively 

displaced at higher temperatures for the higher measurement current. However, the 

sheet resistance for the higher measurement currents exhibits a more gradual electrical 

decoupling effect for temperatures below 200 K.  
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Figure 2. Sheet resistance measured in the 14-300 K range for the Ti supersaturated 

Si sample with the double implantation at different currents: a) For measurement currents 

in the range of 1 µA-1mA. Inset: Scheme of the van der Pauw set up and the bilayer.b) 

For1 µA and a Si reference sample. The fitting obtained from the two-analytical model has 

been also plotted. 

 Recently we have developed an analytical two layer model that takes into account 

the IB formation in the Ti supersaturated Si region with concentrations above the Mott 

limit [11]. In figure 2b also it has been plotted the simulation obtained with this 

analytical two layer model for the double implanted layer that have been used to fit the 

electrical measurements. To take into account the increase of the sheet resistance at very 

low temperatures a potential dependence of the mobility in the IB has been introduced. 

As it can be observed in the figure 2b, this fitting is in good agreement with the sheet 

resistance measured with the lowest currents. This could indicate that a new 

phenomenon that has not been completely attached in the model has been detected in 

the measurements performed with the higher currents. Additionally, the differences in 

the sheet resistance between the analytical model and the measurements carried out with 

the highest currents cannot been attributed to the tail in the Ti profile with 

concentrations below the Mott limit since for the lower currents there are no appreciable 

differences with the model. This gradual electrical decoupling observed at temperatures 

below 200 K could be explained in terms of an additional current flow in the junction. 

On the other hand, the displacement of the sheet resistance minimum is associated to the 

non linear behavior of the IB-substrate junction. This junction has been modeled as a 

diode but to be introduced in the linear model a resistor is assumed. Consequently this 

resistor should depend on the measurement current. 

Figure 3 shows the Hall mobility measured in the 14-300 K range for the Ti 

supersaturated Si samples with different currents (1 µA-1mA) and also for the 

unimplanted Si substrate. While the Si reference substrate, barely visible at the right of 

the corner, shows the expected Hall mobility tendency as the temperature is decreased 

due to the reduction of the optical phonon scattering, the Hall mobility for the Ti 

supersaturated sample shows again an unusual dependence with the temperature that has 

been associated also with the electrical decoupling effect in the bilayer. This electrical 

behavior has been also successfully reproduced by the analytical two layer model, 

which assumes the IB formation in the Ti supersaturated Si. The analytical model 

reproduces faithfully, with the same fitting parameters, the sheet resistance and Hall 

mobility electrical behavior observed experimentally. The Hall mobility measurements 

as function of the temperature for the Ti supersaturated Si sample carried out with 

different measurement currents shows an analogous behavior to the sheet resistance 
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behavior: a downshift with the temperature in the maximum of the mobility for the 

lowest measurement currents about 250 K and a more gradual electrical decoupling 

effect for the samples measured with the highest currents at temperatures below 200K. 

The electrical behavior of the Hall mobility for the case of the lower current of 

measurements is correctly reproduced by the analytical two layer model. 

 

Figure 3. Hall mobility measured in the 14-300 K range for the Ti supersaturated Si 

sample with the double implantation at different currents (1 µA-1mA). Inset: Hall mobility 

in the range of 14-50 K to appreciate the change in the carrier type. 

In the inset of the figure 3 it can be observed the Hall mobility of the Ti 

supersaturated Si sample for the different currents of measurement in the 14-50 K 

temperature range. As it can be observed the carrier type changes clearly from n-type to 

p-type only for some of the measurements. This change in the carrier type has been 

associated to the measurement of the carriers in the IB [6]. For the case of the 

measurements with the high current of measurement, the change in carrier type is not 

produced. This is due to the gradual electrical decoupling effect observed that suggests 

the existence of a contribution to the electrical behavior from the Si substrate. In the 

case of the lowest current of measurements the carrier change type is not clearly 

observed and an oscillation in the sign change can be appreciated. This could be due to 

the low current used in the measurement produces a Hall potential (VH) that has been 

measured with low accuracy. In any case, for the medium current of measurement 

employed can be clearly appreciated the change in the carrier type that we attribute to 

the electrical behavior in the IB. 

CONCLUSIONS 

In this work, we have investigated the transport electrical properties in the van der 

Pauw configuration in the junction between the Ti supersaturated Si layers and Si 

substrate in the 14-300 K temperature range. Time-of-flight secondary ion mass 

spectrometry (ToF-SIMS) measurements determine that Ti concentration after PLM 

process is above the theoretical Mott limit, which is a required condition to form an IB 

material. Sheet resistance and Hall mobility measurements in the van der Pauw 

configuration of these bilayers exhibit a clear dependence with the different currents 

introduced (1 µA-1mA). We find that the electrical transport properties measured for 

the different measurement currents present a gradual electrical decoupling effect as 

function of the temperature. Whereas electrical decoupling behavior observed for the 

lowest measurement currents is in full agreement with an analytical two layer model 
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based on the IB formation, an increase in the measurement currents employed produce a 

progressive deviation from the model. To explain the electrical characteristics observed 

as function of the measurement current two mechanisms are suggested. First, the 

gradual electrical decoupling measurements observed at temperatures below 200 K 

could be explained in terms of an additional current flow in the junction from the 

substrate to the IB. Secondly, the downshift in the minimum of the sheet resistance and 

in the maximum of the mobility about 250 K is attributed to a voltage dependence with 

the injected current in the junction between the IB material and the Si substrate. 
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