
Introduction 
Fano resonances (FRs) are produced when a discrete state is coupled with a 
continuum. In addition to fundamental scientific interests, FRs in plasmonic systems 
give rise to the so-called plasmon-induced transparency. In this work we have 
studied the evolution of dipole-dipole all-plasmonic FRs in symmetric multilayered 
nanoshells as the function of their geometrical parameters. We demonstrate that 
symmetry breaking is not mandatory for controlling the Fano resonance in such 
multilayered nanoshells. Generation of FRs in these symmetric nanostructures 
presents clear advantages over their asymmetric counterparts, as they are easier to 
fabricate and can be used in a wider range of technological applications. 

Conclusions 
• FRs in symmetric multilayered nanoshells arise 

from the interaction between the wide dipolar 
antibonding energy mode dominated by scattering, 
and the narrow, mostly absorptive, dipolar bonding 
mode. 

• For gold nanoshells, the position of the FR can be 
tuned between 600 and 950 nm and its intensity 
can be increased up to four fold with respect to the 
non-optimized structures. 

• Generation of FRs in such symmetric 
nanostructures is clearly advantageous, as they are 
easier to fabricate and can be used in a wider range 
of technological applications. 

* For details check: Peña-Rodríguez et al., Nanoscale, 
DOI:10.1039/C2NR32281A (2012). 

Figure 1. Double concentric nanoshell and its energy diagram, representing plasmon 
hybridization. 

Figure 4: Simulated extinction efficiency for three 
different configurations of a DCN structure with 75 nm 
total size. 
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Figure 2. Simulated scattering (black lines), absorption 
(red lines) and extinction (blue lines) efficiencies for a 
MDM/DCN structure and scattering efficiency for its 
outer nanoshell (green line). 
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Figure 3. Simulated scattering (black lines), absorption 
(red lines) and extinction (blue lines) efficiencies for a 
DCN structure and scattering efficiency for its outer 
nanoshell (green line). 
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Figure 5: Typical fit of the scattering 
spectra, obtained using the above 
equation. 

5 10 15 20 25 30 35 40
1.0
1.2
1.4
1.6
1.8
2.0
2.2

                                    C1 DCN ( t1 )
 C1 MDM ( t2 )     C2 DCN ( t2 )
 C2 MDM ( t3 )     C3 DCN ( t3 )

E a,
s (

 e
V 

)

t ( nm )

 

5 10 15 20 25 30 35 40
-1.5

-1.0

-0.5

0.0

0.5

q

t ( nm )

                              DCN ( t1 )
 MDM ( t2 )     DCN ( t2 )
 MDM ( t3 )     DCN ( t3 )

Tunable Fano resonance in symmetric multilayered gold nanoshells* 

O. Peña-Rodríguez,(a) A. Rivera,(a) M. Campoy-Quiles,(b) and U. Pal(c) 

(a) Instituto de Fusión Nuclear, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006, Madrid, Spain 
(b) Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, Barcelona 08193, Spain 

 (c) Instituto de Física, Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla, Puebla 72570, Mexico 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148665177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

	Slide Number 1

