A molecular dynamics study of swift heavy ion irradiation of amorphous silica: the role of thermal effects

A. Rivera, A. Prada, O. Peña-Rodriguez Instituto Fusion Nuclear, Universidad Politecnica de Madrid, Spain

M.L. Crespillo, J. Olivares, F. Agullo-Lopez Centro Micro-Analisis de Materiales, Universidad Autonoma de Madrid, Spain

M.J. Caturla Dept. Física Aplicada, Universidad de Alicante, Spain

(a)

(b)

- Swift ion irradiation =>
 - Electronic sputtering
 - Density variation
 - Defect production
- Relevant effects in nuclear fusion

Amorphous silica

Electronic excitation

- Not well understood
- Permanent damage
- Modification of properties
- Defect annealing
- Nano-track formation
- Complex energy transfer mechanisms
- Goal: thermal effects by MD

G. Schiwietz et al. NIMB 226, 683

- Super computer MAGERIT CESVIMA LIPM
- Typical 512
- Code MDCA
- FG potentia
- Simulation I
- Simulation t
- PBC in three
- 2 dimensior

MD

- Can't explain ion-solid energy transfer
- Our goal is to study thermal effects

Resulting temperature profiles compatible with electron MC simulations

- Ion irradiation strongly affects the material
- Density change
- Refractive index
- Defects
- Network structure
- Electronic sputtering (surface)

- Ion irradiation strongly affects the material
- Density change
- Refractive index
- Defects
- Network structure
- Electronic sputtering (surface)

Previous

 experimental and
 MD work show
 similar effects

Kluth et al. PRL 101 (2008) 175503

Optical measurements

 Low ion energy leads to guided modes by track overlapping

Experimental results

Silica sample U 1.4 GeV $S_e = 35 \text{ keV/nm}$ $2x10^{11} \text{ ions/cm}^2$

Optical measurements

- High energy ions produce large complex tracks
- The result is an effective medium able to guide modes

Full guide (FDTD MEEP)

Solid tracks (FDTD MEEP)

INDUSTRIALES CORE-shell tracks (FDTD MEEP)

- Ring distribution
- Raman effect

- We can not quantify permanent bond rupture fraction
- Therefore, the origin of permanent defects is unclear

- In order to study thermal effects we have simulated electronic excitation by MD
- Thermal effects on structure, density and defect generation have been identified
- Experiments and FDTD calculations with input from MD show that the tracks are compatible with mode guiding and therefore with refractive index increase
- Defect generation with high stopping power ions can be explained by thermal effects

Thank you