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= Final lenses in laser fusion plants

* Challenges for the protection of the

final lenses
= Plasmonic nanoparticles
* Radiation resistance

= Conclusions
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Lawson criterion must be fulfilled. This implies
reaching a high compression to reach ignition
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= Used in NIF and LIFE . .
= Projected for HiIPER

= More efficient use of laser light,
and greater flexibility in applying
drive provides potential for much
higher gains

= Easier for obtaining an
homogeneous compression

= Providing high enough gain for
pure fusion energy is
challenging
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<105 W.cm2 100-1000 Mbar

=~100-150 MJ

~5-10 MJ

Repeating this process by injecting targets at a rates 5-20 Hz = 1000 MWe

Oxford Technologies
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Structural steel
10 cmthickness

= They must face the target explosions during

g operation, being only a few meters away
Firstw’Tzll
Afew mm thickness = Moreover, they must have:

* Low laser absorption
* Good thermo-mechanical properties

Pinhole

16 metens * High radiation resistance

Liquid metal bl — = Silica is proposed as the best candidate due to

75 cm thickness Concrete Wall

its good properties and low cost
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Low yield (154 MJ) direct drive N
" : . . . s HIPER :
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LASNEX simulations by J.Perkins .00 |
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_ HIPER lons must be mitigated
pul d 2.9 m long electrodes located between the final lens and the chamber perimeter
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Trpresiee ot Steady-state operations (50 MJ)

« Stresses lower than yield
strength (48 MPa) — silica
lenses can withstand the

0 radiation-induced mechanical
oniMm stresses
A
e - — + Thermal loads mainly due to X-
i "a!uu! rays but too low to induce
fatigue failure
sl of
e
Ty T temperature limit exceeded.
S = Lenses must be moved away!!!!
o -

-

Garoz et al., Nuclear Fusion, In press
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= The focal distance changes
4 cm from cold to the
stationary state

wm = The temperature profile

ki TR g induces aberrations
- - T —
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- heated!!!!
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Garoz et al., Nuclear Fusion, In press
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10 -> 1053 nm
2m -> 526.5 nm
o 30 => 351 NM

NIF website (https://lasers.linl.gov/)



Avoiding first and second
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= |n HiPER’s operating conditions:

* The heating of the lenses during the startup can shift
the focus, produce aberrations and create
unacceptable quantities of point defects

»Lenses must be pre-heated!!

* Some quantities of 1® and 2w light can reach the
Hohlraum, preheating the Pellet and producing
unwanted effects

»>First and second harmonic should be eliminated!!

t+7

- Metal sph
{.\ woustriares Plage eroohere
nIDE

Time,

= The defining feat
nanoparticles is t

resonance (LSPR !

Electron cloud

= The position and intensity of the LSPR mainly
depends on the size, shape and composition
« This opens up the possibility of tuning the optical
response
= They have important applications in fields ranging
from biology and medicine to optoelectronics

= But, also in nuclear fusion?

= |n HiPER’s operating conditions:
* The energy deposited by the ions is able to
instantly (and locally) melt the final lenses
»lons must be mitigated!!
* The energy deposited by the neutrons can lead
to a hot stationary state where the final lenses
melt

»Lenses must be moved away!!
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= Final lenses in laser fusion plants

* Challenges for the protection of the

final lenses
= Plasmonic nanoparticles
* Radiation resistance

= Conclusions
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Silver NPs are highly transparent at 3o (353 nm)
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Their optical response can be tuned

200 400 600

.{é\.INDUSTRI.-\LFEi Effects of SHI on the NPs

= The effects of the SHI on metallic
NPs have been studied for several
years

= It is well known that spherical NPs
are transformed into anisotropic
particles whose larger axis is along
the ion beam

= However, the deformation process
is not well understood yet and
there is not detailed information of
the intermediate stages

Si at 8 MeV

Rodriguez-lglesias et al., Opt. Lett. 35 (2010) 703
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= But, can they withstand the irradiation

conditions?

Evolution of the optical

&
{.\ INDUSTRIALES
LN Ersii | U response vs. fluence

2.0

0.00e+00 cm™-2

Optical density
- [l
=] w

o
wn

300 400 500 600 700 EEJO
Wavelength ( nm }

Si at 20 MeV

0.0

]
{.\ woustriates Conclusions

WITON ETSH | UPM

WITON ETSH | UPM

= There are three clearly defined regions
¢ <5x10™ cm2: No damage
¢ 5x10%2-5x10' cm%: Elongation
* >5x10% cm2: Dissolution
= The “dissolution” regime can be reached after ~5x10* cycles
= Fortunately, the high temperatures reached in the lenses
during normal operation can alleviate this problem
= |nthe worst case, the metallic NPs can be deposited in the
backside of the lenses, avoiding the SHI.

= Many unresolved issues remain, before the final lenses can
withstand the extreme conditions to which they are
subjected

= Furthermore, a certain amount of the first and second
harmonic can reach the Hohlraum, preheating the Pellet and
seriously affecting the fusion process

= Plasmonic NPs are viable candidates to filter the unwanted
harmonics and, probably, to reduce the damage produced
by SHI; however, many questions should be answered

before this possibility can be confirmed or ruled out
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