

- Final lenses in laser fusion plants
 - Challenges for the protection of the final lenses
- Plasmonic nanoparticles
 - Radiation resistance
- Conclusions

- Final lenses in laser fusion plants
 - Challenges for the protection of the final lenses
- Plasmonic nanoparticles
 - Radiation resistance
- Conclusions

 Experimental facility (USA)

	HiPER Prototype	HiPER Demo
Operation	Continuous (24/7)	Continuous (24/7)
Yield (MJ)	<50	>100
Rep. rate (Hz)	1-10	10-20
Power (GWt)	< 0.5	1-3
T cycle	Yes	Yes
Blanket	Yes	Yes
Neutrons ~69%, lons ~30%, X-rays ~1%		

HiPER			
emo ED prot. m ³) (J/cm ³)			
3.48 1230.03			
7.93 6372.7			
.11 84.78			
42 0.046			
0.017			
Ions must be mitigated somehow!!!			
·51 w!!!			

- In HiPER's operating conditions:
 - The energy deposited by the ions is able to instantly (and locally) melt the final lenses
 >lons must be mitigated!!
 - The energy deposited by the neutrons can lead to a hot stationary state where the final lenses melt
 - Lenses must be moved away!!

industriales Moreover...

- In HiPER's operating conditions:
 - The heating of the lenses during the startup can shift the focus, produce aberrations and create unacceptable quantities of point defects
 Lenses must be pre-heated!!
 - Some quantities of 1ω and 2ω light can reach the Hohlraum, preheating the Pellet and producing unwanted effects
 - First and second harmonic should be eliminated!!

- Final lenses in laser fusion plants
 - Challenges for the protection of the final lenses
- Plasmonic nanoparticles
 - Radiation resistance
- Conclusions

- The defining feat nanoparticles is t resonance (LSPR
- The position and intensity of the LSPR mainly depends on the size, shape and composition

Electron clou

- This opens up the possibility of tuning the optical response
- They have important applications in fields ranging from biology and medicine to optoelectronics
- But, also in nuclear fusion?

- The effects of the SHI on metallic NPs have been studied for several years
- It is well known that spherical NPs are transformed into anisotropic particles whose larger axis is along the ion beam
- However, the deformation process is not well understood yet and there is not detailed information of the intermediate stages

Rodríguez-Iglesias et al., Opt. Lett. 35 (2010) 703

Si at 8 MeV

- There are three clearly defined regions
 - < 5x10¹² cm⁻²: No damage
 - 5x10¹² 5x10¹³ cm⁻²: Elongation
 - > 5x10¹³ cm⁻²: Dissolution
- The "dissolution" regime can be reached after ~5x10⁴ cycles
- Fortunately, the high temperatures reached in the lenses during normal operation can alleviate this problem
- In the worst case, the metallic NPs can be deposited in the backside of the lenses, avoiding the SHI.

- Many unresolved issues remain, before the final lenses can withstand the extreme conditions to which they are subjected
- Furthermore, a certain amount of the first and second harmonic can reach the Hohlraum, preheating the Pellet and seriously affecting the fusion process
- Plasmonic NPs are viable candidates to filter the unwanted harmonics and, probably, to reduce the damage produced by SHI; however, many questions should be answered before this possibility can be confirmed or ruled out

ESI-O-Si=
$$\rightarrow$$
 =Si-O \bullet Si=