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e Renewable energies
e Advantages: They are clean energy

e Disadvantages: Difficult to produce large quantities of electricity

* Fusion
 Why fusion? What is expected?

* Future fusion Nuclear Power Plants (NPPs) are expected to provide
mankind a sustainable energy source and to contribute to the energy
required satisfy the growing demand of energy and to limit global warming
e Fusion offers important advantages:
* No carbon emissions therefore, no air pollution
e Unlimited fuel

* Intrinsically safe
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e BUT, the severe radiation conditions expected in fusion reactors require the
development of new materials able to withstand the harsh environment

(thermal loads and radiation) taken place in the reactor chamber.

e First wall materials that will be exposed to that adversely atmosphere are

called plasma facing materials (PFM).

Nuria Gordillo Garcia



-

l‘ INDUSTRIALES
WOMN ETSII | UPM

e Requisites of these PFM’s:
— Excellent structural stability to keep their protection role
— High thermal shock resistance
— High thermal conductivity
— High melting point
— Low physical and chemical sputtering
— Because of safety reasons low tritium retention is also a must

e Nowadays, W has been proposed to be one of the best candidates for PFM
for both laser (IC) and magnetic (MC) confinement fusion approaches
because of:

— its low physical and chemical sputtering yields
— high thermal conductivity (174 W/Km)
— high melting point (3410 °C).

e Although some limitations have been identified for pure conventional
(massive) W to fulfill specifications
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1. W brittleness at T < 4009C, bellow the DBTT, (due to the high activation energy of
screw dislocation glide) limits the application of pure W to the temperature window in
between DBTT and recrystallization (~¥13002C). T. J. Renk, et al. Fusion Engineering and
Design 65 (2003) 399.

2. Surface modification at T< 3400 2C (below the melting point).
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Surface modification by particle (He and H) and electron
beam heating is completely different
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W limitatio

3. Light species retention = blistering and material ejection

Single beam (D. Nishijima et al. INM 329 (2004) 1029)
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Bubbles and holes are formed after He beam irradiation
The formation of bubbles mainly depends on:

* Sample microstructure
* Irradiation conditions (flux, fluence, temperature and

particle beam)

SYNERGETIC EFFECTS ARE RELEVANT

Mutliple beams -»synergetic effects (K. Tokunaga et al.
JNM 390-391 (2009) 916.)
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Surface modification due to the mixture and single beam
irradiation is different .

* Holes with a diameter of a few 100 nm are observed for He -
irradiated samples.

e Smooth surface for samples irradiated with double beam.
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Some strategies as the potential of nanostructured W as a PFM are being

investigated to overcome standard W limitations:

W needles
[T. J. Renk, et al. Fus. Sci.and
Tech. 61 (2012)]

W foams
[D. L. Youchison et al. Fus. Eng.
and Des. 82 (2007) 1854]

e 3D engineered materials

e Reduce the thermal loads arriving to the
PFM by increasing the surface area while
keeping the thermal conductivity high.

e Favor light species release??

50 50

* Nanostructured materials due to their high density of grain boundaries_

e Delay the pressurized bubble formation-> light species
get pinned at grain boundaries

nnnnn ry
=, Fig4 Energy level of He atom at grain
Fig 3 Bubble ndary nterior and grain boundary.

e Self-healing behavior— Frenkel pair annihilation

Visit the poster presented by R. Gonzalez-Arrabal et al.:
H accumulation in nanostructured W as compare to massive W
Poster session B: P78
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* Nanostructured materials: two approaches

ODS_W based materials Nanostructured columnar materials
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Cross sectional and top view images of tungsten
nanocolumns grown by oblique angle deposition

[T. Karabacak et al. J. Appl. Phys 94 (2003) 7723]
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DC-Magnetron sputtering

e HV setup, P ... ~ 10® mbar
e Growth parameters:

— Plasma: Ar/W

— Puorking ~ 107 mbar

- V4320V, 1,:0.15A

— Growth rate ~ 3-4 A/s
e Substrates:

— Si, Mo, steel
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TEM diffraction pattern of a W thin film (~ 30 nm) 260

XRD patterns of nW deposited on Si (100) and Mo - polycrystalline
samples with (110) preferential orientation.
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SEM cross section images show a columnar growth
* The average grain size (column diameter) from SEM and TEM has @ ~ 50- 150 nm.

e nW were satisfactorily grown on different substrates keeping the microstructure
and morphology.
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A significant enhancement in the hardness is observed from
nanoindentation for nW samples deposited on Si and steel compared
with bulk W meanwhile the Young’s modulus is slightly lower.
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The thermal stability study were done for samples deposited on Si and
Mo, at different temperatures and times under Ar controlled atmosphere
(P~ 10 mbar)
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e NanoW thin films with a columnar structure were deposited by DC-

magnetron sputtering.

* NanoW coatings were satisfactorily grown on different substrates (Si, Mo,

steel) keeping the microstructure and morphology.

e The average grain size (column diameter) from SEM and TEM images is @ ~
50- 150 nm

e No significant changes in the microstructure neither grain size evolution is

appreciated in the studied temperature range (up to 1000 2C).

e A significant enhancement in the hardness is observed from
nanoindentation for nW samples deposited on Si and steel compared with
bulk W meanwhile the Young’s modulus is slightly lower.
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