POLITÉCNICA

Nanostructured tungsten as a first wall material for future nuclear fusion reactors

<u>N. Gordillo</u>, R. González-Arrabal, A. Rivera, I. Fernández, F. Briones, J. Del Río, C. Gómez, J. Y. Pastor, E. Tejado, M. Panizo-Laiz and J.M. Perlado

Instituto Nuclear de Fusión, ETSI Industriales, UPM, Madrid
Instituto de Energía Solar (IES), UPM
Instituto de Microelectrónica de Matrid IMM-CSIS

Grupo de Espectroscopia de Aniquilación de Positrones. Defectos y Microestructuras, UCM, Madrid

Dpto. Materiales, ETI Caminos UPM, Madrid

Outlook

- Introduction and state of the art
- Making nanostructured W → Growth system
- Sample characterization and Results
 - Microstructure and morphology
 - Mechanical properties
 - Thermal stability
- Conclusions

Renewable energies

- Advantages: They are clean energy
- Disadvantages: Difficult to produce large quantities of electricity

- Fusion
- Why fusion? What is expected?
 - Future fusion Nuclear Power Plants (NPPs) are expected to provide mankind a sustainable energy source and to contribute to the energy required satisfy the growing demand of energy and to limit global warming
 - Fusion offers important advantages:
 - No carbon emissions therefore, no air pollution
 - Unlimited fuel
 - Intrinsically safe

• BUT, the severe radiation conditions expected in fusion reactors require the development of new materials able to withstand the harsh environment (thermal loads and radiation) taken place in the reactor chamber.

• First wall materials that will be exposed to that adversely atmosphere are called **plasma facing materials (PFM)**.

- Requisites of these PFM's:
 - Excellent structural stability to keep their protection role
 - High thermal shock resistance
 - High thermal conductivity
 - High melting point
 - Low physical and chemical sputtering
 - Because of safety reasons low tritium retention is also a must
- Nowadays, W has been proposed to be one of the best candidates for PFM for both laser (IC) and magnetic (MC) confinement fusion approaches because of:
 - its low physical and chemical sputtering yields
 - high thermal conductivity (174 W/Km)
 - high melting point (3410 °C).
- Although some limitations have been identified for pure conventional (massive) W to fulfill specifications

W limitations

- 1. W brittleness at T ≤ 400°C, bellow the DBTT, (due to the high activation energy of screw dislocation glide) limits the application of pure W to the temperature window in between DBTT and recrystallization (~1300°C). T. J. Renk, et al. Fusion Engineering and Design 65 (2003) 399.
- 2. Surface modification at T< 3400 °C (below the melting point).

Cyclic e-beam heat loads experiments (H=50 MW/m², t=30 s) T_s =~1300 °C. S.Tamura *et al.* JNM **307–311** (2002) 735.

Schematic diagram of the relation of surface modifications to fluence and peak temperature after He irradiation. K. Tokunaga *et al.* JNM **329** (2004) 757.

He irradiation (E_{He} =50 keV) T_s =~1700 ${}^{\circ}$ C W. Sakaguchi, et al. Proceedings of ITC **18** (2008).

Surface modification by particle (He and H) and electron beam heating is completely different

W limitations

3. Light species retention ⇒ blistering and material ejection

Single beam (D. Nishijima et al. JNM 329 (2004) 1029)

Bubbles and holes are formed after He beam irradiation The formation of bubbles mainly depends on:

- Sample microstructure
- Irradiation conditions (flux, fluence, temperature and particle beam)

SYNERGETIC EFFECTS ARE RELEVANT

Mutliple beams →synergetic effects (K. Tokunaga et al. JNM 390–391 (2009) 916.)

Surface modification due to the mixture and single beam irradiation is different .

- Holes with a diameter of a few 100 nm are observed for Heirradiated samples.
- Smooth surface for samples irradiated with double beam.

Some strategies as the potential of nanostructured W as a PFM are being investigated to overcome standard W limitations:

- 3D engineered materials
- Reduce the thermal loads arriving to the PFM by increasing the surface area while keeping the thermal conductivity high.
- Favor light species release??

W needles [T. J. Renk, et al. Fus. Sci.and Tech. 61 (2012)]

W foams
[D. L. Youchison et al. Fus. Eng. and Des. 82 (2007) 1854]

- Nanostructured materials due to their high density of grain boundaries
- Delay the pressurized bubble formation → light species get pinned at grain boundaries
- Self-healing behavior→ Frenkel pair annihilation

Visit the poster presented by R. Gonzalez-Arrabal et al.:

H accumulation in nanostructured W as compare to massive W

Poster session B: P78

Nanostructured materials: two approaches

ODS_W başed materials

La₂O₃ [M. A. Yar *et al.* JNM **408** (2011) 129]

Nanostructured columnar materials

Cross sectional and top view images of tungsten nanocolumns grown by oblique angle deposition

[T. Karabacak et al. J. Appl. Phys 94 (2003) 7723]

Growth system

DC-Magnetron sputtering

- HV setup, P_{base} ~ 10⁻⁸ mbar
- Growth parameters:
 - Plasma: Ar/W
 - $-P_{\text{working}} \sim 10^{-3} \text{ mbar}$
 - V_{dc}: 320 V, I_{dc}: 0.15 A
 - Growth rate ~ 3-4 Å/s
- Substrates:
 - Si, Mo, steel

Morphology and microstructure

(200)

(211)

(220) W

100 Mo Mo W/Mo W/Mo 200 S5 60 65 70 75 80 85 90 20

TEM diffraction pattern of a W thin film (~ 30 nm)

XRD patterns of nW deposited on Si (100) and $Mo \rightarrow$ polycrystalline samples with (110) preferential orientation.

(110) W

Morphology and microstructure

TEM dark field images of a W thin film

SEM images of a nW thin deposited on different substrates

SEM cross section images show a columnar growth

- The average grain size (column diameter) from SEM and TEM has ϕ ~ 50- 150 nm.
- nW were satisfactorily grown on different substrates keeping the microstructure and morphology.

H.L. Sun et al. J. Mater. Sci. Technol.,
2010, 26(1), 87-92.

Sample	H (Gpa)	M (GPa)
W/steel	15±0.5	345±3
W/Si	14±0.6	289±12
W bulk	2.6	411

Fig. 6 Hardness and modulus of the deposited and annealed 460 nm W films as a function of indentation depth

A significant enhancement in the hardness is observed from nanoindentation for nW samples deposited on Si and steel compared with bulk W meanwhile the Young's modulus is slightly lower.

Thermal stability

The thermal stability study were done for samples deposited on Si and Mo, at different temperatures and times under Ar controlled atmosphere ($P^{\sim} 10^{-5}$ mbar)

Sample	T (ºC)	t (min)
nW/Si	400	30
nW/Si	400	240
nW/Mo	1000	180

No significant changes in the microstructure neither grain size evolution is appreciated in the studied temperature range (up to 1000 °C).

Conclusions

- NanoW thin films with a columnar structure were deposited by DCmagnetron sputtering.
- NanoW coatings were satisfactorily grown on different substrates (Si, Mo, steel) keeping the microstructure and morphology.
- The average grain size (column diameter) from SEM and TEM images is ϕ ~ 50- 150 nm
- No significant changes in the microstructure neither grain size evolution is appreciated in the studied temperature range (up to 1000 °C).
- A significant enhancement in the hardness is observed from nanoindentation for nW samples deposited on Si and steel compared with bulk W meanwhile the Young's modulus is slightly lower.

Thank you for your attention