
Uniform Distributed Pushdown Autómata
Systems

Fernando Arroyo , Juan Castellanos , and Víctor Mitrana

Abstract. A distributed pushdown autómata system consists of several
pushdown autómata which work in turn on the input word placed on
a common one-way input tape under protocols and strategies similar to
those in which cooperating distributed (CD) grammar systems work. Un-
like the CD grammar systems case, where one may add or remove duplí­
cate components without modifying the generated language, the identical
components play an important role in distributed pushdown autómata
systems. We consider here uniform distributed pushdown autómata sys­
tems (UDPAS), namely distributed pushdown autómata systems having
all components identical pushdown autómata.

We consider here just a single protocol for activating/deactivating
components, namely a component stays active as long as it can perform
moves, as well as two ways of accepting the input word: by empty stacks
(all components have empty stacks) or by final states (all components are
in final states), when the input word is completely read. We mainly in­
vestígate the computational power of UDPAS accepting by empty stacks
and a few decidability and closure properties of the families of languages
they define. Some directions for further work and open problems are also
discussed.

1 Introduction

In the last decades, researchers and practitioners have shown an increasing in-
terest in distributed systems. Among various models a formal language theoretic
paradigm called grammar system has been proposed [5]. Two main architectures

* Work supported by the Project TIN2011-28260-C03-03.

have been distinguished in the área, cooperating distributed (CD) grammar sys-
tems [4] and parallel communicating (PC) grammar systems [15]. Several moti-
vations have been involved in introducing the CD grammar system concept:

- A generalization of the two-level substitution grammars. This was the main
purpose of the paper [14] where the syntagma cooperating grammar system was
proposed.
- In the architecture of a CD grammar system one can recognize the structure
of a blackboard model, as used in problem-solving área: the common sentential
form is the "blackboard" (the common data structure containing the current
state of the problem which is to be solved), the component grammars are the
knowledge sources contributing to solving the problem, the protocol of coopera-
tion encodes the control on the work of the knowledge sources [10]. This was the
explicit motivation of [4], the paper where CD grammar systems were introduced
in the form we consider here.
- The increase of the computational power of components by cooperation and
communication and the decrease of the complexity of different tasks by distri-
bution and parallelism.

An entire theory has been developed for both types of grammar systems, see the
monograph [5] and more recently the chapter [8] in [16]. The obtained results
showed that cooperation and communication increases the power of individual
components: large language classes were described by systems of very simple
grammars belonging to grammar classes with weak computational power. In
spite of this notable development, very little has been done with respect to au­
tómata systems working under similar strategies. These investigations might be
of particular interest from several points of view: they might lead to a comparison
between the power of distributed generative and accepting devices, and might
give information on the boundaries of describing language classes in terms of
autómata systems. A series of papers [6,12,13,3,2] was devoted to PC autómata
systems whose components are finite or pushdown autómata. We briefly recall
the previous works dealing with distributed systems formed by autómata done
in this respect.

In [9] some special types of multi-stack pushdown autómata were introduced.
These mechanisms are usual multi-stack pushdown autómata whose stacks co-
operate in the accepting process under some strategies borrowed from CD gram­
mar systems. However, they cannot be seen as the autómata counterpart of CD
grammar systems. A similar approach has been reported in [11].

The first (and unique so far) work considering systems of pushdown autómata
whose working mode is very cióse to that of CD grammar systems is [7]. A
distributed pushdown autómata system (DPAS) has a common one-way input
tape, one reading head, and several central units. Each central unit is in a state
from its own finite sets of states and accesses the topmost of its own pushdown
memory. At any moment only one central unit is active, the others are "frozen".
When active, the central unit can also read the current input symbol by means of
the common reading head. Activation of some component means that the central

unit of that component takes control over the reading head. We defined several
protocols for activating components. Two ways of accepting were defined: by
empty stacks or by final states meaning that all components have empty stacks
or are in final states, respectively, when the input word is completely read.

This note considers a problem of interest in our view which is represented
by the DPAS with identical components, that is all components are identical
pushdown autómata. Such DPAS are called here uniform DPAS (UDPAS). This
aspect makes no difference for CD grammar systems; in other words, one can add
or remove identical components in a CD grammar system without modifying the
generated language. Unlike the CD grammar systems case, the identical compo­
nents play an important role in DPAS as we shall see in the sequel. Returning
to the original motivation mentioned in the beginning of this paper (blackboard
model of problem solving), it is not artificial to assume that all agents which par­
ticípate in the problem solving process have the same knowledge. This approach
suggests a cióse connection with amorphous systems: (i) each component has
rather modest computing power, (ii) each component is programmed identically
though each has means for storing local state and memory, (iii) each component
has no a priori knowledge of its position within the system.

We first prove that UDPAS accepting by final states are strictly more power-
ful than UDPAS accepting by empty stacks. Then we mainly consider UDPAS
accepting by empty stacks and investígate their computational power and a few
decidability and closure properties of the families of languages they define. Some
directions for further work and open problems are also discussed.

2 Basic Deflnitions

We assume the reader to be familiar with the basic concepts in autómata and
formal language theory; for further details, we refer to [16].

An alphabet is a finite and nonempty set of symbols. Any sequence of symbols
from an alphabet V is called word over V. For an alphabet V, we denote by V*
the free monoid generated by V under the operation of concatenation; the empty
word is denoted by e and the semigroup V* — {e} is denoted by V+. The length
of x G V* is denoted by |x| while |x|a denotes the number of occurrences of the
symbol a i n i . A subset of V* is called language over V. The Parikh mapping over
an alphabet V = {a\, a-2,..., a^} denoted by -¡/v is a morphism from V* to IN ,
where -¡/v(a¿) is the vector having all its entries equal to 0 except the í-th entry
which is 1. If L C V*, then the Parikh image of L is ip(L) = {ipv(%) | x G L}.
We omit the subscript V whenever the alphabet is understood from the context.

We shall also denote by Recx(A) the language accepted by a pushdown au-
tomaton A with final state if X = f, or with empty stack if X = e. We note
that pushdown autómata characterize the class of context-free languages in both
modes of acceptance. The family of context-free languages is denoted by CF.
Remember that the Parikh image of any context-free language is a semilinear
set.

We now give the definition of the main concept of the paper following [7].
A distrihuted pushdown autómata system (DPAS for short) of degree n is a
construct

A=(V,A1,A2,...,An),

where V is an alphabet and for each 1 < i < n, Ai = (Qi, V, Fi, fi, qi, Zi, Fi) is a
nondeterministic pushdown automaton with the set of states Qi, the initial s tate
<Z¿ € Qi, the alphabet of input symbols V, the alphabet of pushdown symbols
r¿ , the initial contents of the pushdown memory Zi G I¿ , the set of final states
Fi C Qi, and the transition mapping /¿ from Qi x V U {e} x I¿ into the finite
subsets of Qi x r*. We refer to the automaton Ai, 1 < i < n, as the i
component of A.

An ínstantaneous descríptíon (ID) of a DPAS as above is 'In + 1-tuple

(x, s1,a1,s2,a2, • • • ,sn,an),

where x G V* is the part of the input word to be read, and for each 1 < i < n, s¿
is the current s tate of the automaton Ai and a¿ G r* is the pushdown memory
contení of the same automaton.

A one step move of A done by the component i, 1 < i < n, is represented by
a binary relation h¿ on all IDs defined in the following way:

(ax, s i , ai, s2 , «2, • • •, s^ a¿, . . ., s„, a „) h¿ (x, s i , a i , s2 , «2, • • •, n, A • • • > s in «n)

if and only if (r¿, 5) G /¿(s¿, a, A), where a eV U {e}, ai = A-f, and ¡3 = ¿7.
As usual, h* denotes the reflexive and transitive closure of h¿. Let now Ci , C2

be two IDs of a DPAS. We say tha t C\ directly derives C2 by a move representing
a sequence of steps done by the component i tha t cannot be continued, denoted
by C\ h ^ C2, if and only if C\ h* C2 for some 1 < i < n, and there is no C
with C2 hj C". In other words, as soon as a component is activated, it remains
active as long as it is possible.

The language accepted by a DPAS A as above by final states is defined by

ReCf(A) = {w \ w € V*, (w, q\,Z\, q2,Z2, ...,<?„, Z „) (h ^) *

(e, s i , « i , s2 , «2, • • -,sn, an) with a¿ G r*, s¿ G f¿, for all 1 < i < n}

Similarly, the language accepted by DPAS A as above by empty stacks is defined

by

Rece(A) = {w \w eV*, (w,q1,Z1,q2,Z2,. ••,<?„, Z „) (h ^) *

(e, s i , e, S2, e , . . . , s n , e) for some s¿ G Qi, 1 < i < n}

For the rest of this paper we consider uníform DPAS (UDPAS) only. A DPAS
A = (V, Ai, A2,..., An) with A\ = A2 = • • • = An = A, which is simply denoted
by A = (n,V,A), is said to be uniform. Therefore, for each UDPAS it sufiices
to give its degree (number of components) and the pushdown automaton. We
illustrate the above notions through an example which will also be useful in the
sequel.

E x a m p l e 1. Let A he the UDPAS of degree 2 with the pushdown auto'maton
defined by the following transition mapping:

f{q0,X,Z0) = {{sx,XZ0)},X e{a,b} f{sx,X,X) = {{sx,XX)},Xe{a,b},
f(sa, c, a) = {{sa, £)} f(sb, d, b) = {{sb, e)} ,
f(sx,X, Z0) = {(sx,XZ0)}, X G {a, 6} f(sx, e, Z0) = {(s, e)} , X G {a, 6}

The set {s} is the set of final states. We first note that the language accepted
by the pushdown auto'maton by final states/empty stack is Lo = Dac U Dbd.
Here Dx¡y is the Dyck language over the alphabet { x , y } . Second, the language
recognized by A by final states/empty stacks is the language L\ that includes
D\ C U D\ d and all words formed by interleaving words from Dac and Dbli.

The families of languages accepted by UDPAS of degree n by final states or
empty stacks are denoted by L¡(UDPAS, n) or Ce(UDPAS,n), respectively.

Example 1 shows a strong connection between the languages recognized by
(U)DPAS and languages obtained by means of the following operation inten-
sively investigated in the formal language and concurrency theory. The shuffte
operation applied to two words leads to the set of all words obtained from the
original two words by interleaving their letters but keeping their order in the two
words like interleaving two decks of cards. Formally, this operation is defined re-
cursively on words over an alphabet V*AS follows:

lil (e, x) = lil (x, e) = {x}, for any x G V*

1Ü (ax,by) = {a} LÜ (x,by) U {6} LÜ (ax,y), for all a,b eV, x, y G V*.

This operation may natural ly be extended to languages and to have k arguments
as

W (L i , L 2) = (J m(x,y),
x€Li,y€L2

and LÜ k(x1,x2,..., xk)= LÜ (LÜ fc_1(xi,x2;... ,x f c _i) , {xfc}), respectively. Also,
LÜ k is extended to languages as

LÜ k(L1,L2, •• .,Lk) = | J lil fc(xi,x2,...,xfc).

xíeLí,i<i<k

If each language L\: L 2) • • •, ¿fc equals L, we denote

LÜ °(L) = {£},

lil fc+1(L) = lil (lil k(L),L)), for all k > 0,

lil *{L)= | J LÜ k(L).
fc>0

3 Computat ional Power

It is worth mentioning in the beginning of this section tha t any context-free
language can be accepted by a DPAS of degree n for all n > 1. This is not t rue
anymore for UDPAS as we shall see in the sequel. We star t with a result tha t
will be useful in what follows.

L e m m a 1. For any UDPAS A of degree n there exists a context-free language
L such that Ln C Rece(A) C Wln(L).

Proof Let A be a UDPAS formed by n copies of a pushdown automaton A. The
statement follows immediately as soon as we take the context-free language as
the language accepted with empty stack by A. D

It is known tha t pushdown au tómata accepting by empty stack or final s tate
define the same class of languages. The situation is different for UDPAS.

T h e o r e m 1. CE(UDPAS,p) C Cf(UDPAS,p), for allp>2.

Proof The inclusión is proved by the s tandard construction tha t transforms a
pushdown automaton accepting with empty stack into a pushdown automaton
accepting with final states. For proving the properness of this inclusión we con-
struct the UDPAS with p > 2 identical copies of the pushdown automaton A
defined as follows:

f(qo, a, Z0) = {{si, aZ0)}, f(qo, b, Z0) = {(s2,bZ0)},
f{si, a, a) = {{si, aa)} f(s2, b, b) = {{s2, bb)},
f{si, X, a) = {(s e , a)}, X G {b, c, d} f(s2, X, b) = {(s e , b)}, X G {a, c, d],
f{si, e, a) = {(pi, a)} f(s2, e, b) = {{p2, b)},
f{pi,c,a) = {(pi,e)} f(p2,d,b) = {(p2,e)},

fipi, x , a) = {(«e, a)}, X G {a, b, d} f(p2,X, b) = {{se, b)}, X G {a, b, c},
f(Pl, e, Z0) = {{s), Zo)} f(P2,e, Z0) = {{s}, Z0)},
f(s1

f,X,Zo) = {(se,Z0)},X G {a,b,c} f{s), X, Z0) = {(se, Z0)},X e{a,b,c,d},

f{q0,e,Z0) = {{s),Z0)}.

It is easy to note tha t Recf(A) = {ancn \ n > 0} U {bndn \ n > 0} , where the set
of final states of A is {si, s2,, s3A. We now make a discussion about the language
accepted by A with final states. First, any non-empty input word must s tar t
with either a or b. If the prefix of the input word composed by a is followed by
a d, it is plain tha t the input word cannot be accepted. We now consider the
case when the prefix of the input word composed by a is followed by c. Two
situations may appear:

— The whole prefix of a's is processed continuously by the same component.
In this case this component may either reach the final s tate s i , if the input
word is of the form ancn for some n > 1, or get stuck.

— Only a par t of the prefix of a's is read by the first activated component; it
follows tha t other components have to read the remaining part of this prefix.
Now the next segment formed by c's of the input word will block at least
one of all these two components.

Therefore, an input word of the form a+ c+ (a + b + c+ d)* is accepted by A if and
only if it is of the form ancn for some n > 1. Note tha t all the other components
different than tha t which s tar ts the computat ion can reach the final state s^ by
reading the empty word.

We analyze now the computation on an input word of the form a+b+(a + b +
c+d)*. Such a word might lead to acceptance if one component reads completely
the prefix of a's while another reads completely the next factor formed by b only.
Furthermore, neither a ñor d can be the next symbol after the segment of 6's.
Indeed, an a blocks both these components while a d blocks at least one of
them. The analysis may continué in the same way until we conclude that the
input word is of the form a+b+c+d+. More precisely, it has to be of the form
anbmcndm for some n, m > 1. Analogously, any input word starting with b that
is eventually accepted is either of the form bmdm or of the form bmancndm for
some n, m > 1. Consequently,

Recf(A) = {anbmcndm \ n, m > 0} U {bmancndm \ n, m > 0}.

Note that every correct input word is actually accepted by means of only two
components of A. All the other components reach their final states by just one
move when nothing from the input tape is effectively read.

By Lemma 1, since there is no context-free language L and k > 2 such that
Lk C Recf(A), therefore Recf(A) cannot lie in Ce{UDPAS, k) for any k > 2. D

For the rest of this note we shall consider mainly UDPAS accepting by empty
stacks. As one can see in Lemma 1, every language accepted by a UPDAS of
degree p with empty stacks is a subset of lil P(L) for some context-free language
L. The following problem naturally arises: When do we have equality? What
conditions should L satisfy such that lil P(L) is accepted by a UPDAS with
empty stacks? It is worth mentioning that for every context-free language L, the
language lil P(L) is accepted by a UDPAS of degree p with empty stacks if we
change the protocol of activating/deactivating the components. More precisely,
if we define the language accepted by a UDPAS A with empty stacks as follows

Rece(A, *) = {w | w G V*, (w, qi,Z1: q2,Z2, ...,qn, Z„) \-*h

(W1 s(1) a (1) s(1) a (1) «W a ^ l h*

(wo s(2) « (2) s(2) « (2) s(2) aW)\-* •••!-*
[W-2, S1 , a1 , S 2 j a2 ; • • • ; sn ; an) r ¿ 3

 r ¿ m

(e, s]"1 \e, s f ' , E , • •., «im),e) with m > 1,1 < n , i2,..., im < n

and s¡m> G Q¿, 1 < i < n},

then we can state that Rece(A, *) = lil P(L), where A is a UDPAS formed
by p copies of the pushdown automaton recognizing L. Therefore, the problem
can be reformulated as follows: Can our protocol of activating/deactivating the
components lead to more computational power than the protocol just defined
above?

We do not have an answer to this problem. However, along the same lines we
can show:

Proposition 1. There are finite languages L such that lil *(L) do not belong
to C£(UDPAS,n), for any n > 1.

Proof We take the finite language {abe} and prove tha t

LÜ *{abc) = {w G {a, b, c}+ | \w\a = \w\b = \w\c & \x\a > \x\b > \x\c

for any prefix x of w},

none of the families £e(UDPAS\ n) , n > 1, contains this language.
Assume the contrary, by Lemma 1, there must be a context-free language L

such tha t
Ln C LÜ *(abc) C LÜn(L).

Let ambmcm, for some m > 1, be a word in LÜ *(abc); there must exist the
words Wi G L, 1 < i < n, such tha t ambmcm G LÜ n(wi, w2, • • •, wn). On the
other hand, for any permutat ion a of {1, 2 , . . . , n} the word w^^w^^) • • • wa(n)
belongs to lil *(abc), which means tha t w¿ G a+b+c+ for all i. Fürthermore, if
Wi = apbqcr, for some p,q,r > 1, we have p > q > r. We further note tha t for
each 1 < i ^ j < n \ ip(wi) — 4>{WJ) |= (k, k, k) holds for some k > 0. By these
considerations and the fact tha t all words ambmcm, m > 1, are in lil *(abc), we
infer tha t L n a+b+c+ is an infinite language of the form

L n a+b+c+ = {as+kbp+kcq+k \keH},

where H is an infinite set of natural numbers. As LC\a+b+c+ is not context-free,
it follows tha t L is not context-free either, which is a contradiction. D

P r o p o s i t i o n 2.
1. The family C£(UDPAS,n), n>l, contains semilinear languages only.
2. There are semilinear languages that do not belong to any of these families.

Proof 1. By Lemma 1, for every UDPAS A of degree n, tp(Rece(A)) = tp(Ln)
holds for some context-free language L, henee Rece(A) is semilinear.

2. The language considered in Theorem 1 proves the second statement. D

4 Decidability and Closure Properties

P r o p o s i t i o n 3 . The emptiness and finiteness problems are decidahle for all
families £x(UDPAS,n), X G {/ ,£>, n > 1.

Proof. Obviously, the language accepted by a UDPAS is empty/finite if and
only if the language accepted by its components is empty/finite. Therefore, the
assertion follows from the decidability properties of context-free languages class.

T h e o r e m 2. None of the families Ce(UDPAS,n) is closed under unión and
concatenation with singleton languages, unión, concatenation, intersection with
regular sets, non-erasing morphisms.

Proof. As we shall see, it suffices to give the reasoning for n = 2 only. Let us
take the language

L = L2
1ULlu(Ül(L1,L2)),

where
LÍ = {anbn | n > 1}, L2 = {cmdm | m > 1}.

The language L can be accepted by a UDPAS of degree 2. A construction for this
system can be easily derived from the definition of the UDPAS in Example 1. We
show that L • {deba} cannot be accepted by any UDPAS (no matter its degree)
with empty stacks. Assume the contrary, by Lemma 1 there exist a context-free
languages E and k > 2 such that Ek C L{dcba}. Therefore, each word in E has
to be of the form xdeba. We take k words in E, x\dcba: X2dcba, . . . , x^deba such
that x\dcbax2dcba . .. x^deba G L{dcba}, henee xidcbax^dcba .. .x¡~ <E L which is
a contradiction.

In similar way one can argüe that L U {deba} does not belong to any family
Ce(UDPAS,n).

On the other hand, each regular language Rj. = {deba™ | n > k}, k > 2,
belongs to Ce(UDPAS,k). It follows that Ce(UDPAS,n) is not closed under
concatenation and unión either.

In order to prove the non-closure under intersection with regular sets we return
to Example 1. The language accepted by the UPDAS from Example is L\. But

LÍ n a+b+c+d+ = {apbqcpdq \p,q> 1},

which, by the proof of Theorem 1, does not belong to any family Ce(DPAS, n),
n>2.

The proof for the non-closure under morphisms is a bit more involved. We
consider the language

L = {xxyy,xyxy,xyyx,yyxx,yxyx,yxxy \ x G {a" f | n > 1},

y e { 5 " # | n > l } }

which lies in £e(UDPAS\ 2). The construction of a UDPAS of degree 2 which
accepts L by empty stacks is left to the reader. We prove that the language h(L),
where h(a) = h(b) = a and /i(#) = c, cannot be accepted by any DPAS (not
only UDPAS) by empty stacks.

Suppose that h(L) = Rece(A) with A = ({a,c},Aí,A2,...,Ap) for some
p > 2. We may assume that we need at least two components as h(L) is not
context-free. There exists a word z G Rece(A) such that the following conditions
are satisfied with respect to the accepting process of z:

(i) z = x\X2 • • • xs for some s > p, Xj G (a + c)+.
(ii) For each 1 < j < s, the component ij, 1 < ij < p, is activated when the

system starts to read x¿.
(iii) There exist 1 < j < t < s such that ij = it and all numbers «¿+i,... ,is

are distinct. That is, for the suffix x¿+i . . . xs of z each component of A is
activated at most once.

Under these circumstances, the word

W = X\X2 • • • Xj-lXjXfXj^l . . . X t _ l X t - | - l . . . xs

is in Rece(A) as well. If t ^ s, then also the word

y = x\xi .. . Xj-iXjXj+i .. . xt-ixt+í • • • xsxt

is in Rece(A). Furthermore, the first letter of #¿+i is different from the first
letter of xt. There are two possibilities:

(I) Xj-|-i € a(a + c)*, xt € c(a + c)*.
First, let us note tha t if xt ends with a, then t ^ s holds, henee y must be in
h(L), But , y ends with a, a contradiction. Therefore, xt must start and end with
c. We note also tha t t cannot equals s because, if this were the case, then w
would ends with a. Then, it follows tha t y contains two adjacent occurrences of
c which is contradictory. Henee, the first case leads to a contradiction.

(II) Xj-|-i € c(a + c)*, xt € a(a + c)*.
First we note tha t xt cannot s tar t and end with a. Indeed, if xt s tar ts and ends
with a, then t ^ s and y ends with a, a contradiction. But if xt s tar ts with a and
ends with c, then w contains two adjacent occurrences of c since the segment
XjXtXj+i has this property.

Therefore, h(L) £ Ce(DPAS,n) for any n > 2, which proves the closure of
none of the families Ce(DPAS, n), n > 2, under morphisms. D

5 Final Remarks

We briefly discuss here a few open problems and possible directions for further
developments. We star t with the problem formulated in Section 3.

O p e n P r o b l e m 1. What conditions should a context-free language L satisfy
such that lil P(L) is accepted by a UPDAS with empty stacks?

It is worth mentioning tha t one can increase the degree of the UPDAS from the
proof of Theorem 1 without modifying the accepted language. This is especially
due to the fact tha t the pushdown automaton A recognizes the empty word. Does
this hold for any UDPAS accepting the empty word? Which is the situation for
acceptance with empty stacks? More generally,

O p e n P r o b l e m 2. Is there any hierarchy depending on the number of compo­
nents?

However, if the classes of languages accepted by UPDAS with empty stacks
form a hierarchy depending on the number of components, then this hierarchy
is necessarily infinite.

T h e o r e m 3 . There exist arbitrarily many natural numbers n such that

Ce(UPDAS, n) \ Ce(UPDAS, k) + 0.

Proof. Let A be the pushdown automaton accepting the language

L = { # a m 6 m $ | m > 1} U { # c m d m $ | m > 1},

and A be the UPDAS formed by n copies of A, where n is a prime number. We
first note tha t Rece(A) is not a context-free language. Indeed,

Rece(A) n # n a + c + 6 + d + $ n = {#naPcqW<PT \ p, q > í,p + q > n},

henee Rece(A) cannot be context-free. We now claim tha t Rece(A) cannot be
accepted by any UPDAS of a degree inferior to n. Assume the contrary and let
A' be a UPDAS of degree k < n such that Rece(A) = Rece(A'). By Lemma 1,
there exists a context-free language R such that

Rk C Rece(A) = Rece(A') C LU fc(ñ).

Clearly, for every word w G Rece(A), \w\# = \w\$ = n holds. Therefore, for any
word x G R, |x |# = |x|$ = p, with kp = n must hold. This implies tha t k = 1,
henee R = Rece(A) which is a contradiction. D

As we have seen the emptiness and finiteness problems are decidable for UDPAS
accepting by empty stacks and the complexity of these problems is directly
derived from the complexity of the same problems for usual pushdown autómata .
The situation seems to be different for the membership problem. We recall tha t
for the shuffling of two context-free languages, the non-uniform versión of the
membership problem is already NP-hard [1]. However, we ask:

O p e n P r o b l e m 3 . Which is the complexity of the membership problem for
UPDAS accepting with empty stacks?

We have proved tha t UDPAS accepting by final states are strictly more
powerful than UDPAS accepting by empty stacks. In our view, the classes
Cf(DPAS,n), n > 1, deserve to be further investigated.

Last but not least, the deterministic variants of the au tómata systems con-
sidered here appear to be attractive.

References

1. Berglund, M., Bjorklund, H., Hogberg, J.: Recognizing Shuffled Languages. In:
Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638,
pp. 142-154. Springer, Heidelberg (2011)

2. Bordihn, H., Kutrib, M., Malcher, A.: Undecidability and hierarchy results for
parallel communicating finite autómata. Int. J. Found. Comput. Sci. 22, 1577-1592
(2011)

3. Choudhary, A., Krithivasan, K., Mitrana, V.: Returning and non-returning parallel
communicating finite autómata are equivalent. Information Processing Letters 41,
137-145 (2007)

4. Csuhaj-Varju, E., Dassow, J.: On cooperating distributed grammar systems. J.
Inform. Process. Cybern., EIK 26, 49-63 (1990)

5. Csuhaj-Varju, E., Dassow, J., Kelemen, J., Páun, G.: Grammar Systems. A gram-
matical approach to distribution and cooperation. Gordon and Breach (1994)

6. Csuhaj-Varju, E., Martín-Vide, C , Mitrana, V., Vaszil, G.: Parallel communicating
pushdown autómata systems. Int. J. Found. Comput. Sci. 11, 633-650 (2000)

7. Csuhaj-Varju, E., Mitrana, V., Vaszil, G.: Distributed Pushdown Autómata Sys­
tems: Computational Power. In: Ésik, Z., Fülop, Z. (eds.) DLT 2003. LNCS,
vol. 2710, pp. 218-229. Springer, Heidelberg (2003)

8. Dassow, J., Paun, G., Rozenberg, G.: Grammar systems. In: [16], vol. 2
9. Dassow, J., Mitrana, V.: Stack cooperation in multi-stack pushdown autómata. J.

Comput. System Sci. 58, 611-621 (1999)
10. Durfee, E.H., et al.: Cooperative distributed problem solving. In: Barr, A., Co­

hén, P.R., Feigenbaum, E.A. (eds.) The Handbook of AI, vol. 4. Addison-Wesley,
Reading (1989)

11. Krithivasan, K., Sakthi Balan, M., Harsha, P.: Distributed processing in autómata.
Int. J. Found. Comput. Sci. 10, 443-464 (1999)

12. Martín-Vide, C , Mitrana, V.: Some undecidable problems for parallel communi­
cating finite autómata systems. Information Processing Letters 77, 239-245 (2001)

13. Martín-Vide, C , Mateescu, A., Mitrana, V.: Parallel finite autómata systems com­
municating by states. Int. J. Found. Comput. Sci. 13, 733-749 (2002)

14. Meersman, R., Rozenberg, G.: Cooperating Grammar Systems. In: Winkowski, J.
(ed.) MFCS 1978. LNCS, vol. 64, pp. 364-374. Springer, Heidelberg (1978)

15. Paun, G., Santean, L.: Parallel communicating grammar systems: the regular case.
Ann. Univ. Bucharest, Ser. Matem.-Inform. 38, 55-63 (1989)

16. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1-3. Springer,
Berlin (1997)

