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ABSTRACT 

High flux and high CRI may be achieved by combining different chips and/or phosphors. This, however, results in 

inhomogeneous sources that, when combined with collimating optics, typically produce patterns with undesired artifacts. 

These may be a combination of spatial, angular or color non-uniformities. In order to avoid these effects, there is a need 

to mix the light source, both spatially and angularly. Diffusers can achieve this effect, but they also increase the etendue 

(and reduce the brightness) of the resulting source, leading to optical systems of increased size and wider emission 

angles. 

The shell mixer is an optic comprised of many lenses on a shell covering the source. These lenses perform Kohler 

integration to mix the emitted light, both spatially and angularly. Placing it on top of a multi-chip Lambertian light 
source, the result is a highly homogeneous virtual source (i.e, spatially and angularly mixed), also Lambertian, which is 

located in the same position with essentially the same size (so the average brightness is not increased). This virtual light 

source can then be collimated using another optic, resulting in a homogeneous pattern without color separation. 

Experimental measurements have shown optical efficiency of the shell of 94%, and highly homogeneous angular 

intensity distribution of collimated beams, in good agreement with the ray-tracing simulations. 

Keywords: General illumination, color mixing, Kohler integration 
 

1. INTRODUCTION  

High flux LEDs with high color rendering indices (CRI) are often composed of several chips of different colors (for 

example, combinations of red, green, green, blue chips). When combined with collimating optics, these LEDs result in 

luminaires that often produce undesirable artifacts, which may include color shadows, color fringes, variation of the 

white color temperature across the illuminance distribution, intensity artifacts or multiple shadows (from the different 
chips in the LED package), as shown in Figure 1. 

It is highly desirable to have a "universal light engine" that "replaces" the non-uniform light source with a uniform 

"virtual" light source. Ideally, this should be a "primary" optic on top of the LED compatible with different types of 

secondary optics and applications. This imposes a constraint on the optic that should be small and close to the LED. 

Also, the resulting light source should have approximately the same size and position as the original source, but should 

be uniform, both spatially (no hot spots) and in color. This would make the resulting light engine useable in different 

luminaries and, therefore, quite flexible. 

A possible way to mix the light from the different chips into a uniform source is to use diffusers on top of the LEDs. By 

scattering light, these mix the emissions of the different chips creating a uniform output. In particular, diffusers eliminate 

undesirable color artifacts. However, this comes at a cost. The efficiency of the resulting light engine will likely suffer 

since a considerable amount of light will be sent back and recycled through the LED package. Also, the diffusers will be 

the new apparent light source, which is displaced relative to the position of the original LED. The etendue of the 
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resulting source will also be larger, which means that, in order to control the light, larger secondary optics will be 

needed. Therefore, when using diffusers, new and larger secondary optics would have to be used to achieve the same 

control of the light output, while eliminating artifacts. 

Other options could include mixing rods, but these need to be long to properly mix the light, are complex to assemble 

and displace the light source relative to its original position. 

 

Figure 1 - Unwanted effects when using multi-chip (and especially multi-color) packages into typical luminaries. 

A more practical approach is a LPI-patented solution based on the Köhler concept [2][3][4], an "integration" approach 

which is compatible with many different optical applications. Köhler illumination optics elements may be composed of 

two optical surfaces. The first surface images the source onto the second optical surface. This ensures that the light 
emitted from the source and falling on the first surface is redirected to the second surface. This is important for 

guaranteeing that no light is lost and that the Köhler element has high efficiency. The second optical surface images the 

first surface onto the target (or the far field). If the first surface is some distance away from the source, it will be 

uniformly illuminated by it. For example, if the source is a red, green, blue LED, the red, green and blue irradiances on 

the first surface produced by the source will be similar. By imaging this uniform irradiance onto the target, the second 

surface creates a uniform output pattern. 

Figure 2 shows canonical example of a Köhler array composed of several elements placed side by side[5]. In this 

example, the source is an infinitely large emitter placed to the left and the target is also infinite, placed to the right. Both, 

source and target, subtend an angular aperture ± when seen from the optic. Figure 2a shows a set of parallel rays 
coming from the center of the infinite source (placed to the left) coming towards the optic. Each first surface focuses 

(images) these rays onto the corresponding second surface. The second surface, images the first surface onto the infinite 

receiver, placed to the right. This means that a ray coming from the top edge of the first lens will be imaged to the 

bottom edge of the receiver (at an angle  down) and a ray coming from the bottom edge of the first lens will be imaged 

to the top edge of the receiver (at an angle  up). The result is an output spanning an angular aperture ± which fully 
illuminates the target. Therefore, the light coming from one point on the source to the left (its center in this case) fully 

illuminates the target. 

Something similar may be observed in Figure 2b. This figure now shows a set of parallel rays coming from the top edge 

of the infinite source, to the left, coming towards the optic. The first set of surfaces focuses (images) these rays onto the 

bottom edge of the second surfaces. The second surfaces, image the first surfaces onto the infinite receiver to the right. 

This means that a ray coming from the top edge of the first lens will again be imaged to the bottom edge of the receiver 

(at an angle  down) and a ray coming from the bottom edge of the first lens will again be imaged to the top edge of the 

receiver (at an angle  up). The result is again an output spanning an angular aperture ± which fully illuminates the 
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target. Therefore, the light coming from another point on the source to the left (its top edge in this case) still fully 

illuminates the target. 

It may then be seen that the light coming from different points on the source produces the same output pattern coming 
out of the optic and, therefore, the same illuminance on the target. Also, the structure of the source is not transferred to 

the illuminance pattern. 

There may be some light coming from outside the source, as shown in Figure 2c. In that case, the first optical surface 

images this light to a point outside the corresponding second optical surface and in another Köhler array element, which 

disperses the light outside the target. 

These integrator optics may be used to homogenize the illuminance of a target, but also to create special features in the 
pattern, such as sharp cut offs or gradients.

 

(a)   (b)   (c) 

Figure 2 - Working principle of a basic integrator lens array for perpendicular (left), max angle  incidence (center) and 

illumination outside the integration zone (right) 

Figure 3 shows an example of how a Kohler integrator may be used to produce white light from a red, green, blue 

source. On the left, this figure shows three chips of different colors. The light coming from the blue middle chip is 

focused to the center of the output lens and spreads out towards the target as it leaves this optical surface. In three-

dimensional geometry, these lenses may have square cross section. Since the second lens images the first lens onto the 

target, the result will be a blue square on the target. Similarly, the light coming from the red top chip is focused to the 

bottom of the output lens and spreads out towards the target as it leaves this optical surface. Again, the second lens 

images the first lens onto the target, resulting in a red square on the target. The same happens for the green chip at the 

bottom. The superposition of all these images (red, green and blue) is a white square, as shown on the right of Figure 3. 

 

Figure 3 - Working principle of a basic integrator lens array: color mixing 
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2. OPTICAL DESIGN 

Köhler integration is not limited to flat lenslet arrays. It can be used on curved surfaces. Figure 4 shows one of these 

applications: the shell mixer. The optic is shaped as a dome covering the LED light source. This dome is composed of 

many Kohler channels, each one of these with a first optical surface that images the light source onto the second optical 
surface. Now, however, the second optical surface does not image the first optical surface onto the target. Instead, it 

generates a virtual image of the first surface that superimposes on the LED. Therefore, when seen from some distance 

away, the colored LED with the shell mixer on top now appears as a white uniform light source at the same position as 

the LED. 

 

     

 

Figure 4 - Left: rendered view of the shell mixer. Right: bare colored LED and equivalent white virtual light source 

produced by the integration effect. 

The resulting light source still emits into a hemisphere, just like the original LED. The light may now be collimated by a 

secondary optic, just as in the case of the bare LED. However, instead of "seeing" the LED, this secondary optic now 

"sees" the uniform virtual source. This drastically reduces the chances of artefacts showing up in the pattern. 

Figure 5 shows a cross section of the shell mixer and the working principle of its Kohler channels (or elements). The 

light from colored chips at the edges of the light source is imaged by the first lens to the edges of the output lens, 
spreading out of the optic, as if coming from the light source. Each inner optical surface forms a channel together with an 

outer optical surface. The complete shell mixer is made of many of these channels side by side in a hemisphere. 

In each Kohler channel, the first lens images the LED light source onto the second lens. Figure 5 on the right shows a 

photograph of those images formed on the output lenses. 

 

      

Figure 5 - Köhler channels in the shell mixer. The picture on the right shows the images of the LED produced by the inner 
lenses on the outer lenses of the shell mixer. 
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When designing one of these optics there are several challenges that must be met. First of all, the shell mixer optic must 

be small, since it is supposed to be part of the light source itself. This, however, means that each lens on the inner surface 

of the mixer sees a wide angle source, which may be hard to image properly onto the corresponding lens on the outer 

surface of the mixer. Also, lenses at different positions on the mixer "see" sources with different angular apertures, 

which means that the Kohler channels must be different from point to point on the optic. The shell mixer should also be 

compatible with injection moulding manufacturing, since this is a low cost and fast way to produce these optics. This 

poses challenges in the design of the channels further down on the mixer (close to its rim), since the corresponding 

lenses (either on the inside or the outside) must have wide enough draft angles. Finally, all channels must be tessellated 

in a tree-dimensional optic and must work well together. 

While designing and adjusting the parameters of these optics we have found that the shell mixer should have about three 

times the diameter of the apparent LED source if a good output with no artefacts is desired. A possible way to test for 

artefacts is to combine the LED and shell with an imaging lens. This large lens will image the virtual source onto a 

target. If there are artefacts in the virtual image generated by the shell mixer, these will show up in the image produced 

by this large lens. This is a worst case scenario and the mixer as shown good performance, even in these extreme 

conditions. 

Figure 6 shows a selected optic which shows good performance when placed on a non-uniform light source. Its size may 

be scaled up or down to match different size sources. This optic consists of a thin shell with a thickness about 7% of its 

diameter. The sizes of its lenses average half of the optic's thickness, for the lenses on both the inner and outer surfaces 

of the optic. 

 

 
Figure 6 - Design prepared for production, the dimensions are in mm 

In order to verify the performance of this shell mixer, we tested it in two different situations: combined with a perfect 

imaging lens and combined with a parabolic reflector. 

The first case to be analyzed by ray tracing was the combination of a RGBW LED with a refractive "super lens" with an 

ultra-high refractive index n=5. This allows the lens to collect a significant amount of light emitted by the source up to 

60deg off axis (the lens was 90 times wider than the mixer). This is a worst case scenario and two light sources were 

tested: the bare LED and the LED with the shell mixer on top. Figure 7 shows the setup and the results of these two tests. 

At the bottom left corner we have the image on the target when the light source is the bare LED. At the bottom right 

corner we have the image on the target when the light source is the LED combined with the shell mixer. As can be seen, 

in the first case, the "super lens" forms a perfect image of the LED with the four chips of different colors perfectly 

visible. However, in the second case, the image on the target is a white disk. The internal structure of the light source 

was lost and the result is white light. 

It is very important to notice that the size of the white disk obtained with the shell mixer is about the same as the image 

of the bare LED. This is an indication of the fact that the shell mixer does not significantly increase etendue. The 
consequence of this is that the same size optics that are used to control the bare LED emission can also be used to control 

the emission of the shell mixer. 
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Figure 7 - Top: setup for testing the shell mixer using a lens. Bottom left: colored far-field image of the bare LED produced 
by a lens imaging the source. Bottom right: same, but with shell mixer on top of the LED. 

Another situation which was also analyzed is shown in Figure 8. This situation is more like a typical luminaire. In this 

test we used an RGBW LED (commercially available and similar to Cree XLamp MC-E Color) and a parabolic reflector. 

This set was ray traced with and without shell mixer. A sensor was placed 2.5m away from the luminarie, the typical 

distance from ceiling to floor in a house. 

Figure 8 at the top shows the overall view of the setup. At the bottom left, we have the pattern on target without the shell 

mixer and at the bottom right the pattern on target with the shell mixer. 
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Figure 8 - Top: setup for testing the shell mixer using a collimating reflector. Bottom left: colored far-field image of the 

bare LED produced by the parabolic mirror. Bottom right: same, but with shell mixer on top of the LED. The sensor plane 

is placed 2.5m away from the luminarie exit plane. 

Again, the improvement in the pattern is quite notorious when the shell mixer is added onto the LED. 

3. PROTOTYPE CHARACTERIZATION  

The first shell mixer prototype was made of Ultra-clear Polycarbonate Makrolon LED 2245 by injection molding. It was 

designed for a chip diameter of 9mm and its size was adjusted to fit into a housing that meets the Zhaga standards [6]. 

Figure 9 shows two pictures of whole shell mixer, when seen from below and from above. 
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Figure 9 - First shell mixer prototype 

Figure 10 shows some details of the shell mixer optic. The left image shows the lenses at the center of the mixer while 

the image to the right shows the lenses at its edges. These photos were taken under a microscope for surface quality 

control. 

    
Figure 10 - Left: shell mixer outer lenses at the center of the optic. Right: shell mixer outer lenses at the edge of the optic. 

3.1 LOR (Light Output Ratio) 

The efficiency of the shell mixer can be defined as the light flux exiting the optics that is collectable by a luminaire 

(within an angular range of ±90deg, for instance) divided by the light flux available at the exit of the LED package. Ray 

tracing models show that this efficiency or light output ratio (LOR) is very high. This is due, in part, to the recirculation 

of light between the shell mixer and the LED package. Part of the LED light reaching the shell mixer is reflected back 

due to Fresnel reflections on the inner surface of the mixer. However, since the mixer overall shape is a dome over the 

LED, this light is sent back to the source. The high reflectivity of the dies and LED packages (which are white 

"Lambertian" in the gaps between chips) sends this light back to the shell mixer for another chance to be extracted. This 

increases the light extraction efficiency. 

The measurement of the LOR may be done using an integrating sphere or a goniometer. In both cases we should 

compare the emission of the bare LED with that with the shell. In the measurements the alignment between shell and the 

chip was not well controlled, due to the lack of housing. Figure 11 shows a diagram of the setup when the LOR is 

measured with a goniometer. The LED (with and without the shell mixer) is mounted on a goniometer that rotates it 
around a vertical axis. Some distance away there is a luxmeter recording how much light it receives. The luxmeter points 

at the light source through a narrow black tube to block stray light from reflections on other objects. The LED used in 

this measurement was the OSRAM multicolor LED module that consists of 10 LEDs (4 red, 1 blue and 5 white). Note 

that this LED module is not commercial, but and R&D sample (shown in Figure 15). 
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Figure 11 - Schematic representation of efficiency measurement set-up. Note that shell mixer is not assembled on a housing 

and, therefore, no back-reflected light is being recollected. 

This method was used to measure a cross section of the intensity pattern and the result is shown in Figure 12. Since the 

pattern has rotational symmetry, the overall performance may be obtained from this measurement. Integrating the areas 

(flux) in the graphs bellow the LED curve and the LED with shell mixer curve results in an efficiency of 89.2%. 

 
Figure 12 - Illuminance vs. angle for the LED with and without the shell mixer prototype on top of it. 

The shell mixer performance was also analyzed with a high efficacy LED module provided by Osram whose package has 

been designed to achieve high reflectivity. The efficiency of the shell with that LED was measured by Osram in an 

integrating sphere, resulting in 95%, which confirms the potential of the shell to recycle part of Fresnel reflections. 

Figure 13 shows the shell mixer on top of a multicolor OSRAM R&D LED module (7mm diameter source consisting of 

10 chips: 4 red, 5 white and 1 blue. Instead of 10 different colored sources, one can only see a virtual white source. Note 

that the image does not change for different viewing angles. From all directions the source appears white and about the 

same apparent size. 
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Figure 13 - Shell mixer on top of an OSRAM R&D multicolor LED module (7mm diameter source consisting of 10 chips: 
5white, 4 red and 1 blue). Note that, instead of 10 colored chips, only a white virtual source is visible. 

3.2 Illumination pattern 

Figure 14 shows a set-up and images on the wall of an OSRAM multicolour LED module with and without the shell 

mixer. For this test we have used a low depth of field lens as luminaire and one additional lens to project the far field 

performance of the shell onto a screen at a finite distance from the set. 

 
Figure 14 - Schematic representation of the set-up and pictures of the illumination pattern on the wall without (up) and with 
(down) shell mixer. 

Figure 15 shows a different test with a standard parabolic luminaire. Two situations are shown: illumination pattern on 

the floor (at 2.5m from the ceiling) and wall wash. The beam on the floor was tested with an OSRAM LED while the 

wall wash was tested with a Cree LED. In both cases, adding the shell mixer improves the illuminance uniformity and 
decreases color artifacts. 

These tests were repeated with sources of different diameters to confirm that the etendue increase was constant (~20%) 

for chips smaller than the integration zone area for which the mixer was designed. 
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Figure 15 - Performance with and without shell mixer for a luminaire reflector (supplied by Regent lighting) and 2 different 

LED modules. The beam aesthetics substantially improves with the addition of shell mixer, the effect being more 
outstanding at the floor for the OSRAM package and in wall wash for the Cree package. 

 

4. CONCLUSIONS 

The shell-mixer eliminates all problems noticed in conventional lamps, like color shadows, multiple shadows, color 

fringes and shifts, and any other kind of intensity artifacts from source. The source simply behaves like a single uniform 

emitting disk, no matter what the real source looks like.  

The apparent size of the source increases only slightly (typically by 20%), so that the etendue of the source is not 

increased by much. This is extremely beneficial for high collimation applications like spot lights.  

In contrast, if one wants to achieve similar color mixing and smoothing with diffusers, no matter where in the optical 

path they are used, the apparent source size and the collimation angle increases by a factor of typically 2-3, while the 

efficiency is compromised due to back scattering losses. 

The first shell mixer prototype was built and tested. It shows results close to those obtained by computer simulation. 
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