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ABSTRACT

A new three-dimensional analytic optics design method is presented that enables the coupling of three ray sets
with only two free-form lens surfaces. Closely related to the Simultaneous Multiple Surface method in three
dimensions (SMS3D), it is derived directly from Fermat’s principle, leading to multiple sets of functional differ-
ential equations. The general solution of these equations makes it possible to calculate more than 80 coefficients
for each implicit surface function. Ray tracing simulations of these free-form lenses demonstrate superior imaging
performance for applications with high aspect ratio, compared to conventional rotational symmetric systems.

Keywords: Mathematical methods in physics, geometric optical design and lens design, free-form optics

1. INTRODUCTION

In optics, a distinction is made between imaging (image-forming) and non-imaging optical systems. Non-imaging
optics is concerned with the efficient transfer of light radiation between a source and a target. Unlike traditional
imaging optics, instead of an image of the source, the optics produces a prescribed illuminance (or irradiance)
pattern on the receiver.1 This inherent difference is also reflected in the choice of optical design methods.
Two main problems of non-imaging optics are efficient designs for illumination and solar concentration applica-
tions. Most non-imaging optics designs typically use few optical surfaces (often not more than two); advanced
free-form optics design methods and solutions evolved over time, both for illumination applications (see, for ex-
ample2–5), and in concentration photovoltaics6, 7 using the Simultaneous Multiple Surfaces (SMS) design method.
The limited number of surfaces makes it possible to efficiently design highly aspheric or non-rotational symmetric
free-form surfaces to address the system specifications.
Originating from non-imaging optics design, a particular formulation of the SMS2D design method for imaging
systems comprises perfect imaging of N ray sets at the correspondent N image points in a plane.8 It offers the
flexibility to choose the ray sets and their associated image points and design rotational symmetric optics for
imaging applications.9–11 Recent years have also seen a raising interest in free-form optics for off-axis imaging
designs, as well as the extension of aberration theory in imaging systems without rotational symmetry.12–18

In case of on-axis imaging, rotational symmetric optics is omnipresent as it greatly simplifies the design pro-
cess and analysis of optical systems and the manufacturing process. The rotational symmetry of the optical
system makes it the best solution for design problems where the object and image are rotational symmetric
with respect to the optical axis. In practice, this design approach is also adequate for systems with rectangular
field of view and rectangular image receivers characterized by moderate aspect ratios. However, the more the
field of view deviates from the rotational symmetric configuration, the more interesting becomes the question of
how non-rotational symmetric optics can help to provide tailor-made solutions with increased overall imaging
performance.
To illustrate this potential for imaging applications with high aspect ratio, the imaging performance of a rota-
tional symmetric and a free-form (no rotational symmetry) single thick lens are compared in this work.
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The design of the free-form lens is based on a new analytic optics design method, closely related to the Simul-
taneous Multiple Surface method. The SMS design method enables the perfect imaging of two ray sets with
two aspheric lens profiles in two dimensions, and the perfect imaging of two ray sets with two free-form surfaces
in three dimensions.19 In general, SMS surfaces are piecewise curves made of several portions of generalized
Cartesian ovals that map initial ray sets to final ray sets. SMS optics are calculated by applying a constant
optical path length for each coupled ray set. In case of two optical surfaces, two ray sets defined by design
angles of opposite sign can be perfectly imaged both in two and in three dimensions. In case of optical systems
designed for wide field of view and with at least one surface far from the aperture stop, the new analytic lens
design method provides a way to image more than two ray sets with only two lens surfaces. However, this can
only be achieved if different ray sets use different portions of the lens surfaces. Optical systems, where different
incident directions use different portions of lens’ surfaces, are widely known. Field-flattener lenses are used in
binocular designs and in astronomic telescopes to improve edge sharpness and lower distortion. Aperture stops
in imaging systems often target the same objective.
For optical systems designed for a wide field of view and with clearly separated optical surfaces, the new lens
design method discussed in this paper will allow the perfect imaging of an additional on-axis (parallel to the
optical axis) ray set to the correspondent image point both in two20 and three dimensions.21

One explicit two-dimensional solution of such lens profiles, which perfectly focus three sets of parallel rays with
incident angles −12◦, 0◦ and 12◦ onto three image points is shown in Fig. 1(a). Based on the two-dimensional lens
profiles, there are different possibilities to construct three-dimensional lens surfaces. The most obvious choice is
a rotational symmetric lens which perfectly image parallel rays with incident angle 0◦, as it is shown in Fig. 1(b).
The two-dimensional lens profiles (indicated by solid lines) are rotated about the optical axis. Fig. 1(c) shows
a free-form analytic solution, perfectly imaging three sets of parallel rays with incident angles −12◦, 0◦ and 12◦

onto three points. Its cross section in x-z-plane (the solid lines in Fig. 1(c)) is given by the two-dimensional
design method and provides a partial solution (depending on x-coordinate only) to the full three-dimensional
problem.
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Figure 1. (a) Lens profiles calculated using the two-dimensional analytic design method to perfectly image three rays sets;
(b) rotational symmetric lens constructed from such two-dimensional lens profiles; (c) free-form lens design to perfectly
image three ray sets in three dimensions

The analytic lens design method and its main characteristics will be explained and summarized in Sec. 2. It
is derived directly from Fermat’s principle, leading to multiple sets of functional differential equations. Their
transformation into linear systems of equations allows the successive calculation of the analytic Taylor series
coefficients in two variables up to an arbitrary order. In Sec. 3, the imaging performance in the limit of an
infinite aspect ratio will be compared for a rotational symmetric and a free-form lens which is derived from the
high-order Taylor polynomials in two variables. In this specific case, the field of view consists of coplanar parallel
directional vectors (objects at infinity) and the correspondent image reduces to a line. This analysis demonstrates
the enhanced imaging properties of the non-rotational symmetric free-form lens. As a generalization, the object
space will be extended to a field of view with very high but finite aspect ratio in Sec. 4. The performed ray
tracing analysis shows that the free-form lens still provides superior imaging performance for applications with



high aspect ratio, compared to conventional rotational symmetric systems. The final Sec. 5 provides conclusions
and possible future developments.

2. SUMMARY OF THE ANALYTIC FREE-FORM LENS DESIGN METHOD

The convergence points for one on-axis and one off-axis ray set will form the starting point for all further
considerations. An in detail discussion on their existence can be found in.20 The implementation of convergence
points was used for the first time to design free-form V-groove reflectors.22, 23 In our design approach, they
are characterized by on- and off-axis rays sharing identical points and normal vectors on each lens surface. All
necessary initial values are defined as shown in Fig. 2(a).
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Figure 2. Introduction of all necessary initial values and functions to derive the conditional equations from Fermat’s
principle in three dimensions

As one main result it has been shown that the design problem can be fully described by two variables only, the
slopes m0 and m1 at the convergence points.20, 21 The convergence point on the upper surface has the point
coordinates (±x0, y0, z0) with y0 = 0 due to the overall lens’ mirror symmetry with respect to the x-z- and y-z-
plane. Therefore, the normal vector at the first convergence point is completely described by the single variable
m0. The intersection of the refracted on-axis ray through (x0, 0, z0) and the refracted off-axis ray through the
mirrored convergence point (−x0, 0, z0) determines the coordinates (x1, 0, z1) of the second convergence point.
The normal vector at the second convergence point is also described by a the single variable m1. Further
refractions at the second convergence point result in the focus positions (0, 0, d) and (r, 0, d). The initial ray
construction lies within the sectional plane y = 0 of the lens and corresponds exactly to the two-dimensional
construction.
Next, all necessary functions describing the optical system have to be introduced. Therefore, two explicit surface
functions z = f(x, y) and z = g(x, y) are defined to describe the lens surfaces. To completely describe the optical
paths of rays passing through the lens surfaces, it is necessary to introduce additional mapping functions s(x, y)
and t(x, y) for on-, and u(x, y) and v(x, y) for off-axis rays, and for x-direction and y-direction, respectively.
Fig. 2(b) shows an on-axis ray passing through an arbitrary point ~p1 = (x, y, f(x, y)) on the upper lens surface
which is then refracted in ~p2 = (s(x, y), t(x, y), g(s(x, y), t(x, y))) towards the focal point ~p3 = (0, 0, d). Similarly,

Fig. 2(c) shows an off-axis ray passing through an arbitrary point ~̂p1 = (−x, y, f(x, y)) on the upper lens surface

which is then refracted in ~̂p2 = (u(x, y), v(x, y), g(u(x, y), v(x, y))) towards the focal point ~̂p3 = (r, 0, d). All
optical path lengths can be expressed in sections using vector geometry as

d1 =~v0 · (~p1 − ~w0), d2 =n2|~p2 − ~p1|, d3 =|~p3 − ~p2| (1)

for on axis rays, and as

d̂1 =~v1 · ( ~̂p1 − ~w0), d̂2 =n2| ~̂p2 − ~̂p1|, d̂3 =| ~̂p3 − ~̂p2| (2)

for off-axis rays. The vectors ~v0 and ~v1 denote the directional vectors for on- and off-axis ray sets, respectively.
The position vector ~w0 denotes an arbitrary but fixed point on both plane wave-fronts and n2 denotes the



refractive index of the lens. Fermat’s principle is now applied to calculate all terms for x- and y-coordinate
dependency. The conditional equations are defined as

D1 =
∂

∂x
(d1 + d2) = 0, D2 =

∂

∂y
(d1 + d2) = 0, D3 =

∂

∂s
(d2 + d3) = 0, D4 =

∂

∂t
(d2 + d3) = 0 (3)

for on-axis, and as

D5 =
∂

∂x
(d̂1 + d̂2) = 0, D6 =

∂

∂y
(d̂1 + d̂2) = 0, D7 =

∂

∂u
(d̂2 + d̂3) = 0, D8 =

∂

∂v
(d̂2 + d̂3) = 0 (4)

for off-axis rays. The lens design as introduced in Fig. 2 is then fully described by the eight functional differential
equations (3) and (4) for six unknown surface functions f(x, y), g(x, y), s(x, y), t(x, y), u(x, y) and v(x, y). To our
knowledge, the existence and uniqueness of solutions to similar systems of functional differential equations in
two variables have not been discussed in detail nor proven up to now.
Supposing that there exists an analytic and smooth solution (f, g, s, t, u, v) to the functional differential equations
(3) and (4), Taylors theorem implies that the functions must be infinitely differentiable and have a power-series
representation in two variables. Thus the six functions can be given by power-series

f(x, y) =

∞
∑

i=0

∞
∑

j=0

fi,j(x− x0)
iy2j , g(x, y) =

∞
∑

i=0

∞
∑

j=0

gi,j(x− x1)
iy2j (5)

s(x, y) =

∞
∑

i=0

∞
∑

j=0

si,j(x − x0)
iy2j , u(x, y) =

∞
∑

i=0

∞
∑

j=0

ui,j(x− x0)
iy2j (6)

t(x, y) =
∞
∑

i=0

∞
∑

j=1

ti,j(x − x0)
iy(2j−1), v(x, y) =

∞
∑

i=0

∞
∑

j=1

vi,j(x− x0)
iy(2j−1) (7)

centered at the convergence points (x0, 0, z0) and (x1, 0, z1), respectively. The exponents for y-coordinate take
already into account that all functions are either even (provided by 2j) or odd (provided by 2j−1) in y-direction.
This symmetry follows immediately from the later introduced equations (10) and (11). The linear systems of
equations for the correspondent Taylor series coefficients have null vectors as only possible solutions and are
therefore discarded already in the Taylor series. The in Fig. 2(a) introduced and in equations (5)-(7) assigned
initial conditions

f(x0, 0) = z0, ∂xf(x, y)
∣

∣

(x0,0)
= m0, ∂yf(x, y)

∣

∣

(x0,0)
= 0

g(x1, 0) = z1, ∂xg(x, y)
∣

∣

(x1,0)
= m1, ∂yg(x, y)

∣

∣

(x1,0)
= 0 (8)

s(x0, 0) = x1, u(x0, 0) = x1, t(x0, 0) = 0, v(x0, 0) = 0

then satisfy the conditional equations Di = 0 for i = 1..8 and provide general solutions for the initial Taylor
series coefficients. The overall solution can be calculated by solving four equations

lim
x→x0

lim
y→0

∂n

∂xn

∂m

∂ym
Di = 0 (i = 1, 3, 5, 7), {n ∈ N1,m = 0} (9)

for x-coordinate dependency, four equations

lim
x→x0

lim
y→0

∂n

∂xn

∂m

∂ym
Di = 0 (i = 2, 4, 6, 8), {n = 0,m ∈ N|odd number m} (10)

for y-coordinate dependency, and six equations

lim
x→x0

lim
y→0

∂n

∂xn

∂m

∂ym
Di = 0 (i = 2, 4, 6, 8), {n ∈ N1,m ∈ N|odd number m}

lim
x→x0

lim
y→0

∂n−1

∂xn−1

∂m+1

∂ym+1
Di = 0 (i = 3, 7), {n ∈ N1,m ∈ N|odd number m}

(11)

for mixed terms with x-y-coordinate dependency. To derive the solution scheme, it is useful to introduce an
ordinal number o = m+ n. There are two cases needed to be solved:



1. For o = 1, the sets of equations (9) and (10) each result in four nonlinear algebraic equations for Taylor
series coefficients f2,0, g2,0, s1,0 and u1,0, and for f0,2, g0,2, t0,1 and v0,1. These equations have each two
general solutions, where one solution can be discarded as non-physical. The remaining unique solutions
can be expressed as functions of the initial, already known Taylor coefficients.

2. For o ≥ 2, The sets of equations (9), (10) and (11) result in three systems of linear equations for particular
Taylor series coefficients which can be expressed as compact matrix equations as follows
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= ~b(n,m) (12)

for x-coordinate dependency, y-coordinate dependency and x-y-coordinate dependency, respectively. The
matrix elements of Mx, My and Mxy consist of mathematical expressions which depend on Taylor series

coefficients calculated for the initial conditions. The needed vector elements of ~b(n,m) are mathematical
expressions only dependent on previously calculated Taylor series coefficients for o = 2, 3, .., (n+m−1) and
can be calculated for each ordinal number o = 2, 3, .. in ascending order and for all possible combinations
of n and m from equations (9)-(11). For known matrices Mx, My and Mxy and vectors ~b(n,m), the Taylor
series coefficients can be calculated by solving the linear systems of equations (12).

The presented solution provides a scheme to calculate the Taylor polynomial coefficients in equations (5)-(7) up
to an arbitrary but finite order. Taylors remainder theorem in two variables provides quantitative estimates on
convergence and the approximation error of the functions by its Taylor polynomials. The radii of convergence
for the expansions f(x, y) and g(x, y) are very important, as they indicate the maximum aperture that can be
achieved for given initial values. The presented calculations are fully implemented in Wolfram Mathematica.

3. PERFORMANCE EVALUATION FOR LINE IMAGING SYSTEMS

All calculated mathematical expressions, sorted in the right order, are exported as C++ compatible code and
embedded in a MATLAB-compatible mex file library. Once compiled, this library returns the calculated Taylor
polynomial coefficients for the lens surfaces f(x, y) and g(x, y) and the mapping functions s(x, y), t(x, y), u(x, y)
and v(x, y) for input parameters (θ,m0,m1, n2). The Taylor coefficients are calculated up to o = 15, resulting in a
total number of 81 Taylor coefficients for f(x, y) and g(x, y), respectively. This derived general three-dimensional
calculation provides solutions for any given (physically meaningful) initial parameter set (θ,m0,m1, n2).
For fixed design angle and refractive index, the only remaining free parameters to vary are the slopes m0 and
m1. The lens’ smoothness and symmetry additionally requires that the boundary condition ∂xf(x, y)|(0,0) =
∂xg(x, y)|(0,0) at the optical axis is fulfilled. In previous work, the evaluation of the solution space revealed the
wide range of possible pairs of variates m0 and m1 resulting in different lens configurations ranging from biconvex
to meniscus lens shapes, covered by this analytic design method.24

In order to compare the line imaging performance of a rotational symmetric lens (see Fig. 1(b)) and a free-form
lens (see Fig. 1(c)) solution, the following initial parameter set is selected (11◦,−0.2663,−0.0486, 1.5) for both
lens configurations. The ray tracing evaluation in this work is done using Synopsys’ Code V. As Code V (version
10.3) does not support the direct implementation of general Taylor polynomials centered at a point x0 6= 0,
the solutions have to be transformed. The two-dimensional lens profiles are fitted to asphere surfaces (ASP)
using an approximation method of least squares in MATLAB. The translated aspheres’ coefficients up to 16th

order can be directly imported into Code V and used to define the circular rotational symmetric lens. A 3D
viewing of ray tracing for the rotational symmetric lens is shown in Fig. 3(a). The three-dimensional free-form
lens surfaces are fitted to XY Polynomial (SPS XYP) surfaces using an approximation method of least squares
in MATLAB as well. The SPS XYP surface is defined by a series of polynomials (up to the 10th order) added
to a base conic and the polynomial is expanded into monomials of xnym, where (m+ n) ≤ 10, a lower but still
sufficiently high order compared to the order that the analytic solution provides (backed by the obtained ray
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Figure 3. 3D viewing of ray tracing for the circular rotational symmetric lens (a) and the rectangular free-form lens (b)

tracing results). Due to the lens’ symmetry, only about 20 coefficients for each lens surface do not equal zero.
A 3D viewing of ray tracing for the free-form lens is shown in Fig. 3(b). The entry aperture diameter of the
rotational symmetric lens measures 3.4 mm, the free-form lens has an entry aperture of 2.84 mm×3.2 mm to
result in identical aperture sizes. The f-number of the rotational symmetric lens is about f/2.7. The free-form
lens’ f-numbers are about f/2.8 in x-direction and about f/3.0 in y-direction, respectively. The same aperture
sizes of the lower lens surfaces ensure that all rays going through the first lens surface also reach the image plane.
To evaluate the line imaging performance of both lenses, the spot diagrams for different field positions along the
x-axis (see Fig. 3) are shown in Fig. 4 for the rotational symmetric lens (a) and the free-form lens (b). The added
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Figure 4. Spot diagrams for the circular rotational symmetric lens (a) and the rectangular free-form lens (b)

circles to the spot diagrams correspond to the Airy disk diameters (determined from real ray tracing) at the
reference wavelength. As expected by the design characteristics, the RMS spot diameters at the design angle 0◦

in case of the rotational symmetric lens and at the design angles 0◦ and 11◦ in case of the free-form lens are close
to zero (of the order of 0.5 microns), free from aberrations (like e.g., coma) and lie within the Airy disk diameters.
In direct comparison, the analysis for intermediate incident directions demonstrate a considerably better overall
line imaging performance for the free-form lens when compared with its rotational symmetric counterpart both
for the RMS as well as the 100% spot diameters.



4. PERFORMANCE EVALUATION FOR AN EXTENDED FIELD OF VIEW

In this section, the performance evaluation is extended to a field of view with very high aspect ratio while the
investigated systems remain identical as in Sec. 3. The RMS spot diameter field maps are calculated using Code

V for a 26◦×5◦ field of view. This chosen field of view appears arbitrary, but ensures for both lens designs that
all rays passing through the first lens surface still reach the image plane. Due to the systems’ symmetries, only
a quadrant of the entire field of view is needed to be analyzed. Fig. 5 shows the contour plots of the RMS spot
diameter distributions for the rotational symmetric lens (top) and the free-form lens (bottom).

Figure 5. RMS spot diameter distributions for the circular rotational symmetric lens (top) and the rectangular free-form
lens (bottom)

The RMS spot diameter distribution of the rotational symmetric lens shares the same symmetry as the optical
system. In case of a field of view with very high aspect ratio, the imaging performance hardly varies from the
previous line imaging performance and is mainly dominated by the x field dependency of the RMS spot diameters,
as the contour lines become more and more vertically aligned with an increasing horizontal field angle.
The situation is quite different in the case of the free-form lens: The contour lines of this RMS spot diameter
distribution can essentially be divided into two main regions. Horizontal contour lines for larger y field angles,
and (curved) vertical contour lines beyond the off-axis design angle, forming approximately rectangular contour
lines for this RMS spot diameter distribution.
As for most direct design methods, an optimization step is typically useful once the initial shape has been derived.
Therefore, monochromatic Automatic Design optimization with Transverse Ray Aberration as error function is
carried out in Code V to find better solutions for both lens systems for a 24◦×2.4◦ (10:1 aspect ratio) field
of view. The aspheric and polynomial coefficients of the rotational symmetric lens and the free-form lens are
optimized to reduce the RMS spot diameters within the specified field of view. Fig. 6 shows the contour plots
of the optimized RMS spot diameter distributions for the rotational symmetric lens (top) and the free-form lens
(bottom).
The RMS spot diameter distribution’s symmetry of the optimized rotational symmetric lens obviously remains
unchanged with its RMS spot diameter values now ranging between 3 and 11 microns, compared to 0.4 and 17
microns in case of the analytic design in the previous section and for the same field of view. The RMS spot
diameter distribution of the optimized free-form lens sees a shift and attenuation of the former sharp foci. The
RMS spot diameter values range now between 2 and 6 microns, compared to 0.6 and 14 microns in case of the
analytic design in the previous section and for the specified field of view. In direct comparison, the overall imaging
performance of the optimized free-form lens exceeds the performance of the optimized rotational symmetric lens
almost by a factor of two (in terms of maximal RMS spot diameter size) for this field of view with its 10:1 aspect
ratio. This result, however, is less about the absolute values itself, it should emphasize the potential use of



Figure 6. RMS spot diameter distributions for the optimized circular rotational symmetric lens (top) and the rectangular
free-form lens (bottom)

free-form optics for on-axis imaging applications where the specified field of view is very far from being circular
symmetric. Even for very common and moderate rectangular aspect ratios such as 16:9 HD video standard,
1.85:1 US widescreen cinema standard or 2.39:1 anamorphic widescreen cinema standard, it seems reasonable
to assume that the optical system design will also benefit from tailor-made free-form optics. These are possible
optical design questions to be addressed in future work. However, the question remains if the potential increase
in the image performance justifies the higher manufacturing complexity and cost of free-form optics.

5. CONCLUSIONS

Within the scope of this work, a new three-dimensional analytic optics design method has been presented that
allows the coupling of three ray sets with only two free-form lens surfaces. The convergence point formalism
and Fermat’s principle provided the basis for an analytical description enabling the simultaneous and accurate
calculation of two free-form lens surfaces up to very high orders. It is particularly notable that this general
analytic solution depends only on very few free parameters, ideal for optimization.
The line imaging performance evaluation for calculated lens surfaces given as high order Taylor polynomials
of two variables demonstrated the superiority of the free-form lens solution when compared to its conventional
rotational symmetric counterpart. For an extended field of view with 10:1 aspect ratio, the overall imaging
performance of the optimized free-form lens exceeded the performance of the optimized rotational symmetric
lens almost by a factor of two (in terms of maximal RMS spot diameter size).
Future work will further elaborate the development of this new optics design method for both imaging and
non-imaging optics applications. This implies that more than two surfaces, different symmetry considerations
and more generalized wave-fronts to image objects at a finite distance should be considered.
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