Simulación mediante dinámica molecular de la irradiación de sílice con iones rápidos pesados

> Workshop Technofusion 18-19 junio 2012, UC3M

A. Rivera, O. Peña, A. Prada, J. Olivares, F. Agullo-Lopez, M.J. Caturla

INDUSTRIALES ETSII | UPM

Multiescala

	Método	Aproximación	Átomos	Tamaño	Tiempo
1	Ab initio - DFT	E. Schrödinger a través de aproxi.	Todos	Unos pocos cientos de átomos	Estático Car Parizalla de pa
	Tight-binding	Repulsion - empírica	Todos	Unos miles de átomos	< ns
\rangle	Dinámica Molecular clásica	Potenciales Empíricos	Todos	Millones de átomos ~ (100nm)³	~ ns
	Monte Carlo cinético	Probabilidades de reacción	Sólo defectos	~ (1000nm)³	Horas - años
\rangle	Rate theory	Campo medio	Sólo defectos	Sin límites	Horas - años
, 	Dinámica de dislocaciones	Elasticidad + reglas corto alcance	Sólo dislocaciones	~ (1000nm)³	
	Elementos finitos	Ecuaciones constitutivas	Discretización del sistema		

Multiescala

Experimentos

Gonzalez, Gordillo, Panizo, Melgar, Peña, Olivares (CSIC), Pastor (Caminos), Fdez (IMM)

Boltzmann

FDTD

Nucleación de defectos en los sistemas W:C:He y Fe:He Acumulación de He

a) 107 K

MC

c) 186 K

d) 277 K

Excitación electrónica

- Not well understood
- Permanent damage
- Modification of properties
- Defect annealing
- Nano-track formation
- Complex energy transfer mechanisms

R = 5 nm

G. Schiwietz et al. NIMB 226, 683

(a)

- Swift ion irradiation =>
 - Electronic sputtering
 - Density variation
 - Defect production
- Relevant effects in nuclear fusion

- Can't explain ion-solid energy transfer
- We assume S_e (keV/nm) is transferred to lattice

Resulting temperature profiles compatible with electron MC simulations

 Ion irradiation strongly affects the material

30 keV/nm

0.955

0.95

30 keV/nm

Density variation

Density variation

 Related to refractive index

Conclusions

- Excitación electrónica afecta a la sílice
 - Cambio en densidad
 - Cambio en índice de refracción
 - Cambio en distribución de anillos
 - Cambio en distribución de ángulos
 - Generación de defectos puntuales
- Con ciertas hipótesis MD permite cuantificar los efectos de la irradiación
- Aparte del estudio fundamental esto tiene implicaciones en fusión y technofusion

Gracias