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The understanding of the circulation of ocean currents, the exchange of CO2 between atmosphere and oceans, and the influence of the oceans on the distribution of heat on a global scale is key to our ability
to predict and assess the future evolution of climate [1]. Global climate change is acting on sea breathing through mechanisms not yet understood [2]. The ocean is important in the regulation of heat and
moisture fluxes, and oceanic physical and bio-geochemical processes are major regulators of natural greenhouse gases. Understanding how oceans mix their waters is necessary to provide sound forecasts on
climate [1]. Global change also acts on marine biodiversity and threatens the survival of ecosystems and exploitable resources. To predict not only the efects of global change on the oceans, but also the
response time of climate feedback requires to improve detection systems and to open new lines of research.
We use a novel Lagrangian descriptor (function M, introduced in [3, 4]). It is based on the measure of the arclength of particle trajectories on the ocean surface at a given time. In [5, 6, 7] this technique
has been proved successfully to characterize the Kuroshio current. We employ this tool on velocity data sets on the Kuroshio current from SURCOUF project in the oceanic currents. In particular, invariant
manifolds, hyperbolic and non-hyperbolic flow regions are detected.

Fig. 1. Comparison of diverse Lagrangian techniques for τ = 50 at the same area; a) The function M ; b) the forward FTLE field; c) the backward FTLE field.
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The capability of function M is illustrated in figure 1, where is compared with traditional Lyapunov methods at the Kuroshio current. Function M is able to reproduce a richer structure than forward
and backward FLTE methods with i) lower computational time (about one third), ii) simpler numerical algorithm which helps in the reliability of the results, iii) half of the runs required than in combined
forward/backward FTLE to obtain finer structures.

Lagrangian tools provide a skeleton for the characterization of fluid flows. Underlying their description
is Poincaré’s idea of seeking geometrical structures on the ocean surface (the phase portrait) that can
be used to organize particles schematically by regions corresponding to qualitatively different types
of trajectories. Finding this partition of the phase portrait for aperiodic geophysical flows is still a
challenge. For instance, typical oceanographic spaghetti diagrams represent paths over time of messy
trajectories but these do not communicate information about regions in which particle evolutions are
qualitatively different. Tools such as invariant manifolds or Lagrangian Coherent Structures (LCS)
are more succesful for this purpose. Recently [3,4] there has been defined a new global Lagrangian
descriptor, that for a vector field reads:
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where v(x, t) is Cr (r ≥ 1) in x and continuous in t, x(t) is a trajectory, and (x1, x2) ∈ R2.
For all initial conditions x∗ in an open set B ∈ R2, at a given time t∗, we define the function
M(x∗, t∗)v,τ : (B, t)→ R as follows:
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For a given initial condition, the function M measures the length of the curve outlined by a trajectory
on the latitude/longitude plane. The trajectory is integrated forwards and backwards in time for an
appropriate time τ .

Fig. 2. Evaluation of the function M over the Kuroshio current between longitudes 148oE-168oE
and latitudes 30oN-41.5oN on May 2, 2003 take τ = 15

Singular lines are identified as manifolds since they are advected by the flow and are asymptotically
obtained from small segments aligned with the stable and unstable subspaces of the DHT (Distin-
guished hyperbolic trajectory). Figure 3 shows the overlapping of M with the stable and unstable
manifolds computed with the technique used in [8]. This confirms the coincidence of the lines with
the manifolds.

Fig. 3. The function M on May 2, 2003. τ = 15; inset of Fig. 2 with a piece of stable manifold
(black) and a piece of unstable manifold (green) of the DHT overlapping.
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