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Abstract 

 
In this paper we describe a new promising procedure to model hyperelastic materials from 

given stress-strain data. The main advantage of the proposed method is that the user does not 

need to have a relevant knowledge of hyperelasticity, large strains or hyperelastic constitutive 

modelling. The engineer simply has to prescribe some stress strain experimental data (whether 

isotropic or anisotropic) in also user prescribed stress and strain measures and the model almost 

exactly replicates the experimental data. The procedure is based on the piece-wise splines 

model by Sussman and Bathe and may be easily generalized to transversely isotropic and 

orthotropic materials. The model is also amenable of efficient finite element implementation. 

In this paper we briefly describe the general procedure, addressing the advantages and 

limitations. We give predictions for arbitrary “experimental data” and also give predictions for 

actual experiments of the behaviour of living soft tissues. The model may be also implemented 

in a general purpose finite element program. Since the obtained strain energy functions are 

analytic piece-wise functions, the constitutive tangent may be readily derived in order to be 

used for implicit static problems, where the equilibrium iterations must be performed and the 

material tangent is needed in order to preserve the quadratic rate of convergence of Newton 

procedures. 

 

1 Introduction 

 
When materials undergo large strains, the behaviour is nonlinear. Once the small displacement 

hypothesis is not valid, different possible (Seth-Hill) strain measures may be considered. These 

measures are nonlinear in displacements (e.g. Bathe 1996 [1]). Furthermore, different stress 

measures may also be used. These stress measures may be defined from the strain measures by 

work conjugacy. When a material is tested at large strains, then the obtained stress-strain plot is 

generally nonlinear for whatever measures we employ. Different material effects may be 

hidden in such nonlinearity: elasticity, plasticity, viscoelasticity, creep, etc (e.g. Kojic & Bathe 

2005 [2]). All these effects are nonlinear in nature when large displacements and strains are 

considered. However, there is a fundamental difference between truly elastic deformations and 

the rest of them, whether plastic or viscous. Elastic deformations must be recovered when the 

external actions decease and that recovery must take place without any energy dissipation, i.e. 

energy is also completely recovered. This observation (or fundamental constitutive hypothesis) 

implies that during elastic processes the stresses are a function of the total elastic strain (not of 
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their history) and derived form a stored energy function. The existence of that stored energy 

function guarantees that no energy is dissipated and the input work is fully recovered when the 

initial state is recovered. Material models that consider the existence of such stored energy 

function are known as hyperelastic and are the only ones that guarantee truly elastic behaviour 

(e.g. Ogden 1986 [3] and Simó & Hughes 1998 [4]). 

     If the assumption of the existence of a stored energy function solves the problem of 

mathematical and physical consistency (i.e. elastic materials behave truly elastically) without 

directly resorting to the Bernstein compatibility conditions, it introduces the new problem of 

obtaining that energy function. The stored energy may not be directly measured; its change 

may only be measured through the experimental stress-strain curves. However at the same time 

it is rather impossible to define an explicit expression for a stored energy function which yields 

a given material behaviour. Hence, a large variety of stored energy function forms or “shapes” 

have been proposed motivated on the behaviour of different materials. The Ogden model (e.g. 

Ogden 1997 [3], Ogden 1972 [5]), the Mooney-Rivlin model (Mooney 1940 [6], Rivlin 1948 

[7]), the Yeoh model (Yeoh 1990 [8]), the Arruda-Voice model (Arruda & Boyce 1993 [9]) 

and the Blatz-Ko models (Blatz & Ko 1962 [10]) are just some well-known examples. These 

models frequently contain some material constants that must be obtained using an optimization 

procedure to yield a possible “best fit”. A global minimum is of course seldom guaranteed and 

some special procedures are frequently needed, as for example the use of the Levenberg-

Marquardt algorithm (Twizell & Ogden 1983 [11]). Even with these inconveniences, the 

situation may be considered acceptable for the isotropic case, but for the transversely isotropic 

case or for the orthotropic case, the situation is rather worse since few energy functions are 

available and the predicted behaviour by those functions may deviate considerably from that 

obtained from experiments. Some of these anisotropic models are those of Holzapfel (e.g. 

Holzapfel 2000 [12] and therein references), Itskov and Aksel (Itskov & Atksel 2004 [13]), 

Diani et al (Diani et al 2004 [14]) and Holzapfel et al (Holzapfel et al 2000 [15]). 

     In summary, the desire of an engineer is to just prescribe some stress-strain data in given 

stress and strain measures (for example nominal stresses and logarithmic strains) and let the 

“program” do the rest of the work such that the predicted behaviour exactly matches the 

prescribed experimental data of course keeping the truly elastic (hyperelastic) behaviour; i.e. it 

is a What Your Prescribe Is What You Get (WYPIWYG) model. The problem now is to obtain 

a stored energy function that does the job. 

     A handy procedure of this kind for isotropic materials has been introduced by Sussman and 

Bathe (Sussman & Bathe 2009 [16]). In their procedure they use piece-wise splines to 

interpolate the experimental data and obtain a continuum smooth representation of the 

behaviour of the material. Those analytic functions are used as intermediate tools to obtain the 

derivative of a stored energy function through an inversion formula in an also piece-wise 

setting. Once the derivative of the stored energy function is known, the energy function may 

also be obtained (although it is never needed in practice). 

Their procedure is exact in representing the “prescribed” material behaviour (i.e. in also 

replicating possible measuring errors, which should be previously eliminated by the user) and 

hence may be used in substitution of any known isotropic material behaviour (Ogden, Mooney-

Rivlin, etc.). This procedure, for the isotropic case is already available in the general purpose 

Finite Element code ADINA (ADINA R&D [17]).  

     The objective of the present paper is to show that the idea from Sussman and Bathe 

(Susmann & Bathe 2009 [16]) of using piece-wise splines interpolation-based models can be 

extended also to transversely isotropic materials and to orthotropic materials given some 

assumptions and some simplifying approximations. It will be shown that, although there is no 

experimental evidence for those assumptions to be valid in the anisotropic cases, they basically 



affect the multiaxial nonproportional behaviour, still allowing for a perfect match of the given 

experimental data in the preferred directions. Here we note that equivalent assumptions are 

implicitly given by models which use an explicit form of the stored energy function and that 

the accuracy of those assumptions can be checked only through extensive experimental testing, 

not available at this moment in the literature to the authors’ knowledge. 

     The layout of the paper is as follows. First, in Section 2 we address the continuum 

interpolation of experimental data through piece-wise splines. In Sections 3 and 4 the general 

procedure to obtain the stored energy function is presented. Although the procedure is different 

for different sets of experimental data, the general layout is common to all procedures. In 

Section 5 we show that any arbitrary user-prescribed “experimental” data can be almost exactly 

captured by the model. In Section 6 we show a prediction for a real material and actual 

experiments. 

 

2 Initial continuum interpolation of discrete experimental data 
 

    One of the basic ingredients of the model is the spline-based interpolation of the stress-strain 

experimental measures. This technique interpolates the measured data points (xi, yi) using 

polynomials of up to third degree (cubic splines) between any two points. 

The coefficients of each spline are forced to accomplish specific conditions to guarantee some 

smoothness requirements, being the resulting piecewise function twice continuously 

differentiable in all the experimental range and exactly passing over the data points. Physically, 

this means that we wish the elasticity moduli and its derivative to be continuous, which are 

attractive computational and smoothness requirements for hyperelastic behaviour. Some 

different boundary conditions at the ends of the interpolation range can be applied, although 

their effect over the resulting function is only reduced to a small region near the boundaries if 

the number of points is reasonably large. 

The basic spline equation between two consecutive experimental points xi and xi+1 is 

 

                          
          

                                  (1) 

 

where the number of points is N+1. The exact interpolation of the data points (xi, yi) gives two 

equations for each polynomial 

 

                                                                                                     (2) 

 

     Between two subdomains, two additional conditions are established to enforce continuity of 

the first and second derivatives of the function across segments  

 

                                                                                            (3) 

 

Two more (boundary) conditions are needed to complete the system of equations and be able to 

determine the set of 4N coefficients. A usual approach is to impose 

 

                                                                   (4) 

 

which defines the so-called “natural” splines. Obviously, other boundary conditions may be 

applied. 



     Normalizing each subdomain and taking the first derivative at the N+1 points as 

independent variables, it can be shown that the previous 4N equations reduces to the following 

tridiagonal system of N+1 equations 

                    
                                                                                             (5) 

                        
 

which can be solved very efficiently even for large values of N. Finally, the spline coefficients 

can be easily computed from this solution and, hence, the interpolation is fully determined for 

the experimental domain. In case the range for strains for a specific problem is larger than that 

given by the experimental data, the extrapolation given by the end-point conditions are used. 

Of course, alternatively, the user may prescribe some “guessed” extrapolation data. 

 

 

3 Special decomposition of the stored energy function. 

 
As it is well known, the deformation gradient F may be decomposed into an stretch part and a 

rotation part. The stretch part is that of interest to compute strain and stress measures. The right 

polar decomposition provides the relation 

                                                                        (6) 

 

where R and U are the (orthogonal) rotation tensor and the (symmetric) right stretch tensor, 

respectively. It is well known that for an isotropic hyperelastic material the strain energy 

density W is an invariant of the right stretch tensor U. As a direct consequence, W(U) may be 

regarded as a function of any invariants of that tensor, and particularly of the three principal 

stretches λi, that is 

 

                                                                     (7) 

 

     Moreover, if the material is incompressible, the widely accepted Valanis-Landel hypothesis 

(Valanis & Landel 1967 [18]) allows the decomposition of the strain energy function W(λ1, λ2, 

λ3) into a sum of three independent, but equal in form, functions      . Taking into account 

the relation between the principal stretches and the principal logarithmic (Hencky) strains, 

         , the previous additive decomposition can be rewritten in terms of Ei, taking the 

equivalent form 

 

                                                                    (8) 

 

where E = lnU represents the symmetric second-order Hencky strain tensor in the material 

configuration. 

     Focusing now on the description of a transversely isotropic material due to the existence of 

a preferred direction of anisotropy it is obvious that there exists a rotation tensor Q for which 

the isotropic invariance relation W(E) = W(QEQ
T
) is not fulfilled (an arbitrary rotation not 

parallel to the preferred direction, a0, would be an example). Therefore, for this type of 

materials the potential W is no longer an invariant of E and, in a general deformation state in 

which strain principal directions are not coincident with preferred material directions, it would 

not be correct to assume formulations only based on principal strains. Instead, for this 

particular case, W has to be considered as a function of the direction that characterizes the 

anisotropic behavior as well, that is, it must be W = W(E,a0). Evidently, for an orthotropic 



material, the other two preferred directions b0 and c0 have to be added as arguments of W, 

resulting in that case 

 

                                                                      (9) 

 

     An easy way to consider all these dependences of W is to simply employ the 6 components 

of E in the material basis            as the independent variables. Hence 

 

                                                                      (10) 

 

     Before providing an additive decomposition for this more complicated case, we try to 

expand the Valanis-Landel decomposition for incompressible isotropic materials in a general 

basis. First, note that      can be expanded as 

 

                                                           (11) 

 

where   and   are constants,       includes the linear terms and        the second-order 

ones. Then, Equation (10) results in 

 

                                       
    

    
             (12) 

                                                                   (13) 

 

where the incompressibility condition           has been used. If we now represent the 

tensor E in a general basis not coincident with the Lagrangian material axes, it yields 

 

               
     

     
      

      
      

                               (14) 

i.e. 

                                                                     (15) 

 

which, as it is clear, is a decomposition only valid to the second order. It can be easily shown 

that if higher order terms are considered, then the additive decomposition of W has terms with 

coupled strain components. These additional terms should be considered to ensure that W(E) is 

invariant up to higher orders under generic rotations. In the principal axes of deformation, 

Ogden (Ogden 1974 [19])  has shown that the strain energy given in eqn. (8) is valid to the fifth 

order, providing some theoretical support to the Valanis-Landel hyphotesis, with is also 

verified through experiments (e.g. Treolar 1944 [20], Ogden 1997 [3]) 

     Motivated by this additive uncoupled second-order decomposition of W for isotropic 

materials, we postulate a similar decomposition of the strain energy function for orthotropic 

materials as 

 

                                                                 (16) 

 

where, as explained above, W has been expressed as a function of the six components of the 

symmetric tensor E in the reference frame defined by the material preferred directions 
          . Note that, in this case, six different functions have been used, which is in 

accordance with the number of the unknown parameters needed to describe an orthotropic 

incompressible material at small strains with the volumetric and isochoric behaviors fully 

uncoupled. We want to note that such a function is used to describe the deviatoric stress-strain 



behavior within the framework of small strains, so its applicability to multiaxial large 

deformations using linear relations to logarithmic strains is somewhat justified. 

     This last decomposition is the definitive expression that we will employ in the following 

sections, in which we give insight into the general procedure to obtain piecewise spline 

representations of the first derivative of the unknown functions    . 

 

4 Procedure to obtain the stored energy function 
 

In order to easily introduce the method, but without loss of the generality of the procedure, we 

particularize the strain energy function to the transversely isotropic case and briefly explain the 

methodology to obtain the first derivative of the unknown functions    . There exist different 

procedures to determine the shear terms           depending on the available set of measured 

data points. These procedures are addressed in detail elsewere (Latorre & Montans 2013 [21]). 

In a similar way as explained herein, all the components of W could be calculated in the more 

general orthotropic case (Latorre & Montans 2013 [22]) 

     For a transversely isotropic material, taking e3 as the preferred direction of the material, W 

takes the specific form 

 

                                                               (17) 

 

with only three different functions to determine. The strain energy W is expressed in a 

reference frame for which      , so the term     is not considered in the decomposition. We 

study the case in which the available experimental measures are the tension-compression stress 

distribution          and the transverse strain distribution         , both obtained from a uniaxial 

test performed in the (transversely) isotropic axis e1. Hence, in view of the decomposition of 

W, the following relations hold 

                      
    

                                                                  (18) 

    
                

 

with p representing a pressure-like quantity (hydrostatic pressure) required to maintain 

incompressibility. Note that the principal strains are subjected to the incompressibility 

condition of the material, i.e.                   . If the pressure p is eliminated from 

the above equations, they reduce to 

 

                     
                                                      (19) 

  
                                                                          (20) 

 

     From the first equation we can obtain a piecewise representation of     , as we explain 

below. Then, the second equation will provide the function     . This last equation can be 

regarded as a compatibility condition between terms     and    . 

     First, the data points          are fit using a piecewise cubic spline, as shown in Section 2. 

We call        that piecewise spline function. Secondly, each transversal strain measure     is 

regarded as a scalar,    say, multiplied by each longitudinal strain measure    . Note that, since 

the parameter    may take a different value for each measured data point, the relation           

must not be regarded as a linear approximation of the distribution       . Hence 

 

                     
                                                     (21) 



 

which is an expression that can be approximately inverted to obtain each value           

through: 

                     
 
                                                    (22) 

 

     The spline function        makes possible the calculation of the terms in the summation. 

We call this solution the inversion formula. To prove it, assume now that           is a linear 

relationship (that is, a is constant) and simply substitute the solution provided in Eqn. (22) into 

eqn. (21) to obtain 

 

          
 
                

 
                                           (23) 

 

provided that            , which is a very usual condition. Also note that the equality 

                 has been carried out due to the fact that the spline representation        

passes exactly through the measured data. However, in real situations    may not be constant. 

Then the inverse formula given above is not exact but the series are still convergent if     . 

In these cases, it can be shown that the error of the inversion formula is small and can be 

neglected for practical purposes. 

     Once all the values           are calculated using the inversion formula the corresponding 

piecewise spline function,         , is built. This last representation, together with the 

compatibility relation given in Eqn. (20), let us obtain the remaining function          

evaluated at the known points                       . With the values          , the 

piecewise spline representation          is finally built. 

 

     For convenience, a step-by-step outline of the previous process is given: 

 

1. Measured data points:          and          from a tension-compresion uniaxial test. 

2. Build the piecewise spline function        from         . 

3. Obtain the values            and calculate           with the inversion formula. 

4. From all the values          , construct the spline representation         . 

5. Calculate           using Eqn. (20) and                        . 

6. Form the piecewise spline function          from all the values obtained in step 5. 

 

5 Prediction of the behaviour for different analytical models 

 
For the isotropic case, the strain energy function reduces to 

 

                                                              (24) 

 

with only one function to be determined from experimental data. Since there are no preferred 

directions, the strain energy function is expressed in the principal Lagrangian axes and the 

shear terms are not explicitly considered. In order to use our model to obtain  , the procedure 

detailed in the previous section can be followed with the transverse strain distribution initially 

prescribed as                   , as effectively occurs for an incompressible isotropic 

material. Hence, the isotropic model of Sussman & Bathe is recovered. 

In Figure 1 the stress-strain distribution obtained from a uniaxial test modeled with the Ogden 

hyperelastic model (see for example Ogden 1997 [3]) 



        
 
                

  

  
          

                              (25) 

 

with material constants 

                                                                      (26) 

                                                                  (27) 

 

is represented (solid circles). With those “measured” data points and the prescribed strains 

                  , the function   has been calculated using the inversion formula. Using 

this function, the hyperelastic stresses predicted by our model are calculated through 

 

                  
                                                   (28) 

 

and are also depicted (triangles) in Figure 1. Note that the agreement with the initial spline 

which interpolates the “experimental” points is exact, as should be expected due to the linearity 

of the transverse strain behavior. 

     Next, we show the capabilities of the orthotropic model to reproduce experimental results 

when the initial data points are obtained from three different uniaxial tests performed in the 

preferred directions of the material. With these data at hand, the three longitudinal strain 

energy terms     can be obtain with the spline methodology and the inversion formula. The 

remaining shear components of W, i.e.          , could be obtained from the corresponding 

shear tests. 

 
Figure 1: Initial piecewise spline interpolations of assumed data σ(E) from a uniaxial test 

performed on an isotropic (Ogden) material. Calculated stresses using the transversely isotropic 

splines-based model with initial distribution                   . 



 

     In Figure 2, three assumed stress-strain distributions          obtained from the corresponding 

uniaxial tests are represented (solid marks). Also, the predicted results of the full orthotropic 

splines-based model are shown (hollow triangles). We note that the specific values of stresses 

and strains are irrelevant for the purpose of this section, since we just want to show the 

predictive capabilities of the procedure for arbitrary experimental data. 

     As can be seen in the figure, the results obtained with the model reproduce the 

“experimental” points very accurately. However, unlike for the isotropic case, the prediction of 

the data is not truly exact since the three compatibility conditions analogous to Eqn. (20) that 

appear in this case (one for each uniaxial test) are only approximately fulfilled in a least-

squares sense. For more details of the underlying fitting process the reader is referred to 

(Latorre & Montáns 2013 [21]). 

 

 
Figure 2: Initial spline interpolations of assumed data          from uniaxial tests performed on 

an incompressible orthotropic material. Calculated stresses using the splines-based model. 

 

 

 

6 Example: prediction of the behaviour of human soft tissue 

 
Martins et al. present in their work (Martins et al 2011 [23]) experimental data from uniaxial 

tensile tests for transversely isotropic human living tissues and characterize the damage process 



in the tissue samples. We are only interested in modelling the hyperelastic non-damaged 

behaviour, so we try to reproduce only some partial results they provide. 

      As in the examples from the previous section, Figure 3 shows the experimental data and the 

predicted results provided by the spline-based model. As can be observed, the hyperelastic 

stresses calculated reproduce very accurately the experimental measures in both directions. 

 

     The experimental data points are given in terms of stretches and Cauchy stresses, hence the 

proper conversion has been previously performed (         ). Furthermore, since only 

uniaxial tension measures are provided, both stress distributions        have been regarded odd 

functions of the strains in order to be able to apply the inversion formula. If compression 

measures had been available, they should have been employed instead. However we note that 

the predictability capability of the experimental data would not have been much different in the 

range of interest. 

 

 
 

Figure 3: Measured Cauchy stress points          and          from uniaxial tests on human 

living tissues in the anisotropic and transverse directions (Martins et al 2011 [23]). Calculated 

stresses using the transversely isotropic spline-based model. The damage process is not 

considered. 

 

  



6 Conclusions 

 
In this paper we have presented a handy procedure to model large strain elasticity. The 

procedure is based on a piece-wise spline interpolation from which a stored energy function is 

derived. Since the model is based on a stored energy function, the behaviour is truly elastic in 

the sense that the strains and the introduced energy are fully recovered when the external 

actions cease, so no energy dissipation takes place. 

     The procedure is based on the idea from Sussman and Bathe for isotropic materials, but it is 

generalized to transversely isotropic materials and to orthotropic materials through an energy 

decomposition similar to that of Valanis and Landel that in the general case is an 

approximation. It is shown that arbitrary stress-strain plots (either from experiments or 

motivated whatsoever) are almost exactly replicated. Hence possible material instabilities are 

also captured by the model, but of course a check may be performed if this type of behaviour is 

not a desired feature. We have shown these properties through different examples.  
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