
The Dicode Workbench: A Flexible Framework for the
Integration of Information and Web Services

Manolis Tzagarakis Guillermo de laCalle
and Eduardo Alonso-Martfnez
Departamento de Inteligencia Artificial

Universidad Politecnica de Madrid
28660 Boadilla del Monte, Madrid, Spain

{gcalle,ealonso}@infomed.dia.fi.upm.es

and Nikos Karacapilidis
Computer Technology Institute & Press "Diophantus"

and University of Patras
26504 Rio Patras, Greece

tzagara@upatras.gr, nikos@mech.upatras.gr

ABSTRACT
Aiming to address requirements concerning integration of services
in the context of "big data", this paper presents an innovative
approach that (i) ensures a flexible, adaptable and scalable
information and computation infrastructure, and (ii) exploits the
competences of stakeholders and information workers to
meaningfully confront information management issues such as
information characterization, classification and interpretation,
thus incorporating the underlying collective intelligence. Our
approach pays much attention to the issues of usability and ease-
of-use, not requiring any particular programming expertise from
the end users. We report on a series of technical issues concerning
the desired flexibility of the proposed integration framework and
we provide related recommendations to developers of such
solutions. Evaluation results are also discussed.

General Terms
Management, Design, Human Factors.

Keywords
Service integration, e-applications service architectures, data
exchange, mashup application, data-intensiveness, collaborative
work, collective intelligence.

1. INTRODUCTION
Traditional software systems were usually designed to work as
standalone applications. However, during the last years, new
requirements and challenges have emerged; systems frequently
need to exchange heterogeneous data and interoperate with other
applications. The associated integration of data and services is a
complex and challenging issue, which depends on many factors

such as system architectures, operating systems, type of the
components, information to be integrated, coupling and use of the
systems, performance requirements, data heterogeneity and
semantics, user interfaces, middleware, and availability of
resources [1].

At the same time, individuals and organizations are confronted
with the rapidly growing problem of information overload [2]. An
enormous amount of content already exists in the "digital
universe", i.e. information that is created, captured, or replicated
in digital form, which is characterized by high rates of new
information that is being distributed and demands attention. This
enables us to have instant access to more information than we can
ever possibly consume [3]. When working together, people have
to cope with this diverse and exploding digital universe; they need
to efficiently and effectively collaborate and make decisions by
appropriately assembling and analyzing enormous volumes of
complex multi-faceted data residing in different sources.

In all domains of our societies, e.g. e-business, e-commerce, e-
learning, e-science, and e-government, it is nowadays easier to get
the data in than out. Big volumes of data can be effortlessly added
to a database; the problems start when we want to consider and
exploit the accumulated data, which may have been collected over
a few weeks or months, and meaningfully analyze them towards
making a decision. Admittedly, when things get complex, we need
to identify, understand and exploit data patterns; we need to
aggregate big volumes of data from multiple sources, and then
mine it for insights that would never emerge from manual
inspection or analysis of any single data source. In such settings,
the meaningful exploitation of collective (human) intelligence is
of great importance and certainly sets a big research challenge.

As results from the above, tasks performed (and tools used)
nowadays are increasingly information and interaction intensive.
Thus, issues related to the guidance of the information worker
through the space of available data and the indication of relevant
information to facilitate and augment collaboration and decision
making activities are of major importance. Generally speaking,
information management related tasks need to be streamlined and
automated. Recent findings clearly indicate that information
management costs too much when it is not well organized and
meaningfully automated [4]. They also call for investments in
innovative software that reduces or eliminates time wasted,
reduces management overheads, streamlines collaborative
processes, and automates the overall workflow. Return on such
investments can be both tangible (e.g. time or money saved) and
intangible (e.g. more valuable information, easier extraction of

http://dia.fi
http://upm.es
mailto:tzagara@upatras.gr
mailto:nikos@mech.upatras.gr

hidden information, increase of information workers' satisfaction
and creativity, improved collaboration).

Aiming to address the above requirements concerning
interoperation and integration of information and services in the
context of "big data", this paper presents the approach developed
in an FP7 EU project, namely Dicode (http://dicode-project.eu/).
The proposed solution (i) ensures a flexible, adaptable and
scalable information and computation infrastructure, and (ii)
exploits the competences of stakeholders and information workers
to meaningfully confront information management issues such as
information characterization, classification and interpretation,
thus incorporating the underlying collective intelligence. At the
same time, it pays much attention to the issues of usability and
ease-of-use, not requiring any particular programming expertise
from the end users.

The remainder of the paper is structured as follows: The next
section briefly reports on existing integration technologies and
related integration efforts. Section 3 provides an overview of the
Dicode project, focusing on the diversity of the services involved
and their underlying technology. Section 4 is devoted to the
project's approach towards integration of information and
services, namely the Dicode Workbench; issues discussed include
the technological solutions adopted to cope with the diversity of
services, the design adopted towards facilitating interoperability,
the interface and interoperability of services, data integration from
both a conceptual and a technological point of view, as well as
examples of use of the proposed approach. Finally, evaluation
results and concluding remarks are given in Section 5.

2. BACKGROUND
A key challenge for integration systems is the adaptation of
existing (legacy) systems. To ensure a successful integration, two
factors are crucial: coupling and adaptation to standards. These
factors may hamper the tasks of designing and implementing
software systems, converting them into products that do not scale
and hence will not be used. The coupling of a system is given by
the degree of interdependency among modules and programs. It is
desirable that this interdependency remains as little as possible,
since a loose coupling between components facilitates the
modification of any of the modules without affecting the rest of
the parties. Adaptation to standards relies on the correct design
and documentation of the system. Well-planned and designed
systems have interfaces for integration between its modules. By
using standards, the need to develop specific software to perform
this integration is minimized.

Service-oriented architectures (SOA) [5] aim to address the above
requirements; they are based on well-defined standards, which are
focused on low coupling between modules. SOA is not a tool,
technology or product, but a concept, a set of rules and principles
to design software, regardless of the technology used in its
development. SOA relies on the creation of some interfaces that
abstracts away the underlying complexity. By using such
interfaces, clients and providers may establish communication by
only knowing the inputs and outputs of the services. SOA is
usually implemented using web services. There are two main
technologies to develop web services: WS-* (SOAP-based web
services) and RESTful [6]. RESTful web services appeared as an
evolution of WS-* to alleviate its complexity. RESTful services
give more importance to information while WS-* are more
focused in message exchange.

Following the philosophy of SOA and based on web services
technologies, a new concept for the integration of applications and
services has appeared during the last years, namely the web
mashup [7]. Web mashups are web applications combining data,
functionalities, services and applications from different sources to
define more complex services. The main features of mashups are
the combination and aggregation of services and the visualization
within a common interface. Two styles of mashup applications
can be defined considering its architecture: client-based mashups
and server-based mashups. The former are focused in user's web
browsers to integrate and manipulate data coming from external
sources. On the other hand, server-based mashups manipulate the
information on the server and return the final results to the user's
web browser. Independently from the style, mashup architectures
are usually divided into three layers:

• data layer, to represent the information; technologies
like XML, JSON and KML are used to codify the
information.

• access layer, to retrieve the data used in the mashup;
usually, data is accessed using API services
implemented as web services (SOAP, REST).

• visualization layer, to present the aggregated
information to users; user interfaces are developed using
HTML, CSS, JavaScript or AJAX.

Generally speaking, there are several initiatives for developing
mashup applications, such as Yahoo Pipes [8], Google Mashup
Editor (GME), Microsoft Popfly, Intel Mash Maker [9], and
QedWiki. All of them enable users to combine different services to
create complex applications, but they present a common
drawback: creating a new mashup application requires high
technical (programming) skills that end-users usually do not have.
Thus, most users cannot easily take advantage of this technology.

Projects and initiatives with objectives similar to those of Dicode
include GRANATUM (http://granatum.org), Doc@Hand
(http://www.doc-at-hand.org), Health-e-Child (http://www.health-
e-child.org), Virolab (http://www.virolab.org), SIMBioMS
(http://simbioms.org), VPH Network of Excellence
(http://www.vph-noe.eu), and Ricordo (http://www.ricordo.eu).
These either do not deal with big data issues, or they do not focus
on the full (i.e. technical, conceptual and interface) integration of
data mining and collaboration support issues which traditionally
have been addressed independently [10-11]. Paying much
attention to the data intensiveness of contemporary business
contexts, Dicode aims to achieve such a full integration.

Other approaches developed to address information and service
integration issues are discipline-specific. For instance, several
efforts have been conducted in the area of Bioinformatics. A well-
known example is my Experiment, an online research environment
that supports the social sharing of bioinformatics workflows, i.e.
procedures consisting of a series of computational tasks, which
can then be reused according to their specific requirements [12].
The Galaxy Project (http://galaxy.psu.edu/) offers a web-based
platform allowing researchers to perform and share analyses.
BioCatalogue [13], a Web based service registry, allows users to
annotate and comment on the available services in order to assist
them in identifying suitable services.

In any case, the above approaches demonstrate a set of limitations,
mainly concerning flexibility in the integration of services offered,
as well as incorporation of the collective intelligence. As made

http://dicode-project.eu/
http://granatum.org
http://www.doc-at-hand.org
http://www.healthe-child.org
http://www.healthe-child.org
http://www.virolab.org
http://simbioms.org
http://www.vph-noe.eu
http://www.ricordo.eu
http://galaxy.psu.edu/

; £ DICODE Workbench - Workspaces £ DICODE Workbench - Create Worksp... x

^ JK hodgkJn,dia,fi.upm.es:8080/dtcode/work5pace.jsp?Jd=l&nm-UCl: Clinico-Genomic Research Assimilator

"'"diCDCJE
Add Services Save Config Workspace Info Help

Storage Serv ice - - X Co l labora t i ve Workspace

Upload Configure Abo * Mind-map view Forum view Argumentation view

H Users files

DevelopementGuidelm'

DicodeDOW

DevelopementGuidelm A r r a v E x p r e s s

StateoftheArt «OiaodeDOW

Active Workspace: CW t e s t 1

J

3 S
Locat ions o f Tw i t t e r

7 May 2012

: :cd*CC,7

•

:

Pubmed ^ X !

New Collaborative | cw tes t1 [T [^ ^ ^ ^ ^ ^ -

71 PublfJjedH V -

Welcome to PubMed
Mnhile

Top hash tags f r o m

=-l -.-'----•-,

Tf^ 26Apr2(

3 W 111222

1^ ,..„,,, i
^ ^ ^ Re: Title 3

1 lb
_#|*pKUjcc

0 Jul 2012

27Ao*2012 " ^ ^ 1 7 ^ 2 0 1 2

DeveWpementGuklefeies Test

9

Figure 1. A snapshot of the Dicode workbench

clear in the next sections, in the Dicode project we have
developed a highly flexible integration framework that enables
users to easily set-up and work with their own collaborative
workspaces (exploiting diverse web applications) by just using the
mouse, without any need for programming. At the same time,
through appropriately integrated collaboration and decision
making support services, we provide users with means to foster
and augment the human intelligence in order to extract the
necessary insights for the solution of the issue under
consideration.

3. THE DICODE PROJECT
The goal of the Dicode project is to provide the necessary
infrastructure and environment that makes it easy for people to
cope with a diverse and exploding digital universe when working
together. In particular, Dicode aims at enabling efficient and
effective collaboration and decision making by appropriately
assembling and analyzing enormous volumes of complex multi-
faceted data residing in different sources. The environments under
which Dicode is designed to be used are characterized by data-
intensiveness and cognitive complexity. Representative examples
of such environments, which serve as the test-bed of the Dicode
approach, concern:

• clinical researchers and bio-scientists which need to
locate and assemble huge amounts of data (including
clinico-genomic data, molecular pathways, DNA
sequence data etc.) and collaborate in order to draw
new, insightful conclusions;

• radiologists, radiographers, clinicians, patients and
researchers in the pharmaceutical industry, which
engage into a decision making process with respect to
clinical decisions and drug testing by examining a huge
amount of heterogeneous and annotated datasets
(including blood tests, physical examinations, X-rays,
MRI scans, and free text journals of patients on their
experience from treatments);

• marketing and brand specialists who need to forage web
pages, blogs, forums and wikis for high level
knowledge, such as public opinions about specific
products and services, who monitor public responses to
a new marketing launch, or who need to filter, collate
and analyze findings to inform their strategy.

At the heart of Dicode's approach is the synergy of human
(collective) and machine (artificial) intelligence, which
traditionally have been considered separately. In the project's
context, such synergy is accomplished by providing, integrating
and orchestrating a set of interoperable services that reduce the
data-intensiveness and complexity overload at critical decision
points to a manageable level, thus permitting stakeholders to be
more productive and concentrate on creative and innovative
activities.

3.1 Diversity of Services in Dicode
Acknowledging the fact that in the context of big-data, users are
required to use and orchestrate a diverse range of services, Dicode
aims at providing the necessary technical infrastructure to

sYW
Figure 2. Structure of a service integrated within the Dicode workbench

integrate such required services and make them easily accessible
to the end users. The categories of services provided by the
Dicode technical infrastructure include:

• Data acquisition services, which enable the purposeful
capturing of tractable information that exists in diverse
data sources and formats, including external
repositories. Such services offer the necessary interfaces
to retrieve and store locally remote resources. A range
of technologies are supported to retrieve data that
include web services as well as web crawlers to acquire
web-based resources.

• Data pre-processing services, which efficiently
transform raw data in a way that is suitable for use
within the system. Such services enable the
transformation of documents into appropriate forms, as
well as data cleansing (e.g. removing noise from web
pages, discarding useless database records).

• Data mining services, which are built on top of a cloud
infrastructure and other prominent large data processing
technologies to offer functionalities such as high
performance full text search, data indexing,
classification and clustering, directed data filtering and
fusion, and meaningful data aggregation. Advanced text
mining techniques, such as named entity recognition,
relation extraction and opinion mining, aid the
extraction of valuable semantic information from
unstructured texts.

• Collaboration support services, which facilitate the
synchronous and asynchronous collaboration of
stakeholders through adaptive workspaces, efficiently
handle the representation and visualization of the
outcomes of the data mining services (through
alternative and dedicated data visualization schemas),
and accommodate a workflow engine that enables the

orchestration of a series of actions for the appropriate
handling of data in each case.

• Argumentation support services, which augment
individual and group sense-making and decision­
making by supporting stakeholders in arguing about
relevant information and knowledge, as well as by
providing them with appropriate notifications and
recommendations (taking into account parameters such
as preferences, competences, expertise etc.). Based on
pre-defined formalisms, this category of services
deploys a set of reasoning mechanisms to aid
stakeholders in monitoring the evolution of a
collaborative discussion and assessing its outcome.

The above services rely on different frameworks to provide their
functionality: they can be REST-based or rely on the SOAP
framework (http://www.w3.org/TR/soapl2-partl/). The last two
categories of services, as well as the interoperation of them with
the data mining services, are specifically targeted towards the
exploitation and enhancement of the collective intelligence of the
stakeholders involved.

4. THE DICODE WORKBENCH
4.1 Description
Central to the Dicode approach is the concept of "workbench".
Workbenches are Web-based applications that integrate - at the
level of the user interface - various data mining and collaboration
support services and make them available to the users (Figure 1).
The objective is to provide users with a uniform and easy access
to the available services. The type and number of services
appearing on the workbench can be configured by end users
according to the needs of the particular context and problem
under consideration. New services can be easily integrated into
the workbench. A widget-based approach [14] has been adopted
to implement and integrate services within the Dicode workbench.

http://www.w3.org/TR/soapl2-partl/

Since the Dicode workbench is a web application, the idea of web
widgets is appropriately applied.

A web widget can be defined as a small stand-alone software
application that can be embedded within a web page and executed
(used) by the end user. It is important to note that in widget
applications, the host does not control the content of the widgets.
This means that the behavior of the widget's contents is at the
responsibility of the widget itself. Widget functionality or content
cannot be managed or modified by the host. The host can only
control whether the widget is shown or not, as well as the
placement of the widget on the screen.

There exist different technologies, libraries and frameworks to
develop widgets, but the most common ones are HTML,
JavaScript and Adobe Flash. For the Dicode workbench, we used
HTML5, CSS3 and JavaScript to implement the web interface
(front-end) for the services developed by service providers. Other
options are also acceptable.

As shown in Figure 1, widgets within the Dicode workbench are
distributed in three "logical" columns: two small ones on the sides
and one bigger in the middle of it. By default, the collaborative
workspace (i.e. a particular web service supporting multiple-view
argumentative collaboration among stakeholders) appears in the
center, while the rest of services are located on the sides.
However, the Dicode workbench allows users to maximize any of
the widgets located on the sides. When a widget is maximized, it
changes its position with the widget that is in the middle at that
moment (thus reflecting where the focus of the attention is each
time). Users sharing a workspace (e.g. belonging to a particular
community of practice) may use the same set of services; in any
case, they can customize their own view of the shared workspace
by relocating (moving) the widgets. The position of the widgets is
stored when a collaboration session terminates.

The Dicode workbench also allows users to easily add new
services to the workspace. Users can search and add new services,
provided that these have been previously registered by the service
providers or developers in the system (the process of registering a
new service is discussed in Section 4.2).

Apart from these aspects, which are primarily oriented towards
end users, service developers have to consider that each service
will be loaded into an iframe element [15]. Thus, all services have
to be suitable to be displayed in such HTML control. Issues
concerning development of services to be integrated in the Dicode
workbench are discussed in the next subsection.

4.2 Developing services for the Dicode
workbench
As mentioned above, the Dicode workbench uses iframe elements
to display the services, but it is not responsible for their behavior.
The only technical requirement for a service to be integrated into
the workbench is that it can be loaded and displayed into an
iframe. Inside an iframe, any web application that usually uses
web technologies such as HTML, CSS and JavaScript can be
displayed. The recommendation for developers is to use state-of-
the-art web technologies such as HTML5, CSS3, JavaScript or
jQuery.

Figure 2 depicts the structure of a service integrated within the
Dicode workbench. The service performs a concrete task or a set
of tasks; for instance, it may retrieve information from a database,

analyze datasets or execute complex algorithms. The results of
this task are presented through a web interface. This web interface
is deployed in a web server and it is accessible via a URL/URL
This URL/URI is used by the Dicode workbench to display the
web interface within an iframe element. In this way, a
bidirectional communication can be established, i.e. information
may flow from the service to the Dicode workbench and from the
workbench to the service, for instance, to communicate actions
executed by the user in the workbench or data provided by the
user to parameterize the service.

To integrate an application or a service in the Dicode workbench,
service providers and developers have to follow the following
steps:

1. Develop the service, i.e. to implement the "logic" of the
service. A service might be as simple as displaying a
message or perform an addition, and as complicated as
running complex algorithms using high performance
toolkits. These services can use any technology or library
because the Dicode workbench is not aware about it.

Developers should also take into account that the service
will be probably invoked from outside the service. Thus, a
public interface to invoke the service should be created.
Our recommendation is to create web service interfaces
based on RESTful or WS-* (SOAP) services [6].

2. Develop a web interface of the service, to enable users
interacting with the service. Users should be able to
invoke and use the service from this web interface. In fact,
this web interface acts as a "wrapper" for the service.
Additionally, if the service needs or can be invoked with
different parameters, the web interface could also provide
facilities to users to establish such parameters.

Designers and developers have to carefully consider the
available space devoted to widgets in the Dicode
workbench. Widgets cannot properly display traditional
web applications designed for high resolutions.
Applications for widgets are more similar to mobile
applications regarding user interface. In particular, for the
Dicode workbench, widgets can have two possible states
as commented for the layout shown in Figure 1:
maximized in the middle or minimized on the sides.
Ideally, the web interface should suit to the actual
resolution by using a "liquid and elastic design" [16].

Depending on the type of integration required for the
service, developers have also to consider some additional
requirements listed in Section 4.3.

3. Deploy the service and the web interface. Both elements
have to be accessible through the Internet via an
URL/URI. Thus, they have to be deployed in a web
server.

4. Register or publish the service. The Dicode workbench
can display only those services that have been previously
registered in the system. A registry of annotated services
is maintained by the Dicode workbench. To register a
service, service providers have to provide metadata about
their service, such as its name and description, annotations
according to the sensemaking operations contained in the
DicodeONtology (DON) [17], or the URI where the
service is running. The latter is the most important field to
integrate the service within the workbench.

4.3 Integrating services
As discussed above, the Dicode workbench can be considered as a
mashup web application, allowing users to share resources under
a common framework. Mashup applications usually consist of
applications showing together different components such as, for
instance, iGoogle [18]. But traditionally, these components
neither share information nor communicate in any other way. In
the Dicode project, we are moving one step ahead by enabling
users to move data from one widget to another, just by using the
mouse. The system architecture is designed to maintain a loose
coupling among all integrated resources.

Besides the integration at the level of the user interface (called
"light integration" in Dicode), services are also integrated at a
deeper, semantic level (called "full integration"). Such integration
allows services to exchange data in order to share data between
services. This allows for example to support "drag-and-drop"
functionality between the Dicode services, in order to support the
passing of necessary data from one service to another. The two
different modes of integrating services in Dicode are described in
more detail below.

1. Light integration. It can also be called "visual
integration". This consists in the traditional mashup
approach, i.e. services/applications are displayed together
within the same web interface. No interactions happen
between services, thus each service works as a standalone
application.

2. Full integration. Services are not only displayed within
the same application, but data can be exchanged among
them. Different mechanisms have been developed to
communicate data among services. Web interfaces of
these services need to implement a set of functions to
properly carry out such communication.

The Dicode workbench provides both integration methods to end
users. Service developers can select the level of integration
desired for their services.

4.3.1 Light Integration
This is the integration approach followed by the mashup
application, where different components are just displayed
together within a common interface. To carry out this form of
integration in the Dicode workbench, service developers only
need to follow the steps described previously, i.e. develop the
service, develop the web interface, deploy both elements in a web
server and publish the service (URI to the web interface) in the
Dicode workbench. As soon as these steps are successfully
completed, services can be located and added by users to their
shared workspaces.

4.3.2 Full Integration
This integration approach allows interaction and data sharing
between components integrated within the same platform.
Interactions in the Dicode workbench are envisioned as events
triggered when users move (drag with the mouse) items from one
widget to another.

We have designed a loosely coupled architecture based on the
idea of message passing interfaces (MPI) [19]. In particular, we
exploited the postMessage mechanism provided by HTML5 [20].
This mechanism allows applications running in different windows
or frames to communicate information (plain text) across different

origins and domains. Although the content of the message can
only be plain text, this is enough to communicate almost
everything using, for instance, URIs or REST references.

Figure 3. Communication between widgets in the Dicode
workbench

As shown in Figure 3, the Dicode workbench acts as a message
"mediator" between the different widgets. When the Dicode
workbench detects that the user wants to move one element from
one widget to another, it takes the element from the origin source
and send a message containing the element to the target widget.
Then, the target widget receives the message, interprets it and
performs the actions associated to that message. Both reception
and sending messages are optional for widgets (iframes), while it
is at the responsibility of service developers to incorporate them.
These functionalities are implemented in JavaScript using the
facilities of HTML5. Some examples of the code to be
incorporated in the web application interface are given below.

a) Sending an item

There are two requirements needed to send items in the Dicode
workbench:

• All HTML elements which can be dragged must be labeled as
draggable;

• To define the information to be sent when the item is dragged.

<!doctype html>
<html>
<head>
<scriptsrc="js/dragDrop.js"></script>
</head>
<body>

<a href="#" draggable-'true" ondragstart=
event)"> iteml

<a href="#" draggable-'true" ondragstart=
event)"> item2

<a href="#" draggable-'true" ondragstart=
event)"> item3

</body>
</html>

"processDragStart (this.href,

"processDragStart (this.href,

"processDragStart (this.href,

Figure 4. Example code to allow items to be dragged

To label an element as draggable, an attribute to the tag of this
element has to be added as shown in the example code given in
Figure 4. Working like this, browsers can identify those elements
as draggable.

In Figure 4, a file named dragDrop.js and containing JavaScript
code is imported. This file contains the functions to handle the
drag behavior of an item and receives the associated messages.
The full content of dragDrop.js file is given in Figure 5.

To establish the information to be sent, it is needed to add an
event to the draggable items and define a function to process the
event. Usually, this function will define the information to be
exchanged between widgets. There are two options to add an
event to an item:

• To include the event in the HTML code as shown in Figure
4; ondragstart is the name of the event that is triggered
when users start a drag action; processDragStart is the
name of the function to process the event.

• To invoke the function addEvent, included in the code
shown in Figure 5, for each draggable item. Using tools and
libraries such as, for instance, cssQuery [21], the DOM of
the document can be examined looking for items defined as
draggable ones.

Once the "listeners" for the events are established, service
developers have to codify the functions to attend the events. As
described above, we have adopted a message passing strategy.

/* dragDrop.js V

varaddEvent = function(obj, evType, fn){
if (obj.addEventListener) { //W3C DOM
obj.addEventl_istener(evType, fn, false);

} else if (obj. attach Event) { //IE DOM
obj['e' + evType + fn] = fn;
objjevType + fn] = function() { obj["e" + evType + fn](self.event);};
obj.attachEvent("on" + evType, obj[evType + fn]);

}
};

functionprocessDragStart(ref, e){
var message;
message = '{"Item": {\n' + Y'type": "File",\n' + Y'name": '"',\n' + Y'uri": "'+ref+"',\n' +'\t"format": '"',\n'

+ Y'description": '"'\n' + '\t}\n}';
if (parent. postMessage) {
parent, post Message(message,"*");

} else {
alert ("Your browser does not support the postMessage");

}
};

functionOnMessage (event) {
var message = event.data;
//Check the location of the caller

//Opera earlier than version 10
if ('domain' in event) {
if (event.domain != "hodgkin.dia.fi.upm.es:8080") {return;}
}

// Fire fox, Safari, Google Chrome, Internet Explorer from version 8 and Opera from version 10
if ('origin' in event) {
if (event.origin != "http://hodgkin.dia.fi.upm.es:8080") {return;}
}

// TODO Treatment of the received message
alert ("RECEIVED: "+message);
};

onload = function () { addEvent(window, "message", OnMessage); };

Thus, that function should be used to construct the message that
the service wants to communicate to the other services. In Figure
5, an example of such function is provided. In this case, one
message is created following the message structure adopted. After
the message is created, it is sent to the parent window, i.e. the
Dicode workbench.

b) Receiving an item

To receive messages in the application, two requirements are
needed:

• To create a listener to receive messages in the
application/service. An example of how to create such a
listener is shown at the end of the code given in Figure 5.
This listener will be associated to the window/iframe where
the application is running.

• To define and codify the treatment of the information
received into the message. In the example of Figure 5, the
function OnMessage has been defined for such purpose. In
this case, the function OnMessage checks the origin of the
message to prevent from unauthorized uses, and then the
content of the message is shown in a popup window.
Treatment of messages can be as simple as presented, but it

Figure 5. Complete code of JavaScript filedragDrop.js

http://hodgkin.dia.fi.upm.es:8080

can be as complex as service developers need.

Methods proposed can be refined by service developers by using
jQuery [22, 23] or other libraries. At the moment, interactions
between widgets are triggered by users when they move elements
from one widget to another. However, this architecture could be
extended to allow widgets/services to trigger events for sending
data to other widgets/services by following a "publish-subscribe"
design pattern.

c) Message formats

The message passing approach requires that both emitter and
receiver agree on a common format for exchanging information.
In the Dicode project, we have adopted a message format based
on JSON [24]. A preliminary set of basic messages has been
defined to be used by the applications/services within the Dicode
workbench. These are listed in Table 1 (parts appearing in italics
have to be completed by the sender with the proper information).
This set is not closed; it could be easily expanded with more types
of messages.

Table 1. Set of JSON message in the Dicode workbench

Type of item Message format
{Item: {

type: File,
name: name,

_.. uri: uri,
format: format,
description: description

}
1
{Item: {

type: Image,
name: name,

Image uri: uri,
description: description

}
1
{Item: {

type: Text,
Text content: content

}

1
{Item: {

type: Link,
Link uri: uri

}
1

4.4 Usage Examples
The mechanisms facilitating the integration of the diverse range of
services provided in Dicode allows users to introduce different
work practices, which differ from those with which they engaged
during their daily routine. Before the Dicode workbench, users
working with high-throughput scientific data (such as those found
in clinico-genomic, biomedical and marketing research) had to
"cross" them among several applications, which can be web and
desktop based. Such work practices introduce great overhead in
managing the relevant data and applications, ultimately disrupting
the everyday work of users. In the context of the Dicode
workbench, such tasks can be streamlined and automated,
relieving users from such concerns.

In particular, within the context of the Dicode workbench users
are able to:

• Pass parameters and start the execution of data mining
services by simply dragging and dropping data sets from
one widget onto the desired algorithm residing in a
different widget.

• Invoke data pre-processing services by dragging and
dropping onto them the data they need to transform.

• Access the outcomes of the invoked data mining
services, which are automatically published in the
respective widgets, after the services terminate their
execution.

• Discuss the outcomes of the data mining services and
involve them in decision making processes, by
uploading them into the collaboration workspace (by
dragging and dropping the relevant files from one
widget to the other).

The integration model in Dicode also allows the uploading of data
mining algorithms into collaboration workspaces; such algorithms
can be treated as any other collaboration item. In addition, such
items (representing data mining algorithms) can be executed from
within the collaboration workspace. Our approach allows users to
monitor their status. After the execution of these algorithms, their
outcomes are automatically uploaded into the collaboration
workspace, and can be part of an ongoing discourse. For instance,
users may comment on them, express arguments in favor or
against the algorithm and/or the data source chosen etc. (more
about this kind of collaborative analysis of data and the associated
incorporation of the collective intelligence offered by the Dicode
approach can be found in [25]).

5. DISCUSSION AND CONCLUSIONS
The Dicode project goes through an ongoing evaluation process.
The first evaluation round aimed to assess a series of key success
indicators concerning the maturity of the technology used, as well
as the usability and acceptability of Dicode services in three real-
life contexts (clinic-genomic research, medical decision making,
and opinion mining from Web 2.0 data). Evaluators were asked to
read a service-specific scenario, experiment with the Dicode
services (and workbench), and fill in a mixed-type questionnaire
(responses expected were in both quantitative and qualitative
form). As far as the Dicode workbench is concerned, the sample
consisted of 58 evaluators with varying background knowledge in
bioscience fields. Answers to the quantitative questions of the
questionnaires were given in a 1-5 scale, where 1 stands for 7
strongly disagree' and 5 for 7 strongly agree' [26-27].

Figure 6 summarizes the evaluators' responses relative to the
overall quality of the Dicode Workbench. As shown, the
evaluators agreed (median: 4, mode: 4) that its objectives are met,
that it is novel to their knowledge, that are satisfied with its
performance and that they are overall satisfied with it. The
evaluators were neutral (median: 3, mode: 3) with respect to
whether the Workbench addressed the data intensive decision
making issues. Related comments were: 'Some kind of 'roadmap'
would be appreciated'; 'Getting started is a bit confusing for a
new user'. As long as its acceptability is concerned (such results
are not shown in Figure 6), the evaluators agreed (median: 4,
mode: 4) that the Workbench has the full set of functions they
expected, that its interface is pleasant and that they will
recommend it to their peers/community.

Dicode Workbench- Overall Quality

III
1 • ill

1 1 1
Median \\cz- =

I Overall Quality-I think the service addressedthe data intensive decision making issues

I Evaluator confidence on "Overall Quality-I think the service addressed the data intensive decisionmaking issues"

I Overall Quality-I think the objectives of the service are met

I Evaluator confidence on "Overall Quality-I think the objectives of the service are met"

I Overall Quality-I think the service is novel to my knowledge

Evaluator confidence on "Overall Quality-I think the service is novel to my knowledge"

Overall Quality-I am satisfied with the performance of the service

Evaluator confidence on "Overall Quality-I am satisfied with the performance of the service"

Overall Quality-Overall I am satisfied with this service

Evaluator confidence on "Overall Quality-Overall I am satisfied with this service"

Figure 6. Evaluation results for the Dicode Workbench

Taking into account the feedback received from the first
evaluation phase of the Dicode project, it is shown that our
overall approach offers an innovative solution that reduces the
data-intensiveness and overall complexity of real-life
collaboration and decision making settings. Future work
directions concern (i) the improvement of Dicode workbench in
terms of its documentation, functionalities of user interface and
overall performance, and (ii) its testing in various data-intensive
contexts towards further assessing its applicability and potential.

We argue that the Dicode workbench provides a flexible, easy-to-
use and scalable integration framework, which provides two types
of integration: (i) Light integration, during which any web
application can be used within the workbench as long as it
publishes a REST-based interface. Users may register and
integrate any web application by providing the application's URL.
Such features make the workbench a powerful tool even for
novice users, (ii) Full integration, where a set of mechanisms for
exchanging data within the context of the workbench is defined,
thus enabling the integrated services to exchange data. Such way
of integrating services goes beyond mashup-based approaches,
which in general do not allow sharing of information among
applications; support for such features must be explicitly designed
and implemented.

The Dicode workbench exploits and augments the underlying
collective intelligence. Our approach is able to enhance the way
that people think and act during a collaborative and data-intensive
task by making it easier for them to mine and interpret data, and

accordingly propose, amend or enhance collective actions [28].
Such advancements will ultimately shape innovative work
methodologies for dealing with the problems of information
overload and cognitive complexity in diverse collaboration and
decision making contexts. Both individual and collaborative sense
making will be augmented through the meaningful exploitation of
prominent data processing and data analysis technologies. The
solution offered is user-friendly and built on the synergy of human
and machine intelligence. It masks the overall complexity of the
underlying issues, thus allowing stakeholders to easily interact
with large and complex data, providing them with meaningful
recommendations upon which they can base their decisions and
actions. Moreover, machine-tractable knowledge concerning the
full lifecycle of collaboration and decision making is accumulated
and maintained. Consequently, the solution offered by the Dicode
project augments the productivity of stakeholders.

7. REFERENCES
[I] Ziegler, P., and Dittrich, K. R. 2004. Three Decades of Data

Integration - All Problems Solved? In 18th IFIP World
Computer Congress (WCC 2004), Volume 12, Building the
Information Society,volume 2004, 3-12.

[2] Economist. 2010. Data, data everywhere,
[http://www.economist.eom/node/l 5557443].

[3] Kirsh, D. 2000. A Few Thoughts on Cognitive Overload,
Intellectica, 1(30): 19-51.

[4] Eppler, M.J. and Mengis, J. (2004). The Concept of
Information Overload: A Review of Literature from
Organization Science, Accounting, Marketing, MIS, and
Related Disciplines. The Information Society, 20(5):325-
344.

[5] Newcomer, E., and Lomow, G. 2004. Understanding SOA
with Web Services (1st ed.). Pearson.

[6] Pautasso, C , Zimmermann, O., and Leymann, F. 2008.
Restful web services vs. "big" web services: making the right
architectural decision. In: Proceeding of the 17th
international conference on World Wide Web. WWW '08.
ACM, New York, NY, USA, 805-814.
DOI:http://dx.doi.org/10.1145/1367497.1367606.

[7] Yu, J., Benatallah, B., Casati, F., and Daniel, F. 2008.
Understanding mashup development. IEEE Internet
Computing 12 (5), 44-52.
DOI:http://dx.doi.org/10.1109/MIC.2008.114

[8] Loton, T. 2008. Working with Yahoo! Pipes, No
Programming Required. Lotontech Limited.

[9] Ennals, R., Brewer, E.,Garofalakis, M.,Shadle,M., and
Gandhi, P. 2007. Intel mash maker: join the web. SIGMOD
Rec. 36 (4), 27-33.

[10] Maglogiannis, I., Delakouridis, C , and Kazatzopoulos, L.
2006. Enabling collaborative medical diagnosis over the
internet via Peer-to-Peer distribution of electronic health
records. Journal of Medical Systems, 30(2): 107-116.
DOI=http://dx.doi.org/10.1007/sl0916-005-7984-l

[II] Chronaki, C.E., Katehakis, G, Zabulis, X.C., Tsiknakis, M.
and Orphanoudakis, S.C. 1997. WebOnCOLL: Medical
collaboration in regional healthcare networks. IEEE Trans.
Inform. Technol. Biomed., 1(4):257 -269.

[12] Goble, C.A., Bhagat, J., Aleksejevs, S., Cruickshank, D.,
Michaelides, D., Newman, D., et al. 2010. myExperiment: a
repository and social network for the sharing of
bioinformatics workflows. Nucleic Acids Research,
38:W677-W682.

[13] Bhagat, J., Tanoh, F., Nzuobontane, E., Laurent, T.,
Orlowski, J., Roos, M., et al. 2010. BioCatalogue: a
universal catalogue of web services for the life sciences.
Nucleic acids research, 38:W689-W694.

[14] Swick, R.R. and Ackerman, M.S. 1988. The X toolkit: more
bricks for building user interfaces, or widgets for hire. In
Usenix Winter 1988 conf, 221-228.

[15] W3schools - Iframe.
[http://www.w3schools.com/tags/tag_iframe.asp]

[16] Cederholm, D. 2005. Bulletproof Web Design: Improving
flexibility and protecting against worst-case scenarios with
XHTML and CSS. New Riders Press.

[17] Thakker, D., Yang-Turner, F., Lau, L., and Dimitrova, V.
2011. Socio-technical Ontology Development for Modelling
Sensemaking in Heterogeneous Domains. Workshop on
"Ontologies Come of Age in the Semantic Web" at the 10th
International Semantic Web Conference (ISWC) (Bonn,
Germany, October 2011). OCAS2011. 60-71.

[18] iGoogle. [http://www.google.es/ig].

[19] Snir, M., Otto, S. W., Walker, D. W., Dongarra, J., and
Huss-Lederman, S. 1995. MPT. The Complete Reference.
MIT Press, Cambridge, MA, USA.

[20] Hickson, I. 2010. HTML5 Web Messaging. Editor's Draft 15,
W3C (June 2010). [http://dev.w3.org/html5/postmsg/].

[21] cssQuery.[http://dean.edwards.name/my/cssQuery/].

[22] jQuery, [http://jquery.com/].

[23] Ben Alman-jQuerypostMessage.

[http: //benalman. com/proj ects/j query-po stmessage-plugin/].

[24] JSON. [http://www.json.org/].

[25] Karacapilidis, N., Riiping, S., Tsiliki, G. and Tzagarakis, M.
2012. Towards a Meaningful Analysis of Big Data:
Enhancing Data Mining Techniques through a Collaborative
Decision Making Environment. In: Markus Helfert, Chiara
Francalanci and Joaquim Filipe (eds.), Proceedings of the 1st
International Conference on Data Technologies and
Applications (Rome, Italy, July 25-27, 2012). DATA 2012.
141-146.

[26] Nielsen, J. 1991. Designing Web Usability: The Practice of
Simplicity. New Riders Publishing.

[27] Norman, D.A. 1998. The Design of Everyday Things. The
MIT Press.

[28] Alag, S. 2008. Collective Intelligence in Action. Manning
Publications Co.

http://www.economist.eom/node/l
http://dx.doi.org/10.1145/1367497.1367606
http://dx.doi.org/10.1109/MIC.2008.114
http://dx.doi.org/10.1007/sl0916-005-7984-l
http://www.w3schools.com/tags/tag_iframe.asp
http://www.google.es/ig
http://dev.w3.org/html5/postmsg/
http://dean.edwards.name/my/cssQuery/
http://jquery.com/
http://www.json.org/

