

Use of Java Cards in a telematic voting system

Justo Carracedo Gallardo1, Ana Gómez Oliva2,
 Emilia Pérez Belleboni3, Jesús Moreno Blázquez4,

 Sergio Sánchez García5

Universidad Politécnica de Madrid, España
EUITT. Telecomunicación

 +34 91 336 78 02
{carracedo1, agomez2, belleboni3, jmoreno4}@diatel.upm.es

ssanche5@proyectos.diatel.upm.es

Abstract

This paper presents a general view of the telematic voting system developed by its
authors, with a special emphasis on the important role that smart cards play in
this scenario. The use of smart cards as basic pieces for providing secure
cryptographic operations in this type of voting scheme is justified. The differences
and advantages of Java Cards in comparison with the “classical” smart cards
(those that completely conform to the ISO/IEC 7816 standard) are also discussed.
As an example, the paper describes one of the applets implemented in the voting
Java Card as part of the general telematic voting application.

1. INTRODUCTION

Telematic voting systems are electronic voting systems in which the ballot box is
remote and the voter uses computer networks to deliver the vote. This voting
system provides the voters with many benefits, such as the ability of issuing the
vote from many different voting points and the possibility of getting the election
result quickly. Nevertheless, both voters and political parties do not accept this
kind of voting system yet. The main reason of this rejection lies on the fact that
they do not trust this type of system (Mercuri, 2001) (Internet Voting
Report, 2000).

Telematic voting systems, as other conventional voting methods do, must provide
the users with some fundamental guarantees of security. It is necessary to assure
the authentication of the voters and to simultaneously protect the anonymity of the
voter at the moment of issuing the vote. It is also necessary to assure that each
voter can only vote one time. Nevertheless, telematic voting systems must not
only emulate the conventional voting methods but they must also be able to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148664961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Use of Java Cards in a telematic voting system

 2

handle new threads that may come from a malicious person, due to the fact that
programs and digital information can be easily modified. In the design of
telematic voting scenarios, this circumstance obliges to include appropriate
countermeasures to address these risks and consequently to inspire the confidence
of the citizens. For this reason, it is very important for the voters to have some
type of receipt or digital “supporting document” that allows them to verify the
vote that they have cast. In the telematic voting scenario developed by the authors
(the VOTESCRIPT system1), the smart card is an essential and constituent
element of the system. All the participants in the system, both voters and
management authorities, need to use their personal smart cards to carry out the
tasks defined by the system.

As elements of the general system architecture, smart cards have three essential
functions:

a) To guarantee the authentication of the voter. Based in a set of keys and
personal data stored in the card, the voter is able to demonstrate his or her
right to participate in the election. Similarly, the different management
authorities and supervisors of the system have their own smart cards to
guarantee the proper authentication.

b) To be a reliable device to carry out certain cryptographic operations. Smart
cards that are able to execute public key algorithms strongly guarantee the
security of the operations and the privacy of the voters, facilitating the
anonymity of the chosen option.

c) To properly protect personal data and keys. The operations of ciphering
and signing using the private key are always carried out inside the card. As
smart cards are tamper-resistant, keys and other sensible information
generated during the voting process can’t be illicitly extracted from them.

In this paper (in section 3 and 4) we discuss the restrictions of the use of
“classical” smart cards (those which completely conform whit the ISO/IEC 7816
standard (ISO/IEC 7816)), and we present the benefits provided by Java Cards.
Java Cards are a valuable tool to improve the security of the system. Indeed, these
cards offer system developers the facility of storing small applications (applets) in
the memory card with the guarantee of integrity and inviolability that every
confidential data stored in a smart card has. To emphasize the important role
played by smart cards in the global behaviour of telematic voting systems, in
section 2 of this paper we present a summarized description of our voting system,
the VOTESCRIPT system. Finally, in section 5, we describe the implementation
of one of the operations carried out by an applet in the voter smart card. This

1 This system has been developed within VOTESCRIPT projects (Secured Electronic Voting
based on Advanced Cryptography) sponsored by National Council for Science and Technology of
Spain (TIC2000-1630, TIC2002-4223 and TIC2003-2141)

J. Carracedo, A. Gómez, E. Pérez, J. Moreno and S. Sánchez

 3

description illustrates the structure and functionality of a APDUs (Application
Protocol Data Units) used in communications between the applets stored in the
smart card and the computer that acts as a voting terminal.

2. SCENARIO OF COMMUNICATION

The VOTESCRIPT system (Carracedo et. al, 2003) tries to support telematic
voting in environments where all the votes are collected in a single ballot box,
although we are working on its adaptation to environments in which the presence
of multiple ballot boxes would be necessary.

2.1 AUTOMATIC AGENTS AND SYSTEMS

In the VOTESCRIPT communication scenario (Figure 1) a set of automatic
systems takes part:

o Authentication Points (APs). They are kiosks equipped with a card reader,
wherein the voter is authenticated by the system as the first step of the voting
process.

o Ballot Points (BPs). They are cabins equipped with a card reader that helps the
voter to issue his vote. In VOTESCRIPT, the voter can choose, during the
authenticating process, any of the multiple existing APs and is able to issue
the vote in any of the existing BPs.

o An Administrator of authentication. This automatic agent sends back to the
voter an authorization ticket that enables him to issue his vote on the Ballot
Point.

o Several Intervention Systems that complement the work of the Administrator.
Every Intervention System is controlled by an Inspector, designated by each of
the groups of voters or candidatures authorized to supervise the voting
process.

o A Ballot box that gathers the votes and gives back voting receipts to the
voters.

o A Counter for tallying the votes once the election has finished.

o Verification Points which allow the voter to verify that his vote has been
considered and counted correctly.

Use of Java Cards in a telematic voting system

 4

2.2 PARTICIPANTS

The people who participate in the process are:

o Voters. Every voter is in possession of a voting smart card that has been
specially defined for VOTESCRIPT system. This card is able to carry out
several cryptographic operations.

o A Manager of the Administrator System.

o Inspectors. Each Inspector manages one of the Intervention Systems.

o An Election Authority who is in charge of the general control of the system
and responsible to solve possible claims.

The Administrator and the Intervention Systems, along with the Manager of the
Administrator System and the Inspectors, constitute the equivalent, in this
telematic system, to the conventional electoral board.

2.3 KEYS AND IDENTIFIERS

In a previous stage, before the election begins, each voter receives one voting
smart card and a voter’s identifier. The voter must go to a specially assigned sites
where the APs and BPs are installed, using his smart card to get the proper
authorization from the Administrator and to thus be able to cast his vote.

Figure 1. VOTESCRIPT system architecture

Authentication
Point

Administrator Intervention
Systems

Ballot Box Counter
Ballot Point

Verification
Point

Election
Authority

J. Carracedo, A. Gómez, E. Pérez, J. Moreno and S. Sánchez

 5

The Administrator, the Intervention Systems, the Ballot box, the Counter and the
Election Authority have a pair of keys (public and private). All these public keys
are known by all telematic agents and all participants in the voting system. In
addition, the voters have a pair of keys (public and private) stored in their cards
before the election begins. The certificated public key is well known by all the
telematic agents of the system and by the Election Authority.

2.4 GLOBAL BEHAVIOUR OF THE SYSTEM

Due to space constraints, we will not describe in this paper the detailed secured
protocols through which the different system’s agents communicate. However, in
order to understand the kind of tasks that have to be carried out using smart cards,
a brief description of the global behaviour of the voting system that has been
developed is presented next.

First, the voter inserts his smart card into the Authentication Point in order to get
the authorization to issue his vote. In order to do that an application, which could
be called voter’s application, has been developed. This application will interact
with both the voter and the Administrator agent. This agent is in charge of
verifying the voter’s identity and checking that he has not yet voted. All the
Intervention Systems carry on the same tasks although there is not direct contact
between them and the voter. In case of positive matching, the Administrator will
send back to the voter the requested authorization which will be stored in the
smart card.

Next, the voter will head for the Ballot Point carrying his card, where the voter’s
application will ask him for the voting option. Afterwards, the selected option
together with the authorization received in the previous step, will be sent to the
Ballot Box.

In order to allow the voter to verify that his vote has been properly considered, the
Ballot Box will send him back a receipt with the information regarding the issued
vote. At the end of the process, this receipt –stored in the card- provides the voter
with enough proof to make a claim in case of disagreement with the results.

Once the voting period has finished, a direct intervention of the Inspectors, the
Manager of the Administrator System and the Election Authority will start the
process of the Counter agent, guaranteeing the tallying process and the publication
of the final results.

Afterwards, a short period of time for the verification procedures will be opened,
that is when the receipt could be used in case of disagreement with the results.

Use of Java Cards in a telematic voting system

 6

3. VOTING WITH SMART CARDS

3.1 THE NEED TO HAVE AN ELECTRONIC SUPPORT FOR SECURED
STORING: USE OF CLASSICAL SMART CARDS

As mentioned in the preceding section, every entity participating in the ballot, i.e.
voters and voting systems agents, must have its corresponding pair of a secret key
and a public key (the last one provided in a certificate format). To guarantee the
security of the voting system, voters and participant agents must keep the keys
safe in an adequate manner.

Moreover, as indicated previously, during the voting process two pieces of
information are created (authorization ticket and voting receipt), both of them
protected by cryptographic algorithms. These pieces must be stored in some kind
of reliable and easily transportable support that could assure the availability of this
information when required in the voting process.

For that reason, it is necessary to be ready to have an electronic support for a
secure and strong storage: we have concluded that a smart card is the most
appropriate device to support this kind of storage. The smart card allows, on one
hand, to keep safely the private keys of voters and agents so as to guarantee their
identity; on the other hand, it permits to store the pieces of information that are
generated along the process.

In the initial stages of the development of the project the “classical” smart cards
were used (those fully in accordance with the ISO/IEC 7816 standard). These
cards were employed to perform two main actions: a) to hold the identifier and
keys of the voters, as well as the information related to the voting process; b) to
perform the signature/cipher of the information using the microprocessor that is
included in this type of card. In this way it was possible to have a cheap and
portable device which prevents the information stored inside from being read or
modified in a fraudulent way.

As mentioned before, the voter’s application is in charge of dialoguing with the
voter to ask for his voting option and to carry out the secured dialogue among the
different system’s agents. This process is undertaken by means of appropriate
cryptographic operations.

Due to the restrictions of the classical smart cards, in the initial stages of the
development of the project, the voter’s application was located within the
Authentication Point and the Ballot Point. This means that some cryptographic
operations needed to authenticate the voters and to handle their votes must be
carried out in these Points. However, there is a risk that malicious software loaded
on the Authentication Point or the Ballot Point can change the voter’s vote
without the voter noticing it (Rubin, 2001). Therefore, the loss of security during
the whole process could be a real risk.

J. Carracedo, A. Gómez, E. Pérez, J. Moreno and S. Sánchez

 7

3.2 IMPROVING THE SECURITY: JAVA CARD

The way to improve remarkably the security of the system is to make the most
part of the voter’s application reside within the smart card. From a practical point
of view, this solution is not feasible using a conventional smart card, but it can be
obtained using a new generation of smart cards: Java Cards. In fact, these cards,
besides pooling all the security requirements of the conventional smart cards, also
allow the storage and later execution of different user applications, developed in
Java language. This means that it is the suitable place for the voter’s application
due to the new features of Java Card combined with the tamper-proof
characteristics of any type of smart card. Therefore, this solution provides users
with all the benefits of Java Card plus a high level of security and reliability.

The introduction of Java cards allows improving the user’s authentication process.
An inherent previous task in the use of smart card lies in the guarantee that the
person who presents the card is, in fact, his rightful owner. In the previous version
of the voting system, using classic smart cards, this authentication was obtained
by means of a PIN. Using Java Cards, this mechanism is substituted by a stronger
procedure, based on the existence of an applet for the storage and latter
verification of the participants’ fingerprints (Maltoni et al., 2003). The biometric
applet used in this system is Precise Biomatch™ J from Precise Biometrics. This
applet is able not only to store the fingerprint of the card’s owner but also to
implement the algorithms to verify (within the card) its validity (match-on-card).

4. JAVA CARD TECHNOLOGY

In order to facilitate the subsequent explanation a brief introduction to Java Card
technology is included in this section.

A Java Card, like any other smart card, is a chip card with a microprocessor
inside. The integrated circuit incorporated in the card contains a CPU and
elements used for data transmission and storage. Essentially a Java Card is a smart
card which is able to run applications, called applets, written in Java programming
language. These applications run in the Java Virtual Machine called JCVM (Java
Card Virtual Machine) (Hansmann et al., 2002) (Carracedo, 2004) (Ferrari et
al., 1998).

The physical appearance of the plastic substrate is fully compatible with those
conventional smart cards which are in compliance with the international standard
ISO/IEC 7816. Also the microprocessor architecture and the organization and the
functionalities of the external contact points conform to that standard.

Use of Java Cards in a telematic voting system

 8

Figure. 2. Java Card logical architecture

Figure 2 shows a simplified view of the Java Card logical architecture. The
applications and data will be stored in the memory and the machine code will be
executed by the microprocessor. Each manufacturer will incorporate a proprietary
microprocessor with a proprietary internal architecture; therefore every program
will run using a specific set of machine instructions. For that reason, the “native
methods” box that appears in Figure 2 will match the particular features of each
microprocessor and will support the JCVM as well as other classes of the Java
runtime environment.

JCVM interprets bytecode instructions, executes applets, enforces runtime
security and manages objects and memory.

The API (Application Programming Interface), logically located on the next upper
layer, contains those classes which provide the supported services and the system
applets themselves. The API includes the functions that could be invoked by the
user applets as well as the required applications to download and install these
applets in the card.

The three layers (native methods, JCVM and API) constitute the card execution
environment or JCRE (Java Card Runtime Environment) that is in charge of the
program execution and resource management. In other words, it is a sort of card
operating system.

To adapt a Java card to a specific application, the applets are firstly developed,
implemented, tested and debugged in a conventional PC. After that, several
applets can be installed in the card. As well as the standard smart cards, Java cards
also hold a small room for memory and so, they only support a subset of the
features of Java language.

Concerning the APDU (Application Protocol Data Unit) set defined in ISO/IEC
7816-4, Java cards exclude APDUs related with file system access (internally
controlled by the JCRE), and add new ones to support communication between
applets and external programs.

CAD

Applet Applet Applet

JCRE

Native methods

JCVM

API

APDU

APDU

COMPUTER

CAD: Card Acceptance Device

J. Carracedo, A. Gómez, E. Pérez, J. Moreno and S. Sánchez

 9

4.1 APDUs

As mentioned before, communication with Java cards is carried out by using
APDUs. There are two different types of APDUs: commands, received by the
card; and responses, sent by the card as a result of a command execution. The
format of the two types is shown in Figure 3.

Figure 3. APDUs structure

4.1.1 COMMANDS

The commands have two parts: header and body (see Figure 3). The header is
mandatory in every command. It consists of 4 octets with the following meaning:

CLA: Class of instruction. It identifies a type of command.

INS: Instruction code. It identifies the specific instruction of the command.

P1 and P2: Parameters 1 and 2 provide further qualification to the instruction.

The body has variable length and it is optional. Lc (1 octet) specifies the length of
the Data field in octets. Data contains the information sent to the card to execute
the instruction given in the header. Le (1 octet) indicates the number of octets
expected in the response Data field returned by the card.

4.1.2 RESPONSES

As in commands, the responses have two parts: one mandatory and the other
optional. The mandatory part consists of 2 octets, SW1 and SW2, called status
words, which represent the execution result, that is to say, the card status after the
command execution. For example, the values SW1=0x90 and SW2=0x00 indicate
that the command execution has been successfully completed in the card. The
Data field is the optional part and it contains the results of the requested
operation. The length of this field is constrained by the Le field in the command
that originated this response.

Mandatory header Optional body

Command

Response

Mandatory trailer
Optional

body

CLA INS P1 P2 Lc Data Le

Data SW1 SW2

Use of Java Cards in a telematic voting system

 10

There are four possible combinations of commands and responses in APDUs,
depending on whether the Data field is present or not; as it is shown in Figure 4.
The use of a given combination will be determined by the communication needs.

Figure 4. Combinations of commands and responses

5. EXAMPLE OF AN OPERATION CARRIED OUT BY THE JAVA CARD

The following description details an example of the operations executed by the
Java Card. This example is presented as a case study to illustrate the power of the
operations that can be carried out using Java Card technology. Particularly, we
describe the operations between the smart card and the Authentication Point in
order to allow the voter to get the authorization to vote from the Administrator.

All the operations that make possible the interaction among the voter, his or her
Java Card and the Administrator in charge of the voters authentication are
described. Figure 5 shows those interactions across the Authentication Point.

Figure 5. Simplified scheme of the interaction among the voter, his Java Card and
the Administrator

On behalf of the voter, his smart card will fulfill all the tasks needed to generate
the pieces of information that are going to be sent to the Administrator, so that all

Administrator

Voter

Card

Authentication Point

Authorization
request

Response

Case 1

Case 2

Case 3

Case 4

Header SW

Header Le Data SW

Header Lc Data SW

Header Lc Data Le Data SW

APDU Command APDU Response

J. Carracedo, A. Gómez, E. Pérez, J. Moreno and S. Sánchez

 11

critical information is processed inside the card in a protected mode that ensures
the confidentiality of both data and operations.

The dialog between the Authentication Point and the Administrator is performed
by means of messages, which are the result of the application of complex
cryptographic operations. The Authorization request is a piece of information
containing the following information:

AdP [kdV, VS (kdV), Id.Voter, VS (Id. Voter)] (1)

AdP [] It represents that all the information between the square brackets
is ciphered with the Administrator’s public key. This information
is made by the concatenation of all the elements separated by
comas.

KdV It is one of the keys generated inside the Java Card processed by
cryptographic algorithms so as to prevent from further recognition
of it that would link voter and vote.

VS () It represents that the information between the brackets is ciphered
with the Voter private key

Id. Voter It is the identification of the voter.

To generate this piece of information and to obtain it from the card an applet must
be installed on the Java Card in order to send the proper message to the
Administrator. The applet must allow the execution of all the steps needed neither
risking for data nor operations.

5.1 DESCRIPTION OF THE APPLET IMPLEMENTED ON THE JAVA CARD

The authorization request is a complex piece of information that is generated
inside the card using its cryptographic features. As it has been previously stated,
this piece of information has to be sent to the Administrator through the
Authentication Point, but the Java Card has a narrow capacity of input/output
buffering. Consequently, after the information is generated, a number of
interactions will be required in order to extract the whole information from the
Java Card toward the Authentication Point.

Figure 6. Sequence of steps needed to generate the Authorization Request

operation

Voter

Card
Authentication

Point

1

2, 3, 4

5

6

7

Voter’s identifier

Use of Java Cards in a telematic voting system

 12

Figure 6 shows the complete process to obtain and send the data to the
Administrator.

1. Authentication Point Voter: Ask for the voter’s identifier.

2. Authentication Point Card: Ask for the generation of the keys to be
used to cipher and decipher the vote.

3. Authentication Point Card: Ask for the storage of the provided
Administrator’s public key.

4. Authentication Point Card: Ask for the generation of the Authorization
Request.

5. Card Authentication Point: Answer to the request in the step four. If
the operation was successfully executed, the piece of information consists
of a number of blocks of 128 octets. The total number of blocks is reported
in one of the parameters of the answer. If the operation could not be
executed, such event is reported in a separated parameter.

6. Authentication Point Card: ith block request.

7. Card Authentication Point: ith block is sent back or an error is reported.

Steps 6 and 7 are repeated until the whole message has been transferred.

This sequence of operations shows the case in which a specific operation is
carried out across the Authentication Point. The applet installed on the Java Card
is able to return a number of octets in response to the proper request previously
made by the Authentication Point. More than one interaction (step 6 and 7) will be
needed due to the fact that the regular size of the Java Card input/output buffer is
smaller than the regular size of the message –in spite of being 255 octets the
maximum available in the chosen card, in this development we make use of only
128 octets length so that performances are improved. The length of the message
depends on the size of the ciphering keys. The RSA keys in this development are
of 1024 bits, which result in a message of around 600 octets. The fact that the
generation and extraction of data are separate operations forces the applet to
require permanent storage space inside the card. Otherwise, the confidentiality of
data would not be ensured. One of the most serious limitations of current smart
card technology is the short memory space they have to store data. We have used
the Sm@rt Café Expert Java Card from Giesecke & Devrient that implements a
garbage collector in order to prevent the memory space limitation from being even
more critical. Proceeding with large blocks of data that requires intermediate
storage space for the operations could be an important drawback depending on the
card that is used.

To summarize: in order to generate the appropriate piece of information inside the
Java Card and to send it to the Administrator, two main operations are required:

a) Generation of the information piece.

b) Extraction block by block of the whole generated piece of information.

J. Carracedo, A. Gómez, E. Pérez, J. Moreno and S. Sánchez

 13

The information that must be stored in the card is briefly commented in order to
proceed with a detailed description of those operations.

5.2 DATA STORED ON THE JAVA CARD

Before generating the piece of information inside the Java Card, the voter
identification and some keys must be supplied. The voter identification is the
value of one parameter given to the applet by the APDU command related to the
Authorization Request (step 4, Figure 6). Some of the keys needed for different
operations are internally generated when required; whereas other keys are
externally supplied as is the case of the Administrator public key in the previous
example.

For security reasons, the voter’s private and public keys must be generated inside
the smart card to ensure a complete confidentiality of the private key that strongly
identifies the identity of the voter. Private keys will never be read from the card,
being only the applet able to manage them. This pair of keys must be generated in
a stage previous to the electoral process.

Asymmetrical keys used for ciphering and deciphering the vote are also internally
generated because of similar considerations to those stated for voter’s private and
public keys.

There are two possible ways to provide the external public keys and the voter
identifier. It is possible either to load it together with the applet, or to send it as a
value of a parameter when the operation is requested. Our development makes use
of the second option although we are currently working on the first one.

5.3 DESCRIPTION OF THE GENERATION OF THE AUTHORIZATION
REQUEST

After receiving the APDU described in the previous paragraph, the applet begins
the execution of the respective method. Inside the applet, there is a general
method, called process, which is in charge of determining the type of operation to
execute (from parameter INS of the APDU) and therefore the method that must be
invoked.

 /**
 * Method that processes an incoming APDU.
 * @see APDU
 * @param apdu incoming APDU
 * @exception ISOException according to ISO 7816-4
 */
 public void process(APDU apdu) throws ISOException {
 // gets the APDU
 byte[] apduBuffer = apdu.getBuffer();

 // select the method according to INS parameter
 switch (apduBuffer[ISO7816.OFFSET_INS]) {
 .
 .
 .
 case INS_BUILT_ADMIN_DATA:
 // checks if command is correct for this applet
 if (apduBuffer[ISO7816.OFFSET_CLA] != VOTER_CLA)
 ISOException.throwIt(ISO7816.SW_CLA_NOT_SUPPORTED);

Use of Java Cards in a telematic voting system

 14

 builtAdminData(apdu);
 break;
 .
 .
 .
 default :
 // Not supported command
 ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);
 break;
 }

 }

The following operations are executed by builtAdminData in order to generate
the piece of information addressed to the Administrator (this expression is shown
in expression (1), Section 5):

a) Verification of presence of the required keys.

b) Initialization of the cipher to operate with the voter private key.

c) Ciphering of the voter identifier received in the request.

d) Ciphering of the KdV key.

e) Concatenation of the voter identifier, the ciphered voter identifier, the KdV
key and the ciphered KdV key.

f) Initialization of the cipher to operate with the public key of the
Administrator.

g) Ciphering of the result of the concatenation

5.4 OPERATION: SENDING OF THE GENERATED AUTHORIZATION
REQUEST

This operation permits to obtain all the blocks –one by one– belonging to a piece
of information generated inside the card. Since the result must be divided in 128
bytes blocks, the P1 parameter of the APDU indicates which block must be sent
back.

5.5 SEQUENCE OF APDUS

Sm@rtCafé Professional Toolkit 2.0 from Giesecke & Devrient manufacturer has
been used for the applets development. This tool provides the necessary elements
for an applet development, such as card simulation, debugging, loading and
verification of operation in the card. In Figure 7, obtained from the toolkit, the
sequence of APDUs is shown. Numbers from 2 to 7 have been overlapped in
order to show the correspondence between the steps numbers used in Figure 6
(step 1 is omitted because it does not involve using of Java Card).

J. Carracedo, A. Gómez, E. Pérez, J. Moreno and S. Sánchez

 15

Figure 7. Sequence of APDUs

Analyzing in detail one of the APDUs shown in Figure 7, i.e. the command that
requests the preparation of data for the Administrator (operation 4), the different
parts described in section 4.1 can be identified (Figure 8).

Figure 8. Example of the format of the APDU corresponding to the command
Request of preparation of data for the Administrator

As it can be noticed, the instruction is identified by means of a CLA=0x55 and a
INS=0x44, so that the applet can determine which is the operation to execute.
Parameters P1 and P2 that take the value 0x00, provide no further information.
Because of the data contained by the APDU, we use the Lc field whose value
(0x09) indicates that the field of data is composed of nine bytes. These nine bytes
following the Lc parameter contain the voter identifier used by the applet to
prepare the information to be sent to the Administrator. The last byte -the Le field-
indicates that only one byte of data is expected in the answer to this command.

ith block

CLA

INS

P1

P2

Lc Le Data

Use of Java Cards in a telematic voting system

 16

Operation 5 shows the answer announcing that requested data will be completed
with five blocks.

Operation 6 shows the request of the first block (00) of the information piece to be
sent to the Administrator, and operation 7 represents the response with the
respective block. Next, the Authentication Point by means of new operations
(similar to 6), will ask for subsequent blocks (00, 01 ... 04) and the card will
answer by sending the proper response like 7.

Through this example, we can observe the nature of atomic operations that are
needed to implement the dialogue between the smart card and the computer which
acts as a terminal of the system.

As we stated in Section 3, Java Cards easily permit voter’s applications to be
implemented by means of applets and they also permit to store this applets within
memory card. The examples described above illustrate the behaviour of an applet
that supports parts of a voter’s applications stored in a Java Card and
demonstrates the feasibility of this kind of solution.

6. CONCLUSIONS

In telematic voting applications, the use of smart cards operating under public key
algorithms offers great advantages to guarantee both the voting anonymity and the
voter’s authentication. Since they are tamper-resistant, smart cards effectively
protect personal keys of voters and the receipts generated after the voting.

Smart cards that we call classic (those which conform to the ISO/IEC 7816
standard) allow to easily introduce data in the customization phase but offer few
opportunities for application designers to load new programs into the card
memory.

A new generation of smart cards, Java Cards, do allow to introduce in the card
memory small applications (applets), codified in Java, which support most of the
needed cryptographic operations, maintaining in total secrecy the keys used for
such operations.

Although the small size of Java Cards’ memory imposes certain limitations
regarding the operations that can be carried out, adequate design and proper usage
of existent tools permits to carry out complex and robust operations, which
guarantee the global security of the system.

J. Carracedo, A. Gómez, E. Pérez, J. Moreno and S. Sánchez

 17

7. REFERENCES

Carracedo J., Gómez A. and Carracedo J.D., (2003). Sistema VOTESCRIPT: Una
propuesta innovadora desarrollada para resolver los problemas clásicos de
votación electrónica. 2º Congreso Iberoamericano de Seguridad Informática
(CIBSI’03). México D.F., (in Spanish).

Carracedo J., (2004). Seguridad en redes telemáticas. Mcgraw-Hill. ISBN
8448141571 (in Spanish)

Ferrari J. et al., (1998). Smart Cards: A Case Study. IBM International Technical
Support Organization. http://www.redbooks.ibm.com

Hansmann, U. et al., (2002). Smart card application development using JAVA.
Springer-Verlag. ISBN 3540432021.

Internet Voting Report, (2000). California Internet Voting Task Force. A Report
on the Feasibility of Internet Voting.
http://www.ss.ca.gov/executive/ivote/final_report.htm

ISO/IEC 7816 Identification cards – Integrated circuit(s) cards with contacts
ISO/IEC 7816-1 (1998). Part 1: Physical characteristics.
ISO/IEC 7816-2 (1999). Part 2: Dimensions and location of the contacts.
ISO/IEC 7816-3 (1997). Part 3: Electronic signal and transmission
protocols.
ISO/IEC 7816-4 (1995). Part 4: Interindustry commands for interchange.
ISO/IEC 7816-5 (1994). Part 5: Numbering system and registration
procedure for application identifiers
ISO/IEC 7816-6 (2004). Part 6: Interindustry data elements for interchange.
ISO/IEC 7816-7 (1999). Part 7: Interindustry commands for Structured Card
Query Language (SCQL).

Maltoni D. et al., (2003). Handbook of Fingerprint Recognition. Springer-Verlag.
ISBN 0387954317.

Mercuri R., (2001). Testimony presented Mercuri R. to the U.S. House of
Representatives Committee on Science.
http://www.house.gov/science/full/may22/mercuri.htm

Rubin A. (2001), AT&T. Labs-Research. Florham Park, NJ.
 http://avirubin.com/e-voting.security.pdf

