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Abstract—In this work, we consider the Minimum Weight
Pseudo-Triangulation (MWPT) problem of a given set of n
points in the plane. Globally optimal pseudo-triangulations
with respect to the weight, as optimization criteria, are difficult
to be found by deterministic methods, since no polynomial
algorithm is known. We show how the Ant Colony Optimiza-
tion (ACO) metaheuristic can be used to find high quality
pseudo-triangulations of minimum weight. We present the
experimental and statistical study based on our own set of
instances since no reference to benchmarks for these problems
were found in the literature. Throughout the experimental
evaluation, we appraise the ACO metaheuristic performance
for MWPT problem.

Keywords-Pseudo-Triangulation, Minimum Weight, Compu-
tational Geometry, ACO Metaheuristic.

I. INTRODUCTION

Pseudo-triangulations are planar partitions that appear as
data structures in Computational Geometry, as planar bar-
and-joint frameworks in rigidity theory and as projections
of locally convex surfaces. They have arisen in the last
decade as interesting geometric combinatorial objects with
connections and applications in visibility, rigidity theory and
motion planning.

There are many possible optimality criteria, often based
on edge lengths, angles, or area. So, in Computational
Geometry there are many optimization problems that either
are NP-hard or no polynomial algorithms are known to solve
them. Optimization problems related to special geometric
configurations such as pseudo-triangulations are interesting
to research due to their use in many fields of application.

A pseudo-triangle is a simple polygon with three convex
vertices, and a pseudo-triangulation is a tiling of a pla-
nar region into pseudo-triangles. The weight of a pseudo-
triangulation is the total Euclidean edge length. Computing
a minimum weight pseudo-triangulation for a point set in the
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plane has been one of the main optimality criteria for mini-
mizing the total length for pseudo-triangulations. Indeed, the
Minimum Weight Pseudo-Triangulation (MWPT) problem
minimizes the sum of the edge lengths, providing a quality
measure for determining how good structure is.

Find globally optimal pseudo-triangulations with respect
to the weight, are difficult to be found by deterministic
methods, since no polynomial algorithm is known. The
complexity of MWPT problem is unknown, but Levcopoulos
and Gudmundsson [8] show that a 12-approximation of an
minimum weight triangulation can be computed in O(n3)
time. They give an O(log n · w(MST )) approximation of
an minimum weight triangulation, in O(n log n) time, where
w(MST ) is the weight of the minimum Euclidean spanning
tree, which is a subset of the obtained structure.

The approximate algorithms arise as alternative candidates
for MWPT problem. These algorithms can obtain approxi-
mate solutions to the optimal ones.

The metaheuristic methods can be specific for a particular
problem or they can be part of a general applicable strategy
in the resolution of different problems. These iterative gen-
eration processes guide the search of solutions intelligently
combining different concepts of diverse fields as artificial in-
telligence [11], biological evolution [2], swarm intelligence
[9], among others.

They have a simple implementation and they can effi-
ciently find good solutions for NP-hard optimization prob-
lems [10]. For the experimental study presented in this work
we use the Ant Colony Optimization (ACO) metaheuristic.

Previous works about approximations on MWPT problem
using metaheuristic, were presented in [4] and [7], where
we described the design of the ACO algorithms and gave
the first steps in this research. According to the current
state-of-the-art about the MWPT problem, we continue the
research considering the metaheuristic techniques as the
more appropriate approach to find near optimal solutions.

This paper is organized as follows. In the next Sec-
tion, we present the theoretical aspects of MWPT problem.
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Following, we describe the general overview of the ACO
metaheuristic and the proposed ACO algorithm for the
MWPT problem, namely ACO-MWPT. Next Section, we
present the experimental and statistical study. Last Section
is reserved for the conclusions and future vision.

II. MINIMUM WEIGHT PSEUDO-TRIANGULATION

Let S be a set of points in the plane. A pseudo-
triangulation PT of S is a partition of the convex hull of
S into pseudo-triangles whose set of vertices is exactly S.
A pseudo-triangle is a planar polygon that has exactly three
convex vertices, called corners (see Figure 1). The weight
of a pseudo-triangulation PT is the sum of the Euclidean
lengths of all the edges of PT.

The pseudo-triangulation that minimizes this sum is
named a Minimum Weight Pseudo-Triangulation of S and
it is denoted by MWPT (S).

(a) (b)

Figure 1: Examples of (a) a pseudo-triangle and (b) pseudo-triangulation.

The concept of pseudo-triangulation was introduced by
Pocchiola and Vegter in [12] on the analogy of the arrange-
ments of pseudo-lines; see [13] for a survey with many
results of pseudo-triangulations.

As we mentioned in Section 1, there exists a set of
points for which any triangulation will have weight O(n ·
wt(M(S))). A natural question is whether there exist a
similar worst-case bounds for pseudo-triangulations. Rote
et al. [14] were those who asked if the MWPT is a NP-
hard problem, stimulating the search of exact or approximate
algorithms.

Gudmundsson and Levcopoulos [8] considered the prob-
lem of computing a minimum weight pseudo-triangulation
of a set S of n points in the plane, presenting an O(n ·
logn)-time algorithm that produces a pseudo-triangulation
of weight O(logn.wt(M(S))) which is shown to be asymp-
totically worst-case optimal. That is, there exists a point
set S for which every pseudo-triangulation has weight
Ω(logn.wt(M(S))), where wt(M(S)) is the weight of a
minimum spanning tree of S. Also, they presented a constant
factor approximation algorithm running in cubic time, and
they gave an algorithm that produces a minimum weight
pseudo-triangulation of a simple polygon.

It is also worth noticing that to the best knowledge of
the authors, there are no approaches using metaheuristic
techniques for solving MWPT problem.

III. ANT COLONY OPTIMIZATION METAHEURISTIC

The ACO metaheuristic involves a family of algorithms
in which a colony of artificial ants cooperate in finding
good solutions to difficult discrete optimization problems.
Cooperation is a key design component of ACO algorithms.
The idea is to allocate the computational resources to a set
of relatively simple agents (artificial ants) that communicate
indirectly by stigmergy. Thus, good quality solutions are an
emergent property of the agents cooperative interaction. An
artificial ant in an ACO algorithm is a stochastic constructive
procedure that incrementally builds a solution by adding op-
portunely defined solution components to a partial solution
under construction. Therefore, the ACO metaheuristic can be
applied to any combinatorial optimization problem for which
a constructive graph can be defined. Each edge (i, j) in the
graph represents a posible path and it has associated two in-
formation sources that guide the ant moves: pheromone trails
and heuristic information. The pheromone trail, denoted by
τij , encodes a long-term memory about the entire ant search
process, and is updated by the ants themselves. The heuristic
information, denoted by ηij , represents a priori information
about the problem instance or run-time information provided
by a source different from the ants. In many cases η is the
cost, or an estimate of the cost, of adding the component or
connection to the solution under construction.

These values are used by the ants to make probabilistic
decisions on how to move on the graph. The ants act
concurrently and independently and although each ant is
complex enough to find a solution to the problem, which
is probably poor, good-quality solutions can only emerge
as the result of the collective interaction among the ants.
This is obtained via indirect communication mediated by the
information that ants read or write in the variables storing
pheromone trail values. It is a distributed learning process in
which the single agents, the ants, are not adaptive themselves
but, on the contrary, adaptively modify the way the problem
is represented and perceived by other ants [3].

There are two additional process for updating pheromone
and the daemon actions. The pheromone updating is the
process by which the pheromone trails are modified. The
trail values can either increase, as ants deposit pheromone
on the components or connections they use, or decrease,
due to pheromone evaporation. The daemon procedure is
used to implement centralized actions which cannot be
performed by single ants. Examples of daemon actions are
the activation of a local optimization procedure, or the
collection of global information that can be used to decide
whether it is useful or not to deposit additional pheromone
to bias the search process from a nonlocal perspective. The
daemon can observe the path found by each ant in the colony



and select one or a few ants, like those that built the best
solutions in the algorithm iteration that allowed to deposit
additional pheromone on the connections they used.

We present an ACO algorithm called MWPT-ACO, the
description of its main components for MWPT problem and
we describe in detail the specific BuildSolutionk function.

——————————————————————
Algorithm MWPT-ACO
Initialize
for c ∈ {1, . . . , C} do

for k ∈ {1, . . . ,K} do
BuildSolutionk
EvaluateSolution

end for
SaveBestSolutionSoFar
UpdateTrails

end for
ReturnBestSolution
——————————————————————
Main components of MWPT-ACO algorithm:
• Initialize: The initial trail of pheromone associated to

each edge is τ0; it is an small positive value, in general,
the same for all edges. The quantity of ants of the
colony is K. The weights define the proportion in
which they will affect the heuristic information and
pheromone trails in the probabilistic transition rule,
named respectively β and α. The maximum number
of cycles is C.

• BuildSolutionk: this process begins with a empty solu-
tion which is extended at each step by adding a feasible
solution component chosen from the current solution
neighbors; i.e., to find a route on the construction graph
guided by the mechanism that defines the set of feasible
neighbors with regard to the partial solution. The choice
of a feasible neighbor is done in a probabilistic way
in every step of the construction, depending on the
used ACO variant. In this work, the selection rule for
the solutions construction is based on the following
probabilistic model:

Pij =
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, j ∈ F (i);

0, otherwise.

(1)

– F (i) is the set of feasible points for point i.
– τij is the pheromone value associated to edge

(i, j).
– ηij is the heuristic value associated to edge (i, j).
– α and β are positives parameters for determining

the relative importance of the pheromone with
respect to the heuristic information.

• EvaluateSolution: evaluates and saves the best solution
found by ant k in the current cycle.

• SaveBestSolutionSoFar: saves the best solution found
for all cycles so far.

• UpdateTrails: increases the pheromone level in the
promising paths, and is decreased in other case. First,
all the pheromone values are decreased by means of
the process of evaporation. Then, the pheromone level
is increased when good solutions appear. The following
equation is used:

τij = (1− ρ)τij +∆τij (2)

– ρ ∈ (0, 1] is the factor of persistence of the trail.

– ∆τij =
K∑

k=1

∆kτij is the accumulation of trail,

proportional to the quality of the solutions.

– ∆kτij =

{
Q/Lk, when ant k used edge (i, j);
0, in other case.

– Q is a constant depending of the problem; it usually
set to 1.

– Lk is the objective value of the solution k.
Pheromone evaporation avoids a fast convergence of
the algorithm. In addition, this way of forgetting allows
the exploration of new areas of the search space. The
update of the pheromone trail can be done according to
one of the following criteria: elitist and not elitist. In
the elitist case, the best found solution is used to give
an additional reinforcement to the levels of pheromone.
The not elitist one uses the solutions found by all the
ants to give an additional reinforcement to the levels of
pheromone.

For BuildSolutionk process, each ant builds a pseudo-
triangulation, starting with one face. This face has the edges
obtained by the convex hull of the points set S, i.e., CH(S).
For the solution construction, each ant performs a process
of partitioning set S in faces. This process finishes when
all faces are pseudo-triangles without interior points. A face
is divided into two faces when it has interior points or is
not a pseudo-triangle. Thus, the partition can be done if i)
there are at least one interior point and two points in the
border; or ii) there is not an interior point, so we use two
points located on the border. Facesk represents the set of
no treated faces.

——————————————————————
Algorithm BuildSolutionk
Sk ← ∅
while (Facesk ̸= ∅) do

Let F be a face in Facesk
if F is Pseudo-triangle without interior points then
Sk ← Sk ∪ {F} /* F is a new pseudo-triangle */
Facesk ← Facesk − {F}

else
PartitionFace(F )

end if
end while



——————————————————————
PartitionFace(F) selects the points of F to build the

new faces. It takes one interior point and two probabilistic
selected points of the border, or (if there is not interior
point) only two probabilistic selected points of the border.
The feasible points for a point are those visible and not
adjacent to it. The selection is done according to Equation
1. Also, this process uses two additional procedures Select-
InteriorPoint(F) and SelectBorderPoint(F), where the point
is randomly selected.

IV. EXPERIMENTAL EVALUATION AND STATISTICAL
ANALYSIS

In this work we present an ACO algorithm for the MWPT
problem. The proposed ACO algorithm are represented by
an Ant System (AS), a particular instance of the class of
ACO algorithms.

We will refer to the following aspects: experimental
evaluation, the statiscal analysis and the computational effort
of the algorithms.

With respect to the experimental phase, we have obtained
evaluations that guide the experimentation, and it allows us
to decide which are most suitable parameter settings. We
try to find an acceptable combination of parameter values
for the ACO-MWPT algorithm in order to obtain pseudo-
triangulations of small weight, closer to the minimum.

The collections of instances for MWPT problem were
designed by the authors, using an instance generator. The
instance generator uses different functions of CGAL Library
[1]. This generator was done since to the best knowledge
of the authors there not exist in the literature benchmarking
data publicly available that allow us to compare our proposal
with other algorithms. A collection of 10 instances of
size 40/80/120/160/200 were generated; i.e., a total of 50
problem instances, each one is called LDn-i, the size of the
i-instance, 1 ≤ i ≤ 10, is denoted by n. The points are
randomly generated, uniformly distributed with coordinates
x, y ∈ [0, 1000]. There are no collinear points.

We present representative cases for the experimental
research done, considering four instances LD40-1, LD40-
2, LD40-3, LD40-4, LD80-1, LD80-2, LD80-3 LD80-4,
LD120-1, LD120-2, LD120-3, and LD120-4, of size 40, 80,
and 120 respectively.

The ACO-MWPT and auxiliary algorithms were imple-
mented in C language. The software was run on BACO
parallel cluster, under CONDOR batch queuing system.
Considering different combination of parameter values, the
current experimental study is devoted to analyze the per-
formance of the algorithms with respect the quality of the
solutions.

We used the following parameter values: α = 1; β = 1
and 5; and ρ = 0.10, 0.25, and 0.50. elit = 1 and 0 (1 for
trails updated in a elitist way; in other case, the updating is
done in a not elitist way).

The number of cycles, C, is 1000; the number of ants, K,
is 50. For each parameter setting, 30 runs were performed
by using different random seeds. For each instance, the
experiment were done with the twelve parameter settings,
according to combinations of parameters before detailed.
We considered the objective function (weight) for obtaining
average, median, best, and standard deviation values, and
also the pseudo-triangles number.

We show the results according to the four best parameter
settings considering the four Best values. We only show the
results for the best four parameter settings since the results
for the remaining ones were of lower quality with respect
to the best found values.

Next, we show the experimental results, considering the
above presented settings. Each parameter setting is denoted
by (instance-β-ρ-elit); α is ever equal 1. The decimal
numbers are not showed because they are not significant.

We analyze the performance of the ACO-MWPT algo-
rithm over instances of 40, 80, and 120 points. The results
for this experimental study are resumed in Tables V to VII
(see Appendix).

We show the results according to the four best parameter
settings with respect to the smaller weights. There is not a
unique parameter combination that obtains the best results.
In addition, we show an extra data #Pts, which represents
quantity of pseudo-triangles in a pseudo-triangulation. Note
that the pseudo-triangulations with lower weight values
do not have fewer pseudo-triangles. This observation is
interesting because intuitively it is possible to think that
the pseudo-triangulations of the lowest weight have fewer
pseudo-triangles, or they are minimum weight triangulations,
but the opposite was demonstrated by experimentation.

Furthermore, we considered necessary to observe globally
the influence of parameters. Table I is a summary of the
previous tables and shows that the best weights are obtained
using configurations with β = 5, elit = 0, and 1, and ρ =
0.1, 0.25, and 0.5, i.e., we obtained better results giving more
relevance to the heuristic information.

Table I: ACO-MWPT: Summary of results for four instances of 40, 80,
and 120 points with respect to the best values.

β ρ elit
1 (6.25%) 0.10 (39.58%) 0 (50%)

5 (93.75%) 0.25 (35.42%) 1 (50%)
0.50 (25%)

To better assess our proposal, we compare the ACO-
MWPT algorithm with a greedy algorithm called Greedy
Pseudo-Triangulation (GPT). The greedy strategy was
mainly chosen for two reasons: a) there not exist any greedy
strategy for MWPT problem and b) this strategy is similar
to the ACO metaheuristic since both approaches perform
a constructive process for generating a pseudo-triangulation.
Nevertheless, they apply a different criteria at the component
selection procedure.



The GPT algorithm builds a single pseudo-triangulation,
starting with one face. The initial face has the edges in the
convex hull. At construction step, it performs a process of
partitioning the set S in new faces. This process finishes
when all faces are pseudo-triangles, which have not interior
point. A face is divided into two faces if it has some interior
point, or is not a pseudo-triangle. Thus, the partition can be
done, by selecting: i) one interior point p and two points, q
and r, that they are in the face border, where q and r are
the closest to p, or ii) when there is not an interior point,
two points on the border are selected, which are closest each
other.

Table II shows the lower weights found and the respective
number of pseudo-triangles (#Pts). It can be seen there not
exist a clear correlation between the objective values and
#Pts, i.e., a lower value of the objective function do not
imply a lower value of #Pts for the respective instance.

Table II: ACO-MWPT: Comparing results between ACO-MWPT and
Greedy strategy.

Instance ACO-MWPT # Pts ACO GPT-MWPT # Pts GPT

LD40-1 6115636 51 5312131 56

LD40-2 4442710 49 4292347 52

LD40-3 5684342 49 5794018 58

LD40-4 5627098 48 6245196 57

LD80-1 7898497 105 7458787 113

LD80-2 9584718 104 8931272 106

LD80-3 8918853 106 6516103 107

LD80-4 8004652 110 7393297 112

LD120-1 12842149 163 14097967 163

LD120-2 9247582 154 7106543 174

LD120-3 12326883 167 11519206 160

LD120-4 10647886 170 8341281 175

In order to statistically analyze the effect of each parame-
ter on the behavior of the ACO-MWPT algorithm, we stud-
ied by considering different parameter settings. The setting
were empirically derived after numerous experiments. We
get 12 parameter settings for each environments for each
instance, they are listed and identified in Table III. The
values for α and criterion are always one (α = 1 and
criterion = 1).

We performed the Kolmogorov-Smirnov test to show the
sample does not follow a normal distribution. Therefore
we use a non-parametric statistical test to evaluate the
algorithms.

The analysis we perform has two phases. First, we apply
the Kruskal-Wallis test to perform the median comparison
in order to determine the sensitivity of the parameters, using
the parameter settings given in Table III. The null hypothesis
considered is: there is not a significative difference among
the found results and if there are differences, they are due
to random effects.

Table III: Parameter settings and their identifiers (ID).

ID β ρ elit
1 1 0.10 0
2 1 0.25 0
3 1 0.50 0
4 5 0.10 0
5 5 0.25 0
6 5 0.50 0
7 1 0.10 1
8 1 0.25 1
9 1 0.50 1
10 5 0.10 1
11 5 0.25 1
12 5 0.50 1

Then we apply the Tukey method in order to determine the
experimental conditions where exist significative differences.

On the second phase of the statistical analysis, we carried
out the boxplot method to visualize the distribution of the
weights for each environment.

We show the respective statistical analysis for the ACO-
MWPT algorithm over the same group of instances. The
y-axis represents the identifier (ID) for each parameter
setting shown in Table III. In this case, the parameter
settings 1, 2, and 3 show, in most of the cases, have
significative differences with respect to the remaining ones
for all instances of size 40 (Figure 2). This could means
that a variation of parameters β = 5 and elit = 0, 1; or
β = 1 and elit = 1 will no produce significative differences
in the results. However, for the instances of size 80 and
120 (Figures 3 and 4) the parameter settings 1, 2, 3, 7, 8,
and 9 are those which produce (not always) a more similar
behavior, as well as the parameter setting 4, 5, 6, 10, 11,
and 12; on the other side.

Unfortunately, there is no clear behavioral pattern for
these instances. Nevertheless, it can be said that the use
elitism has not clear influence in the final results. Interesting,
the same observation given before can be applied to the
quality and dispersion of obtained results as seen in the
boxplots displayed in Figures 5, 6, and 7. However, from the
point of view of the solution quality, ACO-MWPT algorithm
obtained the worst results by using the parameter settings
1, 2 and 3 for the instances of size 40 (see Figure 5).
The x-axis represents the identifier (ID) for each parameter
setting shown in Table III and the y-axis represents the
weight. Similarly, for instances of size 80 and 120 (see
Figures 6 and 7) the best performance (either in terms of
median and best values) is achieved under the parameter
settings 4, 5, 6, 10, 11, and 12. This means that with
α = 1 and β = 5, ACO-MWPT algorithm achieves the
best performance independently of parameters ρ and elit.

With respect to the runtimes analysis, we compare
and analyze the computational effort of the algorithms
applied to the MWPT problem (i.e., ACO-MWPT and
GPT). The ACO-MWPT algorithm is iterative and stochastic



population-based algorithms; while the GPT algorithm is a
deterministic algorithm. So, it builds only one solution on a
time bounded by almost O(n3) for GPT. Certainly, this will
show important differences when comparing the respective
runtimes of these algorithms. Although ACO algorithms
consume more computational resources (mainly time) when
compared respectively to the two deterministic algorithms,
they found higher quality solutions. In addition, it is worth
remarking that there are some applications in Computational
Geometry related to the proposed problems which require
high quality solutions. Consequently, more complex and
time-consumer algorithms need to be used to reach solutions
of higher quality as usually expected. Nevertheless, we are
aware that for some Computational Geometry applications
other methods could be a simple and direct alternative when
solutions of medium or low quality are acceptable.

In Table IV we show the runtimes of ACO-MWPT
algorithm considering the parameter settings that yields the
best results. In regards of the ACO algorithm, the α, β and
ρ parameters do not substantially affect the runtime because
they only modify the probability distribution and the extent
of amount of pheromone laid on the edges. Therefore, as
the consumed time does not significantly vary for different
values of α, β, and ρ we particularly show the runtimes for
α = 1, β = 1, ρ = 0.10, and elit = 0 using one instance of
each one of the three different problem sizes studied here.

Table IV: MWPT: Average runtimes for ACO-MWPT algorithm (for 30
seeds) and the runtime for Greedy Pseudo-Triangulation (in milliseconds).

# points ACO-MWPT GPT
40 120431 69
80 328451 83

120 478487 94

As previously analyzed and expected, Table IV show
the runtimes of the algorithms applied. It can clearly be
observed the increment of the computational cost of the
ACO algorithm with respect to GPT. These results show
that solutions of higher quality can be found by applying
a metaheuristic technique but a higher cost. This situation
encourages us to go further in our research in order to
design either an improved version of the ACO algorithm
studied here and also, to propose alternative metaheuristics
that reduce the computation time required to reach high
quality solutions (the authors are currently working in an
improved version of Simulated Annealing to deal with the
problems presented here).

V. CONCLUSION

Considering MWPT problem we proposed ACO algo-
rithm for obtaining approximations on minimum weight
pseudo-triangulations.

The proposed ACO algorithm is represented by an Ant
System (AS), a particular instance of the class of ACO
algorithms.

We also detailed the generation of instances for the
experimental evaluation, being this another contribution of
this paper, since there are not available instances with
special properties for building pseudo-triangulations. At the
moment, we have a large collection of instances for future
experimentations, where the obtained results could be used
as benchmarks.

Accordingly, future work will address the use of improved
parameter setting for the ACO algorithms and the experi-
mentation with the whole collection of instances generated.
In addition, we aim at comparing the proposed algorithms
against other metaheuristics. Currently we are conducting
an experimental study involving Simulated Annealing [5]
[6] which will help us to compare the performance of both
techniques in regards of quality of solutions and runtimes.
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APPENDIX

Table V: MWPT: Results for four instances of 40 points.

Par. Setting Average Median Best Std. Dev. #Pts
LD401-5-0.10-1 6557443 6607908 6115636 166770 51
LD401-5-0.25-1 6644026 6658654 6286985 166104 48
LD401-5-0.50-1 6669542 6713656 6320652 159069 49
LD401-5-0.50-0 6777518 6847951 6322956 158225 52
LD402-5-0.25-1 4748353 4757694 4442710 114885 49
LD402-5-0.10-0 4681136 4685804 4470550 69468 48
LD402-5-0.10-1 4707699 4747199 4490214 83905 50
LD402-5-0.25-0 4729018 4749318 4524206 77542 43
LD403-5-0.25-1 6069210 6071705 5684342 143063 49
LD403-5-0.10-1 5980440 6021063 5699513 136174 50
LD403-5-0.25-0 6075029 6118394 5744775 110439 45
LD403-5-0.50-0 6073308 6104511 5746463 121285 51
LD404-1-0.50-1 6236883 6258985 5627098 218860 48
LD404-5-0.10-1 6162888 6154961 5668910 166455 49
LD404-5-0.50-1 6229822 6237045 5869145 202030 50
LD404-5-0.50-0 6237883 6252135 5903381 139767 47

Table VI: MWPT: Results for four instances of 80 points.

Par. Setting Average Median Best Std. Dev. #Pts
LD801-5-0.50-0 8281137 8300956 7898497 160360 105
LD801-5-0.10-0 8325983 8331038 7923788 149888 109
LD801-5-0.25-0 8304994 8339204 7928177 163459 109
LD801-5-0.10-1 8332003 8363583 7988963 127377 105
LD802-5-0.25-1 10512726 10604489 9584718 362414 104
LD802-5-0.25-0 10427016 10476297 9673011 270506 111
LD802-5-0.10-1 10345444 10363546 9677902 259106 110
LD802-5-0.50-0 10490142 10551129 9950921 228493 110
LD803-5-0.10-1 9538288 9565227 8918853 275070 106
LD803-5-0.25-1 9743314 9815785 8999055 275216 104
LD803-5-0.25-0 9748326 9763289 9274975 256875 111
LD803-5-0.10-0 9696436 9720730 9290951 215221 107
LD804-5-0.10-0 8440937 8464053 8004652 184115 110
LD804-5-0.50-0 8479098 8502467 8075482 168527 102
LD804-5-0.25-0 8444159 8476240 8181376 114853 107
LD804-1-0.25-1 8898841 8965159 8181936 316304 111

Table VII: MWPT: Results for four instances of 120 points.

Par. Setting Average Median Best Std. Dev. #Pts
LD1201-5-0.10-1 13941438 14024447 12842149 386460 163
LD1201-5-0.25-0 14119597 14168102 13059200 397667 159
LD1201-5-0.25-1 14364494 14376191 13343235 405153 157
LD1201-5-0.10-0 14078301 14131013 13509895 284575 158
LD1202-5-0.25-0 10092545 10166051 9247582 303468 154
LD1202-5-0.10-0 10143516 10155656 9488995 229203 153
LD1202-5-0.10-1 10109354 10149822 9555352 223387 156
LD1202-5-0.50-0 10213997 10234101 9650748 264040 156
LD1203-5-0.10-1 13024222 13027319 12326883 270411 167
LD1203-5-0.25-1 13197334 13226142 12376353 388390 159
LD1203-1-0.25-1 13958025 14022061 12518659 557306 158
LD1203-5-0.10-0 13366048 13453313 12566722 314829 161
LD1204-5-0.10-0 11211772 11288840 10647886 243568 170
LD1204-5-0.10-1 11333409 11377566 10648542 286156 153
LD1204-5-0.50-0 11328537 11345607 10690162 175935 155
LD1204-5-0.50-1 11676292 11705953 10698947 327513 161
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Figure 2: MWPT: Multi-comparison Tukey test: (a) LD40-1,
(b) LD40-2, (c) LD40-3, and (d) LD40-4.
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Figure 3: MWPT: Multi-comparison Tukey test: (a) LD80-1,
(b) LD80-2, (c) LD80-3, and (d) LD80-4.
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Figure 4: MWPT: Multi-comparison Tukey test: (a) LD120-
1, (b) LD120-2, (c) LD120-3, and (d) LD120-4.

1 2 3 4 5 6 7 8 9 10 11 12

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

x 10
6

(a)
1 2 3 4 5 6 7 8 9 10 11 12

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4
x 10

6

(b)

1 2 3 4 5 6 7 8 9 10 11 12

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

x 10
6

(c)
1 2 3 4 5 6 7 8 9 10 11 12

5.6

5.8

6

6.2

6.4

6.6

6.8

x 10
6

(d)

Figure 5: MWPT: Boxplots for (a) LD40-1, (b) LD40-2, (c)
LD40-3, and (d) LD40-4.
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Figure 6: MWPT: Boxplots for (a) LD80-1, (b) LD80-2, (c)
LD80-3, and (d) LD80-4.
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Figure 7: MWPT: Boxplots for (a) LD120-1, (b) LD120-2,
(c) LD120-3, and (d) LD120-4.


