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Abstract—Globally optimal triangulations are difficult to be
found by deterministic methods as, for most type of criteria,
no polynomial algorithm is known. In this work, we consider
the Minimum Weight Triangulation (MWT) problem of a given
set of n points in the plane. This paper shows how the Ant
Colony Optimization (ACO) metaheuristic can be used to find
high quality triangulations. For the experimental study we
have created a set of instances for MWT problem since no
reference to benchmarks for these problems were found in the
literature. Through the experimental evaluation, we assess the
applicability of the ACO metaheuristic for MWT problem.

Keywords-Triangulation, Minimum Weight, Computational
Geometry, ACO Metaheuristic.

I. INTRODUCTION

In Computational Geometry there are many optimiza-
tion problems that either are NP-hard or no polynomial
algorithms are known to solve them. Examples of these
optimization problems are those related to special geometric
configurations, such as triangulations, and are interesting to
research due to their use in many fields of application. Trian-
gulations are planar partitions, which received considerable
attention mainly due to their applications, e.g. computer
graphics, scientific visualization, robotics, computer vision,
and image synthesis, as well as in mathematical and natural
science.

Minimum Weight Triangulation problem (MWT) mini-
mizes the sum of the edge lengths, providing a quality
measure for determining how good is a structure. The
complexity of computing a minimum weight triangulation
has been one of the most longstanding open problems in
Computational Geometry, introduced by Garey and Johnson
[11] in their open problems list, and various approximation
algorithms were proposed over time. Mulzer and Rote [19]
recently showed that MWT problem is NP-hard. Considering
the inherent difficulty of this problem, the approximate algo-
rithms arise as alternative candidates. These algorithms can
obtain approximate solutions to the optimal ones, and they
can be specific for a particular problem or they can be part
of a general applicable strategy in the resolution of different
problems. A metaheuristic methods satisfy these properties.

This kind of technique is an iterative generation process that
guides the search of solutions intelligently combining differ-
ent concepts of diverse fields as artificial intelligence [20],
biological evolution [2], swarm intelligence [14], among
others. These algorithms have a simple implementation
and they can efficiently find good solutions for NP-hard
optimization problems [18]. In this work we present the Ant
Colony Optimization (ACO) metaheuristic. The family of
algorithms derived from the ACO metaheuristic embodies a
set of simple agents that compose a complex system capable
of timely building solutions of high quality. The agents obey
simple rules and act independently. However, they cooperate
sporadically in a indirect form to conform a distributed
process in which all the agents work to carry out a common
aim.

According to the current state-of-the-art with respect to
theoretical results about the MWT problem, we adopted
to solve them using a metaheuristic technique as the more
appropriate approach to find near optimal solutions. Previous
works about approximations on MWT problem using meta-
heuristic, were presented in [6] and [9], where we described
the design of the ACO algorithm and gave the first steps in
this research. To the best knowledge of the authors, there are
no reports in literature of extensive experimental evaluations
using metaheuristics techniques. More precisely, there are
some limited experiments using metaheuristic techniques
which do not represent a real challenge [3][16][21][22][24].

This paper is organized as follows. In the next two sec-
tions, the theoretical aspects of MWT problem is presented.
In Section III, we present the general overview of the ACO
metaheuristic and the proposed ACO algorithm for the MWT
problem, namely ACO-MWT. In Section IV, we describe the
MWT problem instance used, and the details and results of
the experimental study in which we analyze the sensitivity
of some important parameters on the performance of the
proposed ACO algorithm. Finally, in Section V, we show
the statical analysis for observing the behavior of the ACO-
MWT algorithm and we show the runtimes of the compared
algorithms. Last section is reserved for the conclusions and
future vision.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148664858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. MINIMUM WEIGHT TRIANGULATION PROBLEM

Let S be a set of points in the plane. A triangulation of S
is a partition of the convex hull of S into triangles whose set
of vertices is exactly S. The weight of a triangulation T is
the sum of the Euclidean lengths of all the edges of T. The
triangulation that minimizes this sum is named a Minimum
Weight Triangulation of S and it is denoted by MWT (S).

MWT problem has a long and rich history, dating back to
the 1970s. As far as the knowledge of the authors, the MWT
problem was first considered by Düppe and Gottschalk [10]
who proposed a greedy algorithm which always adds the
shortest edge to the triangulation. Later, Shamos and Hoey
[23] suggested using the Delaunay triangulation as a min-
imum weight triangulation. Lloyd [17] provided examples
which show that both proposed algorithms usually do not
compute the MWT. Similarly, Gilbert [12] and Klincsek [15]
independently showed how to compute a minimum weight
triangulation of a simple polygon in O(n3) time by dynamic
programming.

From the point of view of metaheuristics, many papers
present solutions to problems in the field of Graphical
Computation. In 1992, Sen and Zheng [22] proposed an
algorithm to approximate the minimum weight triangulation
using Simulated Annealing but in many proofs they obtain
solutions ”near” to the ideal ones. In 1993, Wu and Wain-
wright [24] approximated the minimum weight triangulation
using a genetic algorithm where the recombination and
mutation operators are the same, such that both of them
make a flip to obtain the neighbors. Qin et al. [21] also use
a genetic algorithm and they proposed new operators for
recombination and mutation. Capp and Julstrom [3] present
a new weight codification of the triangulations to use it
in a genetic algorithm. In 2001, Kolingerova and Ferko
[16] presented a genetic optimization, which recombination
operator is named DeWall and the mutation operator makes
a flip in the selected individual. In the previous mentioned
works, the experimental evaluation is rather poor and they
do not describe the quality of the obtained solutions.

The complexity of the computation was one of the more
interesting opened problems in Geometry Computacional
until Mulzer and Rote demonstrated in 2006 that MWT is a
NP-hard problem [19].

III. ANT COLONY OPTIMIZATION METAHEURISTIC -
ACO

Ant Colony Optimization [5] is a metaheuristic approach
for solving hard combinatorial optimization problems. ACO
is based on the indirect communication of a colony of simple
agents, called ants, mediated by pheromone trails. The
pheromone trails in ACO serve as a distributed, numerical
information which the ants use to probabilistically construct
solutions to the problem being solved and which the ants
adapt during the algorithm’s execution to reflect their search
experience.

ACO is an iterative distributed algorithm where each
ant builds a solution by walking from vertex to vertex on
the construction graph with the constraint of not visiting
any vertex that it has already visited in her walk. At each
construction step of a solution, an ant selects the next vertex
to be visited according to a stochastic mechanism that is
biased by the pheromone: at vertex i, the next vertex is
selected stochastically among the previously unvisited ones.
In particular, if j has not been previously visited, it can
be selected with a probability that is proportional to the
pheromone associated with edge (i, j). At the end of an
iteration, considering the solution quality, the pheromone
values are modified in order to bias ants in future iterations
for constructing solutions similar to the best ones. The prob-
abilistic transition rule is based on two parameters, called
pheromone trails and heuristic information. The pheromone
trail, denoted by τij , encodes a long-term memory about the
entire ant search process, and is updated by the ants them-
selves. The heuristic information, denoted by ηij , represents
a priori information about the problem instance information
provided by a source different from the ants. In many cases
η is the cost, or an estimate of the cost, of adding the
component or connection to the solution under construction.

Furthermore, an ACO algorithm includes two adicional
mechanisms: trail evaporation and, optionally, daemon ac-
tions. Trail evaporation decreases all trail values over time,
in order to avoid unlimited accumulation of trails over
some component. Daemon actions can be used to implement
centralized actions which cannot be performed by single
ants, such as the invocation of a local optimization pro-
cedure, or the update of global information to be used to
decide whether to bias the search process from a non-local
perspective.

In the following, the ACO-MWT algorithm and a descrip-
tion of its main components are presented.

———————————————————-
Algorithm ACO-MWT
Initialize()
for c ∈ {1, . . . , C} do

for k ∈ {1, . . . ,K} do
/*Begin of BuildSolutionk process*/
Sk ← ∅
i← SelectInitialPoint(S)
while S is not triangulated do

Fi ← FeasiblePoints(i, Sk)
if Fi = ∅ then
i← SelectPoint(S, Sk)
Fi ← FeasiblePoints(i, Sk)

end if
j ← SelectPointProb(Fi)
if not IntersectSolution(i, j, Sk) then
Sk ← Sk ∪ (i, j)
i← j



end if
UpdateFeasiblePoints(i, j)

end while
/*End of BuildSolutionk process*/
EvaluateSolution()

end for
SaveBestSolutionSoFar()
UpdateTrails()

end for
ReturnBestSolution()
———————————————————-
Main components:
Initialize(): τ0, initial trail of pheromone associated to

each edge; K, quantity of ants of the colony; α and β,
proportion in which they will affect the pheromone trails
and heuristic information in the probabilistic transition rule;
and C, quantity of cycles.

BuildSolutionk: each ant builds a triangulation of a given
set or instance S, starting from an initial random point. At
each step, the algorithm adds a new edge (i, j) if there is
no intersection between (i, j) and the edges of the partial
solution Sk. In this case, i is a feasible point for j and vice
versa.

In this work, probabilistic transition rule is based on the
following probabilistic model:

Pij =
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, j ∈ F (i);

0, otherwise.

(1)

• F (i) is the set of feasible points for point i.
• τij is the pheromone value associated to edge (i, j).
• ηij is the heuristic value associated to edge (i, j).
• α and β are positives values for determining the rela-

tive importance of the pheromone with respect to the
heuristic information.

If the current point has no feasible points, it selects
the next reference point according to one of the following
criteria: i) random selection; ii) select the point with the
largest quantity of feasible points; or, iii) select the point
with the lowest quantity of feasible points.

SelectInitialPoint(S): returns a point p ∈ S, randomly
selected.

FeasiblePoints(i, Sk): returns a set P of points (P ⊆ S),
such that the edge (i, p), with p ∈ P , could not intersect
with the edges of the solution Sk. Note that this function
may return points that are no feasible for p.

SelectPoint(S, Sk): returns a point p ∈ S, such that
FeasiblePoints(p, Sk) has at least a point. p is selected
according to one of the criteria mentioned previously.

SelectPointProb(Fi): returns a point j ∈ Fi chosen
according to Equation 1, where ηij is 1/dij , and dij is the
Euclidean distance between i and j.

IntersectSolution(i, j, Sk): returns true if the edge (i, j)
intersects at least one edge of the solution Sk; returns false,
otherwise.

UpdateFeasiblePoints(i, j): updates the feasible points of
i and j, i.e., the points i and j are not more feasible with
respect to each other.

UpdateTrails(): increases the pheromone level in the
promising paths, and is decreased otherwise. The following
equation is used:

τij = (1− ρ)τij +∆τij (2)

• ρ ∈ (0, 1] is the factor of persistence of the trail.

• ∆τij =
K∑

k=1

∆kτij is the accumulation of trail, propor-

tional to the quality of the solutions.

• ∆kτij =

{
Q/Lk, when ant k used edge (i, j);
0, in other case.

• Q is a constant depending of the problem; it usually set
to 1.

• Lk is the weight of the triangulation k.
In this work, the pheromone trail update can be done

according to one of the following criteria: elitist and not
elitist. With the elitist criterion, the best found solution is
used to give an additional reinforcement to the levels of
pheromone. The not elitist one uses the solutions found by
all the ants to give an additional reinforcement to the levels
of pheromone.

IV. EXPERIMENTAL EVALUATION

In this work we present an ACO algorithm for the MWT
problem which is represented by an Ant System (AS), a
particular instance of the class of ACO algorithms. We try
to find an acceptable combination of parameter values for
the ACO-MWT algorithm in order to obtain triangulations
of small weight, closer to the minimum.

To the best knowledge of the authors, there not exist
collections of instances in the literature for MWT problem.
Consequently, no benchmarking data are publicly available
that allow us to compare our proposal with some other
algorithm previously studied. According to that, we design
an instance generator and we have generated respectively a
collection of 10 instances of size 40/80/120/160/200; i.e.,
a total of 50 problem instances. Each instance is called
LDn-i where n denotes the size of the i-instance, with
1 ≤ i ≤ 10. The instance generator uses different functions
of CGAL Library [1]. The points are randomly generated,
uniformly distributed and for each point (x, y), the coor-
dinates x, y ∈ [0, 1000]. For implementation purposes, we
assume that there are non collinear points.

The ACO-MWT algorithm was implemented in C lan-
guage and run on BACO parallel cluster, under CONDOR
batch queuing system. It must be remarked that the current
experimental study is devoted to analyze the performance of



the algorithms with respect the quality of the solutions found
considering different combination of parameter values.

We used the following parameter values: α = 1; β = 1
and 5; and ρ = 0.10, 0.25, and 0.50. elit = 1 and 0,
where 1 means that the trail is updated with the elitist
criterion; in other case, the updating is done with the not
elitist criterion. criterion = 1, 2, and 3, is used for selecting
a point in the SelectPoint(S, Sk) procedure in ACO-MWT
algorithm. For criterion = 1 the point is chosen randomly;
for criterion = 2, the chosen point has the largest quantity
of feasible points; and for criterion = 3, the chosen point
has the lowest quantity of feasible points. C = 1000.
K = 50.

For each parameter setting given below, 30 runs were
performed by using different random seeds. For each prob-
lem instance, the experiment were done with the twelve
parameter settings, according to combinations of parame-
ters before detailed. We obtain average, median, best, and
standard deviation values, considering the objective function
(weight). We show the results according to the four best
parameter settings considering the smaller weights, i.e., the
four Best values. We only show the results for the best four
parameter settings since the results for the remaining ones
were in general of lower quality with respect to the best
found values.

Next, we show the experimental results, considering the
above presented settings. Each parameter setting is denoted
by (instance-β-ρ-elit). α is not shown because it is the
same for all the cases (α = 1). We show the results for
criterion = 1 because in the most of the instances (more
than 80%) we obtained better results choosing the next
reference point in a random way. The decimal numbers are
not showed because they are not significant.

In this work, we analyze the performance of the ACO-
MWT algorithm over four instances of 40, 80, 120, 160,
and 200 points. In Tables V, VI, VII, VIII, and IX (see
Appendix) we show the results according to the four best
parameter settings with respect to the smaller weights (Best
values). The Table I is a summary of the previous tables and
shows that the best weights are obtained using configurations
with β = 5, elit = 1, and ρ between 0.1 and 0.5, i.e., we
obtained better results giving more relevance to the heuristic
information and updating the trails with the elitist criterion.

Table I: ACO-MWT: Summary of results for four instances
of 40, 80, 120, 160, and 200 points with respect to the best
values.

β ρ elit
1 (29.4%) 0.10 (31.7%) 0 (4.7%)
5 (70.6%) 0.25 (36.6%) 1 (95.3%)

0.50 (31.7%)

We compare ACO-MWT algorithm among the Delaunay
Triangulation (DT). The Table II shows the best and median

values for ACO-MWT algorithm and the weight of DT. In
addition, the fifth column shows the percentage differences
between the weight of DT and the best weight found with
ACO-MWT algorithm. In the displayed results it can seen
that the ACO-MWT algorithm found the smaller weights for
all cases. ACO-MWT algorithm managed to reduce (as seen
in column “diff.%”) the weights between 0.5% and 5% with
regard to the DT strategy, but for LD40-4 instance achieved
a reduction larger than 8%.

Table II: ACO-MWT: Comparing results between ACO-
MWT and DT.

Instance ACO-MWT ACO-MWT DT diff.%
Best values Median values

LD40-1 5493047 5502010 5666348 -3,06
LD40-2 4661242 4664817 4722381 -1,29
LD40-3 5502567 5519777 5663032 -2,83
LD40-4 5745772 5750729 6289829 -8,65
LD80-1 6242505 6273781 6462038 -3,40
LD80-2 7605383 7638408 8081573 -5,89
LD80-3 5836037 5866309 6143637 -5,01
LD80-4 6217040 6283664 6460311 -3,77
LD120-1 9325984 9361368 9581142 -2,66
LD120-2 5962099 6020394 6149825 -3,05
LD120-3 8632306 8661549 8948084 -3,53
LD120-4 7762612 7804348 8111182 -4,30
LD160-1 7489134 7515852 7837804 -4,45
LD160-2 7057185 7089629 7144975 -1,23
LD160-3 8748156 8803769 8891459 -1,61
LD160-4 6184695 6225358 6315497 -2,07
LD200-1 6629218 6684062 6990407 -5,17
LD200-2 7657541 7704917 8140057 -5,93
LD200-3 8804317 8845121 9358523 -5,92
LD200-4 7971440 8019717 8015613 -0,55

V. STATISTICAL ANALYSIS

Considering the parameter values mentioned above, we
obtain 12 parameter settings. These settings are labeled and
listed in Table III. The parameter settings were obtained
empirically after performing several experiments.

We show a statistical analysis to establish the parameter
effect on the reliability of the ACO method.

We performed the Kolmogorov-Smirnov test to determine
if these samples are normally distributed, which resulted that
the samples have not the normal distribution.

As the values do not not follow a normal distribution
we apply the Kruskal-Wallis test (a nonparametric statistical
test) to perform the median comparison in order to determine
the sensitivity of the parameters, using the parameter settings
given in Table III. The null hypothesis considered is: there
is not a significative difference among the found results and
if there are differences, they are due to random effects.
Then we apply the Tukey test in order to determine the
experimental conditions where exist significative differences.



Table III: Parameter settings and their identifiers (ID).

ID β ρ elit
1 1 0.10 0
2 1 0.25 0
3 1 0.50 0
4 5 0.10 0
5 5 0.25 0
6 5 0.50 0
7 1 0.10 1
8 1 0.25 1
9 1 0.50 1
10 5 0.10 1
11 5 0.25 1
12 5 0.50 1

We also use the boxplot method to show the distribution of
weights for each environment.

We present an statical analysis of the ACO-MWT algo-
rithm over five groups of four instances of size 40, 80, 120,
160, and 200 respectively. Figures 1, 2, 3, 4, and 5 show
the results obtained by the Tukey method (see Appendix).
The y-axis represents the identifier (ID) for each parameter
setting shown in Table III. We can infer that: the algorithm is
sensitive to the elit parameter because there are significative
difference in the results when we change its value; fixed the
α, β, and elit parameters the algorithm is not sensitive to
the ρ parameter because there are not significative difference
between the results; if elit = 0, then β has influence to the
results, but β has no influence otherwise.

Figures 6, 7, 8, 9, and 10 show the boxplots of the weights
obtained for the 30 seeds for four instances for 40, 80,
120, 160, and 200 points for the twelve configurations (see
Appendix). The x-axis represents the identifier (ID) for
each parameter setting shown in Table III and the y-axis
represents the weight. The medians are similar for ρ between
0.10, 0.25, and 0.50. The algorithm is more robust when
elit = 1 because the 50% of the values (values between the
first and third quartile) are very closed around the median
value. We obtained better results with β = 5 and elit = 1
(see parameter settings 7 to 12).

A. Analysis of runtimes

In order to compare the computational effort of the treated
algorithms we compare the runtimes of both algorithms
(ACO-MWT and DT). It should be remarked that our
proposed algorithm is based on a metaheuristic technique,
which is an iterative and stochastic population-based pro-
cess. Therefore, it is very different from the DT algorithm
because it is a deterministic algorithm that builds a single
solution in O(nlogn) time. So, this leads to large differences
when comparing the runtimes of both algorithms. This dif-
ference in the use of computational resources is despicable
because ACO-MWT algorithm gets higher quality solutions.
In Computational Geometry, high quality solutions are very

important in certain applications in relation to the MWT
problem [13] [25] [17] [4]. Consequently, more complex and
time-consumer algorithms need to be used to reach solutions
of higher quality as usually expected. Nevertheless, we are
aware that for some Computational Geometry applications
the Delaunay Triangulation could be a simple and direct
alternative when solutions of medium or low quality are
acceptable.

In Table IV we show the execution times of ACO-MWT
algorithm considering the parameter setting that yields the
best results. The α, β and ρ parameters do not substantially
affect the runtime because they only modify the probability
distribution and the extent of amount of pheromone laid
on the edges. Therefore, as the consumed time does not
significantly vary for different values of α, β, and ρ we
particularly show the runtimes for α = 1, β = 1, and
ρ = 0.1 using one instance of each one of the three different
problem sizes studied here. We show the execution time for
elit = 1 because we obtain better results following an elitist
criterion.

Table IV: MWT: Average runtimes for ACO-MWT algo-
rithm (for 30 seeds) and the runtime for Delaunay Triangu-
lation (in milliseconds).

# points ACO-MWT DT
40 417463 13
80 2672815 18

120 7416141 29
160 13729977 31
200 24944603 54

As previously analyzed and expected, Table IV shows
the runtimes of the algorithms applied. It can clearly be
observed the increment of the computational cost of the
ACO-MWT algorithm with respect to DT. These results
show that solutions of higher quality can be found by
applying a metaheuristic technique but with a higher cost.

VI. CONCLUSION

In this work, we present the design of approximation
algorithm for solving the Minimum Weight Triangulation
problem for sets of points in the plane. The proposed ACO
algorithm is respectively represented by an Ant System (AS),
a particular instance of the class of ACO algorithms.

We also detailed the generation of instances for the
experimental evaluation, being this another contribution of
this paper, since there are not available instances with
special properties for building triangulations. At the moment,
we have a large collection of instances for future exper-
imentations, where the obtained results could be used as
benchmarks.

Future work will address us to go further in our research
in order to design either an improved version of the ACO
algorithm studied here and also, to propose alternative



metaheuristics that reduce the computation time required to
reach high quality solutions. In addition, we aim at com-
paring the proposed algorithms against other metaheuristics.
Currently we are conducting an experimental study involving
Simulated Annealing [7] [8] which will help us to compare
the performance of both techniques in regards of quality of
solutions and runtimes.
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Table V: MWT: Results for four instances of 40 points.

Par. Setting Average Median Best Std. Dev.
LD401-1-0.25-1 5497920 5499201 5493047 3093
LD401-1-0.50-1 5500288 5501497 5493047 4543
LD401-5-0.10-1 5501427 5502009 5493047 4890
LD401-5-0.25-1 5502441 5502009 5493047 4547
LD401-5-0.50-1 5500754 5501988 5493047 5518
LD402-1-0.25-1 4666083 4666261 4661242 2511
LD402-1-0.10-1 4665869 4665657 4660495 2830
LD402-5-0.50-1 4664708 4664817 4659553 2927
LD402-1-0.50-1 4666420 4666984 4659553 3191
LD402-5-0.25-1 4665475 4664817 4659553 3693
LD402-5-0.10-1 4665988 4665789 4659553 3812
LD403-5-0.25-1 5519150 5519777 5502567 6516
LD403-1-0.10-1 5520802 5521320 5503301 6966
LD403-5-0.10-1 5519544 5519625 5510241 5353
LD403-5-0.50-1 5517745 5519181 5510241 5657
LD404-1-0.25-1 5748259 5747745 5745772 2316
LD404-1-0.50-1 5748852 5748473 5745772 1946
LD404-5-0.50-1 5751695 5750729 5745772 4002
LD404-1-0.10-1 5749372 5748757 5747725 1950
LD404-5-0.10-1 5751877 5750729 5747725 3170
LD404-5-0.25-1 5751976 5750729 5747725 5157

Table VI: MWT: Results for four instances of 80 points.

Par. Setting Average Median Best Std. Dev.
LD801-5-0.50-1 6271586 6273781 6242505 14337
LD801-5-0.25-1 6271507 6275369 6249124 13911
LD801-1-0.25-1 6287660 6289344 6256190 14223
LD801-5-0.25-0 6312084 6313977 6257491 15609
LD802-5-0.25-1 7640159 7643473 7605383 13945
LD802-5-0.50-1 7637904 7638408 7607462 15751
LD802-5-0.10-1 7640725 7642497 7610007 16196
LD802-1-0.10-1 7648258 7645077 7611405 22608
LD803-5-0.10-1 5863919 5865538 5836037 13482
LD803-5-0.50-1 5867149 5866309 5843634 14250
LD803-1-0.50-1 5880349 5884690 5845840 15361
LD803-1-0.25-1 5879002 5882230 5848638 16061
LD804-5-0.50-1 6277069 6283664 6217040 23328
LD804-1-0.50-1 6273397 6271736 6221908 23681
LD804-1-0.10-1 6274697 6275648 6225424 23752
LD804-1-0.25-1 6268067 6270581 6228084 17899

Table VII: MWT: Results for four instances of 120 points.

Par. Setting Average Median Best Std. Dev.
LD1201-5-0.25-1 9361401 9361368 9325984 18424
LD1201-5-0.50-1 9364442 9361221 9331139 22122
LD1201-5-0.10-1 9366316 9361576 9333488 20569
LD1201-1-0.50-1 9393130 9398060 9345181 22710
LD1202-5-0.10-1 6019316 6020394 5962099 23256
LD1202-5-0.25-1 6022598 6027282 5979832 20284
LD1202-5-0.50-1 6026150 6030549 5995484 21177
LD1202-1-0.10-1 6052288 6059251 5996347 25249
LD1203-5-0.10-1 8661456 8661549 8632306 16552
LD1203-5-0.25-1 8658617 8659753 8632574 11813
LD1203-5-0.50-1 8663020 8668620 8633526 17104
LD1203-1-0.10-1 8704510 8706670 8658672 21258
LD1204-5-0.50-1 7802093 7804348 7762612 18435
LD1204-5-0.10-1 7797742 7798414 7766328 14877
LD1204-1-0.10-1 7831163 7832325 7774480 23019
LD1204-5-0.25-1 7798003 7794526 7776160 13279

Table VIII: MWT: Results for four instances of 160 points.

Par. Setting Average Median Best Std. Dev.
LD1601-5-0.10-1 7515805 7515852 7489134 16875
LD1601-5-0.50-1 7527522 7527589 7495482 17124
LD1601-5-0.25-1 7518991 7516890 7496947 15200
LD1601-1-0.50-1 7588850 7588794 7510242 24740
LD1602-5-0.50-1 7091344 7089629 7057185 18160
LD1602-5-0.25-0 7132276 7136565 7057845 18387
LD1602-5-0.25-1 7095758 7095337 7066699 17190
LD1602-5-0.10-1 7097824 7098349 7073680 13596
LD1603-5-0.50-1 8797618 8803769 8748156 19596
LD1603-5-0.10-1 8797039 8796674 8750828 21039
LD1603-5-0.25-1 8809061 8810073 8770606 17587
LD1603-1-0.10-1 8844513 8843003 8809559 24466
LD1604-5-0.50-1 6223382 6225358 6184695 19044
LD1604-5-0.10-1 6223522 6224625 6194364 15100
LD1604-5-0.25-1 6225932 6225323 6197952 16147
LD1604-1-0.25-1 6261122 6263084 6216992 20906

Table IX: MWT: Results for four instances of 200 points.

Par. Setting Average Median Best Std. Dev.
LD2001-5-0.10-1 6682331 6684062 6629218 25296
LD2001-5-0.25-1 6685181 6687311 6630057 26345
LD2001-5-0.50-1 6696450 6700165 6653791 29302
LD2001-5-0.25-0 6750588 6756529 6678866 20179
LD2002-5-0.10-1 7700693 7704917 7657541 21096
LD2002-5-0.25-1 7710332 7709907 7661699 20577
LD2002-5-0.50-1 7703475 7703086 7668286 15855
LD2002-5-0.25-0 7751571 7753143 7723551 15152
LD2003-5-0.10-1 8842181 8845121 8804317 22157
LD2003-5-0.25-1 8855700 8859233 8810797 20206
LD2003-5-0.50-1 8855016 8858442 8815348 22871
LD2003-1-0.25-1 8928666 8927215 8829864 32197
LD2004-5-0.50-1 8020927 8019717 7971440 26202
LD2004-5-0.25-1 8026796 8029992 7973472 22964
LD2004-5-0.10-1 8012032 8014495 7978078 21018
LD2004-1-0.25-1 8078588 8082376 8017105 29478
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Figure 1: MWT: Multi-comparison Tukey test: (a) LD40-1,
(b) LD40-2, (c) LD40-3, and (d) LD40-4.
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Figure 2: MWT: Multi-comparison Tukey test: (a) LD80-1,
(b) LD80-2, (c) LD80-3, and (d) LD80-4.
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Figure 3: MWT: Multi-comparison Tukey test: (a) LD120-1,
(b) LD120-2, (c) LD120-3, and (d) LD120-4.
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Figure 4: MWT: Multi-comparison Tukey test: (a) LD160-1,
(b) LD160-2, (c) LD160-3, and (d) LD160-4.
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Figure 5: MWT: Multi-comparison Tukey test: (a) LD200-1,
(b) LD200-2, (c) LD200-3, and (d) LD200-4.
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Figure 6: MWT: Boxplots for (a) LD40-1, (b) LD40-2, (c)
LD40-3, and (d) LD40-4.
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Figure 7: MWT: Boxplots for (a) LD80-1, (b) LD80-2, (c)
LD80-3, and (d) LD80-4.
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Figure 8: MWT: Boxplots for (a) LD120-1, (b) LD120-2,
(c) LD120-3, and (d) LD120-4.
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Figure 9: MWT: Boxplots for (a) LD160-1, (b) LD160-2,
(c) LD160-3, and (d) LD10-4.
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Figure 10: MWT: Boxplots for (a) LD200-1, (b) LD200-2,
(c) LD200-3, and (d) LD200-4.


