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Abstract— Many applications in several domains such as
telecommunications, network security, large scale sensor net-
works, require online processing of continuous data flows. They
produce very high loads that requires aggregating the processing
capacity of many nodes. Current Stream Processing Engines do
not scale with the input load due to single-node bottlenecks.
Additionally, they are based on static configurations that lead to
either under or over-provisioning.

In this paper, we present StreamCloud, a scalable and elastic
stream processing engine for processing large data stream vol-
umes. StreamCloud uses a novel parallelization technique that
splits queries into subqueries that are allocated to independent
sets of nodes in a way that minimizes the distribution overhead.
Its elastic protocols exhibit low intrusiveness, enabling effective
adjustment of resources to the incoming load. Elasticity is
combined with dynamic load balancing to minimize the com-
putational resources used. The paper presents the system design,
implementation and a thorough evaluation of the scalability and
elasticity of the fully implemented system.

Index Terms— Data streaming, scalability, elasticity.

I. INTRODUCTION

A number of application scenarios where massive amounts
of data must be processed in quasi-real-time are showing
the limits of the traditional “store-then-process” paradigm [1].
In this context, researchers have proposed a new computing
paradigm based on Stream Processing Engines (SPEs). SPEs
are computing systems designed to process continuous streams
of data with minimal delay. Data streams are not stored but are
rather processed on-the-fly using continuous queries. The latter
differs from queries in traditional database systems because a
continuous query is constantly “standing” over the streaming
tuples and results are continuously output.

In the last few years, there have been substantial ad-
vancements in the field of data stream processing. From
centralized SPEs [2], the state of the art has advanced to
SPEs able to distribute different queries among a cluster of
nodes (inter-query parallelism) or even distributing different
operators of a query across different nodes (inter-operator
parallelism) [3]. However, some applications have reached the
limits of current distributed data streaming infrastructures. For
instance, in cellular telephony, the number of Call Description
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Records (CDRs) that must be processed to detect fraud in real-
time is in the range of 10,000-50,000 CDR/second. In such
applications, most queries for fraud detection include one or
more self-joins of the CDR stream using complex predicates,
requiring comparison of millions of CDR pairs per second.
Such applications call for more scalable SPEs that should be
able to aggregate the computing power of hundreds of cores
to process millions of tuples per second. The solution to attain
higher scalability and avoid single-node bottlenecks of current
SPEs, lies in architecting a parallel-distributed SPE with intra-
operator parallelism [4]. However, this requires addressing a
number of additional challenges. Parallelization should be syn-
tactically and semantically transparent. Syntactic transparency
means that query parallelization should be oblivious to the
user. That is, users write a regular (i.e., non-parallel) query
that is automatically parallelized by the system. Semantic
transparency means that, for a given input, parallel queries
should produce exactly the same output as their non-parallel
counterparts. On the other hand, resource usage should be cost
effective. Many applications exhibit sudden, dramatic changes
in the workload that can result in a variation of 1-2 orders
of magnitude between peak and valley loads. For instance, in
Asian cellular phone networks, streams of CDRs reach peaks
of hundreds of thousands of records, while valley loads are in
the range of thousands of records per second. A parallel but
static SPE, that is, deployed on a fixed number of processing
nodes, leads to either under-provisioning (i.e., the number of
nodes cannot handle the workload) or over-provisioning (i.e.,
the allocated nodes are running below their full capacity).
Under-provisioning results in the violation of service level
agreements that can incur high economic costs. Even with best
effort agreements, under-provisioning is responsible for losing
unhappy users and raising bad reputation from disgruntled
users. Over-provisioning is not cost-effective as resources are
not fully utilized. A parallel SPE should be elastic and adjust
the amount of its resources (i.e., the number of allocated
nodes) to the current workload. Moreover, elasticity should
be combined with dynamic load balancing. Without dynamic
load balancing, the system would provision new nodes as a
result of uneven load distribution. Therefore, the saturation
of a single node would lead to unnecessary provisioning of
new instances. With dynamic load balancing, new nodes are
provisioned only when the system as a whole does not have
enough capacity to cope with the incoming load.

In this paper, we present StreamCloud (SC) [5], a scalable
and elastic SPE. SC builds on top of Borealis [3] and provides
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transparent query parallelization. That is, users express regular
queries that are automatically parallelized. A compiler takes
the abstract query and generates its parallel version that is
deployed on a cluster of nodes. The system features high
scalability, elasticity and load balancing. SC provides high
scalability by exploiting intra-operator parallelism. That is, it
can distribute any subset of the query operators to a large set of
shared-nothing nodes. Logical data streams are split into mul-
tiple physical data substreams that flow in parallel, thus avoid-
ing single-node bottlenecks. Communication across different
nodes is minimized and only performed to guarantee semantic
transparency. SC performs content-aware stream splitting and
encapsulates the parallelization logic within smart operators
that make sure that the outcome of the parallel execution
matches the output of the centralized execution. SC monitors
its activity and dynamically reacts to workload variations by
re-organizing the load among its nodes as well as provisioning
or decommissioning nodes. Elastic resource management is
performed on-the-fly and shows very low intrusiveness, thus
making provisioning and decommissioning cost-effective. The
contributions of this paper can be summarized as follows:
• a highly scalable and elastic SPE for shared-nothing

clusters. SC is a full-fledged system, with a complete
implementation currently being used for industrial appli-
cations;

• a novel parallelization approach that minimizes the dis-
tribution overhead;

• transparent parallelization of queries via a query com-
piler;

• effective algorithms for elastic resource management and
load balancing that exhibit low overhead;

• a thorough evaluation of scalability and elasticity of the
proposed system in a large cluster with 320 cores.

The rest of the paper is organized as follows. Section II
provides a brief introduction to stream processing. Section III
discusses various parallelization strategies while Section IV
shows how SC parallelizes queries to attain high scalability
while preserving both syntactic and semantic transparency.
Section V presents elastic resource management and load
balancing algorithms used in SC. Section VI provides a
thorough evaluation of the scalability and elasticity of SC
while Section VII surveys relevant work in the area. The
paper concludes in Section VIII. Additional sections have
been added in a supplementary document which is organized
as follows. Section IX provides basic background on Data
Stream Processing while Section X details the setup used for
the evaluation as well as the queries and the data set. Finally,
Section XI provides a cost model for the query parallelization
strategies considered in this manuscript.

II. DATA STREAM PROCESSING

Data Stream Processing is a novel computing paradigm
particularly suited for application scenarios where massive
amount of data must be processed with small delay. Rather
than processing stored data like in traditional database systems,
SPEs process tuples on-the-fly. This is due to the amount of
input that discourages persistent storage and the requirement

of providing prompt results. SPEs handle streams of tuples
just as traditional database systems handle relations. A stream
is a potentially infinite sequence of tuples sharing a given
schema, denoted as (A1, A2, . . . , An); we refer to a generic
attribute Ai of tuple t as t.Ai. We assume that, regardless
of their schema, all tuples have a timestamp attribute set
at the data sources. The data sources have clocks that are
well-synchronized with other system nodes as already done
in [6]. When clock synchronization is not feasible, tuples
can be timestamped at the entry point of the data streaming
system. Queries used in SPEs are defined as “continuous”
since they are continuously standing over the streaming data,
i.e., results are pushed to the user each time the streaming
data satisfies the query predicate. A query is defined as a direct
acyclic graph where each node is an operator and edges define
data flows. Typical query operators of SPEs are analogous to
relational algebra operators and can be classified as stateless or
stateful [7]. Stateless operators (e.g., Map, Union and Filter)
do not keep state across tuples and perform their computation
solely based on each input tuple. Stateful operators (e.g.,
Aggregate, Join and Cartesian Product) perform operations on
sequences of tuples. Because of the infinite nature of the data
stream, stateful operators perform their computation on sliding
windows of tuples defined over a period of time (e.g., tuples
received in the last hour) or as a fixed number of tuples (e.g.,
last 100 tuples). A detailed description of streams, operators
and queries can be found in Section IX of the supplementary
document.

III. PARALLEL DATA STREAMING

In this section we discuss the different alternatives we con-
sidered to parallelize queries in SC and the overhead associated
to each of them. We also show how SC parallelizes queries
and discuss the operators that encapsulate the parallelization
logic and guarantee parallelization transparency.

A. Query Parallelization Strategies

When moving from a centralized to a parallel execution,
the challenge lies in guaranteeing semantic transparency, i.e.,
that the output of the parallel execution matches the output
of the centralized one, while minimizing overhead. Particular
attention must be given to stateful operators, as we must
ensure that all tuples that must be aggregated/joined together
are processed by the same node. For instance, an Aggre-
gate running on a particular node and computing the daily
average expense of mobile phone users, must process all
tuples belonging to the same user in order to produce the
correct result. We characterize the parallelization strategies
in a spectrum. The position of each strategy in the spectrum
depends on the granularity of the parallelization unit. At one
extreme, we have a parallelization strategy that keeps the
whole query as its parallelization unit. At the other extreme,
we have a parallelization strategy that uses individual operators
as parallelization units. Intermediate approaches define an
arbitrary set of operators as their parallelization unit. The
main two factors for the distribution cost are the number of
hops performed by each tuple and the communication fan-out
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Fig. 1. Query Parallelization Strategies.

of each node with the others. We illustrate three alternative
parallelization strategies by means of the abstract query in Fig.
1.a and its deployment on a cluster of 90 nodes. The query
is composed by two stateful operators, i.e., a Join (J) and an
Aggregate (Ag) and four stateless ones, i.e., two Maps (M)
and two Filters (F).

• Query-cloud strategy - QC (Fig. 1.b). If the paralleliza-
tion unit is the whole query, the latter is deployed in
each of the 90 nodes. Semantic transparency is attained
by redistributing tuples just before each stateful operator.
Therefore, tuples that should be aggregated/joined to-
gether are received by the same node. Each node receives
one ninetieth of the incoming stream and communication
takes place, for every stateful operator, from each node
to all other nodes (peers). The number of hops of each
tuple is equal to the number of stateful operators (i.e., 2)
and the fan-out for each node is equal to the number of
nodes minus one (i.e., 89).

• Operator-cloud strategy - OC (Fig. 1.c). In this strategy,
the parallelization unit is a single operator. Each of
them is deployed over a different subset of nodes (called
subcluster). In this example, each subcluster has 15 nodes
and communication happens from each node of one
subcluster to all its peers in the next subcluster. The total
number of hops is equal to the number of operators minus
one (i.e., 5), while the fan-out for each node is given by
the size of the following subcluster (i.e., 15).

• Operator-set-cloud strategy - SC (Fig. 1.d). The above
distribution strategies exhibit a trade-off between the
distribution costs (i.e., fan-out and number of hops). The
Operator-set-cloud strategy aims at minimizing both at
the same time. The rationale is that, to guarantee seman-
tic transparency, communication is required only before
stateful operators. Therefore, we map parallelization units
(called subqueries) to stateful operators. Each query is
split into as many subqueries as stateful operators, plus an
additional one, if the query starts with stateless operators.
A subquery consists of a stateful operator followed by
all the stateless operators connected to its output, until
the next stateful operator or the end of query. If the
query starts with stateless operators, the first subquery
consists of all stateless operators before the first stateful
one. As the query of Fig. 1.a has two stateful operators
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Fig. 2. Query Parallelization in SC.

plus a stateless prefix, there are three subqueries. Each
subquery is deployed on a subcluster of 30 nodes. The
first one contains the prefix of stateless operators, and
the next two, one stateful operator with the following
stateless operators. The total number of hops is equal to
the number of stateful operators (minus one, if the query
does not have a stateless prefix), while communication is
required from all nodes of a subcluster to the nodes of
the next subcluster (i.e., 2 and 30, respectively).

Clearly, the Query-cloud and Operator-set-cloud strategies
minimize the number of tuple hops, while the lowest fan-out
overheads are achieved by the Operator-cloud and Operator-
set-cloud strategies. A detailed cost model of the three query
parallelization strategies can be found in Section XI of the
supplementary document.

SC employs the Operator-set-cloud strategy as it strikes the
best balance between communication and fan-out overhead.
According to the Operator-set-cloud strategy, queries are split
into subqueries and each subquery is allocated to a set of SC
instances grouped in a subcluster. In the rest of the paper, we
use instance to denote a SC processing unit. This is because
SC leverages multiple CPUs, cores, and hardware threads of a
node, so any node can run as many SC instances as available
processors. Data flows from one subcluster to the next one,
until the output of the system. All instances of a subcluster
run the same subquery, called local subquery, for a fraction
of the input data stream, and produce a fraction of the output
data stream. Communication between subclusters guarantees
semantic transparency.

IV. QUERY PARALLELIZATION IN STREAMCLOUD

In this section, we show how SC parallelizes a query and
we introduce the operators that encapsulate the parallelization
logic, Load Balancers and Input Mergers.

Query parallelization is presented by means of the sample
query in Fig. 2 that is used in mobile telephony applications
to spot heavy customers. It receives a stream of CDRs with
origin phone number, start and end call time. The Map (M)
operator computes the call duration from the start and end
time. The Aggregate (Ag) operator groups CDRs by phone
number and computes a per-hour average call duration. Finally,
tuples with an average call duration greater than a given
threshold are forwarded by the Filter (F) operator. As the
query has one stateful operator and a stateless prefix, it is split
into two subqueries. Subquery1 consists of the Map operator
while Subquery2 has the Aggregate and the Filter operators.
They are allocated to subcluster 1 and 2, respectively. Given a
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Load Balancer for Join & Aggregate
Upon: arrival of t:

1: forward(t, nextSubcluster[BIM[hash(t.A1, t.A2, ...) % B].dest])
Load Balancer for Cartesian Product

Upon: arrival of t from stream S (left or right):
2: for each destination in BIM[hash(t.A1, t.A2, ...) % B].dest do
3: forward(t, nextSubcluster[destination])

Timeout Management at All Load Balancers
Upon: forwarding t to nextSubcluster[destination]:

4: lastTS:= t.ts
5: lastTime[destination]:= currentTime()

Upon: ∃ dest | currentT ime() ≥ lastT ime[dest] + d:
{d time units passed from last sent tuple}

6: dummy.ts:= lastTS
7: forward(dummy, nextSubcluster[destination])
8: lastTime[destination]:= lastTime[destination]+d

Input Merger
Upon: arrival of t from stream i:

9: buffer[i].enqueue(t)
10: if ∀i, buffer[i].nonEmpty() then
11: to = earliestTuple(buffer)
12: if ¬ isDummy(to) then
13: forward(to)
Fig. 3. Pseudocode for Load Balancers and Input Mergers.

subcluster, we term as upstream and downstream its previous
and next peers, respectively.

To guarantee effective tuple distribution from one subcluster
to the downstream one, output tuples of each subcluster are
assigned to buckets. Tuple-buckets assignment is based on the
attributes of the tuple. Given B distinct buckets and tuple t =
(A1, A2, ..., An), its corresponding bucket b is computed by
hashing one or more of its attributes1 modulus B, e.g., b =
H(Ai, Aj) mod B. All tuples belonging to a given bucket are
forwarded to and processed by the same downstream instance.

In order to distribute the buckets across N downstream
instances, each subcluster employs a bucket-instance map
(BIM). The BIM associates each bucket with an instance of
the downstream subcluster, so that BIM [b].dest provides the
downstream instance that must receive tuples belonging to
bucket b. In the following, we say that instance A “owns”
bucket b (that is, A is responsible for processing all tuples of
bucket b) if, according to the BIM of the upstream subcluster,
BIM [b].dest = A. Tuple-buckets assignment and BIMs are
endorsed by special operators, called Load Balancers (LB).
They are placed on the outgoing edge of each instance of a
subcluster and are used to distribute the output tuples of the
local subquery to the instances of the downstream subcluster.

Similarly to LBs on the outgoing edge of a subcluster,
SC places another special operator, called Input Merger (IM),
on the ingoing edge. IMs take multiple input streams from
upstream LBs and feed the local subquery with a single
merged stream. The pseudocode of the algorithms executed
by LBs and IMs is shown in Fig. 3.

A. Load Balancers

Load Balancers are in charge of distributing tuples from
one local subquery to all its downstream peers. To guarantee
that tuples that must be aggregated/joined together are indeed

1As explained later, the attributes used to compute the hash depend on the
semantics of the downstream operator.

received by the same instance, upstream LBs of a stateful sub-
query must be enriched with semantic awareness. In particular,
they must be aware of the semantics of the downstream stateful
operator. In what follows, we discuss the parallelization of
stateful subqueries for each of the stateful operators we have
considered: Join (in its variants of equijoin and general join,
or Cartesian Product), and Aggregate.

a) Join operator (equijoin): The Join we consider is an
equijoin, i.e., it has at least one equality clause in its predicate.

SC uses a symmetric hash join approach [4]. Upstream LBs
partition each input stream into B buckets and use the BIM
to route tuples to the N instances where the Join is deployed
(Fig. 3 line 1). The attribute specified in the equality clause
is used at upstream LBs to determine the bucket and the
recipient instance of a tuple. That is, let Ai be the attribute
of the equality clause, then for each tuple t, BIM [H(t.Ai)
mod B].dest determines the recipient instance to which t
should be sent. If the operator predicate contains multiple
equality clauses, the hash is computed over all the attributes of
those clauses. Therefore, tuples with the same values of the
attributes defined in the equality clauses will be sent to the
same instance and matched together.

b) General Join operator (Cartesian Product): The
Cartesian Product (CP) operator differs from the Join operator
in its predicate that can be arbitrarily complex (i.e., no equality
clauses). Upstream left and right LBs partition their data into
Bl and Br buckets, respectively. The BIM of the LB associates
one recipient instance for each (bl, br) ∈ Bl × Br. Given
a predicate over attributes Ai, Aj and input tuple t entering
the upstream left LB, the tuple is forwarded to all instances
BIM [bl, br].dest having bl = H(Ai, Aj) mod Bl. Similarly,
a tuple t′ entering the upstream right LB, is forwarded to all
instances BIM [bl, br].dest having br = H(Ai, Aj) mod Br.
From an implementation point of view, the BIM used to feed
CP operators (i.e., the ones used at upstreams LBs) associates
multiple recipient instances to each entry (Fig. 3, lines 2-3).

Figure 4.a depicts a sample query with two Maps (Ml and
Mr) and a CP operator. Ml divides by two the incoming
integers. Mr capitalizes incoming letters. The CP operator has
predicate left.number mod 2 = 1∧ right.letter 6= A and a
temporal window of 2 seconds. Figure 4.a also shows a sample
input and the resulting output. Tuple timestamps are indicated
on the top of each stream (the values right of the “ts” tag).
Figure 4.b shows the parallel version of the query. According
to the Operator-set-cloud strategy, the query is split into a
stateless prefix (the two Map operators) and the CP operator.
The stateless prefix is deployed on a subcluster of 2 nodes and
the CP operator in a subcluster of 4 nodes (N = 4). Left and
right incoming streams of the CP operator are 0-3 and A-D,
respectively.

Both streams are split into 2 buckets (hence, |Bl×Br| = 4).
The BIM for the left LB is built up so that tuples with integers
in {0, 3} are sent to CP instances 0 and 1, while tuples with
integers {1, 2} are sent to CP instances 2 and 3. The BIM for
the right LB is built up so that tuples with letters in {A,C}
are sent to CP instances 0 and 2, while tuples with letters in
{B,D} are sent to CP instances 1 and 3. Each of the 4 CP
instances performs one fourth of the whole Cartesian Product



5

CP
Ml

Mr

0

ab

2

c

46

d

7 6 5 4 3 2 1 0ts

Stream 1

Stream 2

0

AB

1

C

23

D

7 6 5 4 3 2 1 0ts

(3,D) (3,C) (1,C) (1,B)

6 4 3 2ts

CP0

CP1

CP2

CP3

Ml0

Ml1

Mr0

Mr1

C

0

a

b

2

c

4

6

d

(3,D)

(3,C)

(1,C)

(1,B)

Stream 11

Stream 12

Stream 21

Stream 22

a) Non-parallel query execution

b) Parallel query execution

LBl1

LBr1

LBl1

LBr1

IMl0

IMr0

IMl1

IMr1

IMl2

IMr2

IMl3

IMr3

Subcluster1
Subcluster2

������

0

1

2

3

4

5

6

7

1

5

Node 1.1

Node 1.2

N
o

d
e

 2
.1

N
o

d
e

 2
.2

N
o

d
e

 2
.3

N
o

d
e

 2
.4

3 0

C A

3 0

C A

2 1

2 1

D B

D BB 3

7

3 0

2

1 4

6

A 1

5

D 3

7

0 0

2

2 4

6

Fig. 4. Cartesian Product Sample Execution.

on the incoming streams.
c) Aggregate operator: Parallelization of the Aggregate

operator requires that all tuples sharing the same values of
the attributes specified in the Group − by parameter, should
be processed by the same instance. In the example of Fig. 2
the Aggregate groups calls by their originating phone number.
Hence, data is partitioned in a similar way to the Join operator
(Fig. 3 line 1). That is, the set of attributes used in the Group−
by parameter are hashed and a BIM is used to partition the
stream across the N instances of the downstream subcluster.

B. Input Mergers

Just like LBs, Input Mergers (IMs) are key to guarantee
semantic transparency. A naı̈ve IM that simply forwards tuples
coming from its upstream LBs, might lead to incorrect results.
For instance, in Fig. 4.a, the non-parallel CP operator receives
each input stream in timestamp order, (0, 1, 2, 3) and (A,
B, C, D). The evolution of the time windows for the non-
parallel query is depicted in Fig. 5.a (oldest tuples appear in
the rightmost positions of each window). When a new tuple t is
received on the left (resp. right) input stream, the right (resp.
left) window is updated, removing those tuples t′ such that
t.ts− t′.ts is greater than the window size2. In the example,
tuple “0” is purged when tuple “C” arrives (step 4 in Fig. 5.a);
tuple “A” is purged on the arrival of tuple “2”, and so on.
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2Window update is independent of the interleaving on the input streams
and only depends on the timestamps of the incoming tuples.
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Fig. 6. Query Compiler.

Using naı̈ve IMs, input tuples at the downstream subcluster
might be arbitrarily interleaved. This is because the tuple order
of a logical stream might not be preserved when it is split
in multiple physical streams, processed by different instances
and finally merged. For example, CP3 might receive 1, 2, D,B
as input sequence. Tuple “D” causes tuple “1” to be purged.
Hence, when tuple “B” arrives, it is not matched with tuple
“1” and the output tuple (1,B) is be missed.

The transparent parallelization of SC (Fig. 3 lines 9-13)
preserves the tuple order arrival of logical streams provid-
ing transparent IMs. The IM performs a merge of multiple
timestamp ordered input streams coming from upstream LBs
and feeds the local subquery with a single timestamp ordered
input stream. As a result, the local subquery will produce
a timestamp ordered output stream. To guarantee a correct
sorting, it is sufficient that the IM forwards the tuple with the
smallest timestamp, any time it has received at least one tuple
from each input stream (lines 10-13). To avoid blocking of the
IM, upstream LBs send dummy tuples for each output stream
that has been idle for the last d time units. Dummy tuples are
discarded by IMs and only used to unblock the processing of
other streams.

In the example of Fig. 4, the transparent IM would endorse
the window evolution shown in Fig. 5.b, independently of
the interleaving of the input streams. That is, despite output
streams of each LB are not coordinated, IMs guarantee that
tuples enter CP windows in timestamp order, thus assuring an
execution equivalent to the non-parallel operator.

C. Query Compiler

SC builds on top of Borealis [3], a non-parallel SPE.
Input queries are written in the Borealis query language and
automatically parallelized by SC through its query compiler.
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The latter allows easy deployment of arbitrary complex queries
over large clusters with just a few steps. The user is only
required to input a query written in the Borealis query lan-
guage, a list of available nodes (i.e., their IP addresses) and the
elasticity rules (see Section V). The process is shown in Fig. 6.
The query compiler takes a regular query (e.g., the one in Fig.
1.a) and splits it into subqueries according to the Operator-set-
cloud parallelization strategy (e.g., Fig. 1.d). At this stage, each
subquery is augmented with LBs and IMs on their outgoing
and ingoing edges, respectively. The query instantiator takes
as parameters the number of available instances and the
set of subqueries. It assigns a number of instances to each
subquery, according to the per-tuple processing cost. The latter
is measured as the time required to process a tuple by all the
operators of the subquery, measured on a sample execution.
The output of the query instantiator is a concrete parallel query
that has placeholders for IPs and ports to be used by each SC
instance. The final step is carried out by the query deployer
that, given a deployment descriptor with IPs and ports of
the available instances, deploys the concrete query assigning
IPs/ports to each SC instance.

V. ELASTICITY

In this section we show elastic resource management and
dynamic load balancing of SC.

Figure 7 illustrates a sample configuration with elastic man-
agement components. SC’s architecture includes an Elastic
Manager (EM), Resource Manager (RM) and Local Managers
(LMs). Each SC instance runs an LM that monitors resource
utilization and incoming load, and is able to reconfigure the
local LB (i.e., update its BIM). Each LM periodically reports
monitoring information to the EM that aggregates it on a per-
subcluster basis. Based on the collected data, the EM may

decide to reconfigure the system either to balance the load,
to provision or decommission instances. Reconfiguration deci-
sions are taken and executed independently for each subcluster.
If instances must be provisioned or decommissioned, the EM
interacts with the RM. The latter keeps a pool of instances
where SC software is running but no query is deployed. We
target critical application scenarios with high performance
requirements that typically rely on private cloud infrastruc-
tures3 (e.g., telecommunication companies). We assume SC to
be already running as it does not consume much resources:
the CPU usage of an idle SC process is in the order of
0.002% while its memory footprint is around 20MB (hence
the node can be used, e.g., for offline bill processing). Once
the EM receives a new instance, the subquery is deployed
and the instance is added to the subcluster that was about to
saturate; we account for query deployment time (e.g., less than
10ms seconds for the stateful subquery of Fig. 2) in all our
experiments.

SC complements elastic resource management with dynamic
load balancing to guarantee that new instances are only
provisioned when a subcluster is not able to cope with the
incoming load. Both techniques boil down to the ability to
reconfigure the system in an online and non-intrusive manner.

A. Elastic Reconfiguration Protocols

Reconfiguring a subcluster requires transferring the owner-
ship of one or more buckets from one instance (old owner)
to another (new owner) in the same subcluster. For instance,
bucket ownership of an overloaded instance may be transferred
to a less loaded instance or to a new one. The basic idea is to
define a point in time p so that tuples of bucket b earlier than
p are processed by the old owner and tuples later than p are
processed by the new one. This is straightforward for stateless
operators. However, it is more challenging when reconfiguring
stateful operators. Due to the sliding window semantics used in
stateful operators, a tuple might contribute to several windows.
For instance, in an Aggregate operator with a window size of
1 minute and an advance of 20 seconds, a tuple contributes to
3 consecutive overlapping windows. Thus, there will be tuples
that need to be processed by both the old and new owners.

SC reconfigures a subcluster by triggering one or more
reconfiguration actions. Each action changes the ownership of
a bucket from the old owner to the new one within the same
subcluster. Reconfiguration actions only affect the instances
of the subcluster being reconfigured and the upstream LBs.
We propose two alternative elastic reconfiguration protocols
for stateful subqueries that trade completion time for commu-
nication between instances being reconfigured. Both protocols
are explained considering ownership transfer of a bucket b
from old owner A to new owner B. Proposed protocols have
a common prefix; we first present this initial part and later
detail the two protocols individually.

1) Reconfiguration Start: Figure 8 shows the pseudocode
common to both reconfiguration protocols. The process is

3Public cloud systems, e.g., Amazon EC2, are not an option in our settings,
as provisioning a node in the public cloud can take from several minutes to
a few hours while starting SC only takes 1.2 seconds.
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LB
Upon: receiving ReconfigCommand(A,B, b)

1: BIM [b].dest = {A,B}
2: BIM [b].endTS :=∞
3: BIM [b].newOwner := B
4: BIM [b].status := reconfiguring
5: ts:=timestamp of last sent tuple
6: Send ControlTuple(ts,b,B) to A and B

Old owner A
Upon: receiving all ControlTuple(tsi,b,newOwner)
∧BT [b].ownership = owned

7: BT [b].startTS := maxi{tsi}
8: BT [b].ownership := old
9: BT [b].newOwner := newOwner

New owner B
Upon: receiving all ControlTuple(tsi,b,newOwner)
∧BT [b].ownership = notOwned

10: BT [b].startTS := maxi{tsi}
11: BT [b].ownership := new

Fig. 8. Reconfiguration Start Protocol.

initiated by the EM that decides to perform a reconfigura-
tion either for provisioning, decommissioning or load bal-
ancing purposes. The EM triggers the reconfiguration in a
subcluster by sending to upstream LBs a reconfiguration
command (ReconfigCommand) that specifies the bucket
of which ownership is being transferred, the old and the
new owner. At the end of the protocol, the instances being
reconfigured should agree on a common timestamp to start
the reconfiguration (startTS). Each LB proposes a times-
tamp based on the last tuple of bucket b that has been
forwarded. The highest timestamp becomes the logical start
of the reconfiguration. LBs maintain several variables for each
entry BIM [b]; BIM [b].endTS specifies the reconfiguration
end timestamp, BIM [b].newOwner specifies the new owner
and BIM [b].status is used to distinguish between normal
processing and reconfiguring actions.

Figure 9 shows a sample execution with the information
exchanged between LBs and the instances being reconfigured.
The figure only considers tuples and control messages related
to bucket b. However, we stress that LBs, A and B might
simultaneously process tuples belonging to other buckets. The
bottom part of Fig. 9 shows the windows managed by A
and B, respectively. Windows are time-based and have a size
and advance of 6 and 2 time units, respectively. Initially,
LB1 and LB2 route tuples corresponding to bucket b (T0,
T1 in Fig. 9) to A. Upon reception of the reconfigura-
tion command, each upstream LB updates its BIM setting
BIM [b].dest to both old and new owner, BIM [b].endTS
to ∞, BIM [b].newOwner to the new owner of the bucket
being reconfigured and BIM [b].status to reconfiguring. Fi-
nally LBs send a control tuple to both instances involved
in the reconfiguration, indicating the timestamp of the last
tuple processed (Fig. 8, lines 1-6). In the example of Fig. 9,
LB1 sends CT1(0, b, B) and LB2 sends CT2(1, b, B). When
both A and B receive all control tuples from upstream LBs,
they update their Bucket Table (BT ), setting BT [b].startTS
equal to the maximum timestamp received (Fig. 8, line 7 and
line 10) that becomes the logical start of the reconfiguration
(BT [b].startTS = 1 in the example of Fig. 9). A also sets
BT [b].newOwner to B (Fig. 8, line 9). Finally, A and B

CT1(0,b,B)

LB1 LB2 A B
T0

T1RecCmd(A,B,b)

CT2(1,b,B)

endTS=6 switchTS=4

endTS

T3

T4

T6

T9

CT1(0,b,B)

LB1 LB2 A B
T0

T1RecCmd(A,B,b)

CT2(1,b,B)

endT3

T5

CP

a) Window Recreation b) State Recreation

t

RecEnd

RecEnd

T6 T4 T3 T1 T0

T9 T6 T4 T3

X
X

Wi (0-5)
Wi+1(4-9)

A

B
startTS

CT1(0)

CT2(1)
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T5 T3 T1 T0

t
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CT2(1)

X
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Fig. 9. Sample reconfigurations.

LB
Upon: receiving t for bucket b

1: if BIM [b].status = reconfiguring
∧t.ts > BIM [b].endTS then

2: BIM [b].dest = BIM [b].newOwner
3: BIM [b].status := normal
4: Send t to BIM [b].dest

Upon: receiving EndOfReconfiguration(b, ts)
5: BIM [b].endTS := ts

Old owner A
Upon: BT [b].ownership = old

6: BT [b].endTS := ComputeEndTS()
7: Send EndOfReconfiguration(b, BT [b].endTS) to upstream LBs

Upon: receiving tuple t for bucket b ∧ BT [b].ownership = old
8: if t.ts < BT [b].endTS then
9: process t

10: else
11: discard t
12: BT [b].ownership = notOwned

New owner B
Upon: BT [b].ownership = new
13: BT [b].switchTS := computeSwitchTS()
Upon: receiving tuple t for bucket b ∧ BT [b].ownership = new
14: if t.ts < BT [b].switchTS then
15: discard t
16: else
17: BT [b].ownership = owned

{Start regular processing of bucket b}
Fig. 10. Window Recreation Protocol.

register their roles as old and new owner, respectively, setting
the variable BT [b].ownership (Fig. 8, line 8 and line 11).

2) Window Recreation Protocol: The Window Recreation
protocol aims at avoiding communication between the in-
stances being reconfigured. During a time interval proportional
to the window size, tuples are processed, as part of separate
windows, by both instances involved in the reconfiguration.
When the old owner has processed all its windows, tuples are
only sent to the new owner and regular processing is resumed.

The pseudocode is shown in Fig. 10. A is in charge
of processing all windows with an initial timestamp earlier
than BT [b].startTS (Fig. 10, lines 6-12), while B will
process all later windows (Fig. 10, lines 13-17). Due to
the overlapping semantics of sliding windows, tuples later
than BT [b].startTS will be forwarded to both instances and
processed as part of different windows. Given BT [b].startTS,
windows size and advance, A computes the end timestamp of
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LB
Upon: receiving t for bucket b

1: Send t to BIM [b].dest
Upon: receiving EnfOfReconfiguration(b)

2: BIM [b].dest = BIM [b].newOwner

Old owner A
Upon: BT [b].ownership = old

3: Send EndOfReconfiguration(b) to upstream LBs
4: cp:= Checkpoint(b)
5: Send(cp) to BT [b].newOwner

Upon: receiving t for bucket b ∧BT [b].ownership = old
6: Discard t
7: BT [b].ownership = notOwned

New owner B
Upon: receiving t for bucket b ∧BT [b].ownership = new

8: Buffer t
Upon: receiving Checkpoint(cp)

9: Install(cp)
10: Process all buffered tuples of bucket b
11: BT [b].ownership = owned
{Start regular processing of bucket b}

Fig. 11. State Recreation Protocol.

the last windows it has to process, i.e., BT [b].endTS4. Simi-
larly, B computes the timestamp of the first window it has to
process, i.e., BT [b].switchTS. BT [b].endTS is sent by A to
upstream LBs via an EndOfReconfiguration message. LBs
end the reconfiguration and resume regular tuple processing,
i.e., tuples are only forwarded to B, when they receive the
first tuple with a timestamp later than BT [b].endTS (Fig. 10,
lines 1-5).

Figure 9.a shows a sample execution where window size
and advance are set to 6 and 2, respectively. Before receiving
the ReconfigCommand from the Elastic Manager, upstream
LBs perform regular tuple processing and send each tuple
to the current owner of the corresponding bucket. Upon re-
ceiving the ReconfigurationCommand, each LBs provides
the timestamp of the latest tuple forwarded, via a control
tuple: CT1 carries timestamp 0 and CT2 carries timestamp
1. Using the control tuples, the window size and advance,
A computes BT [b].startTS = 1 and BT [b].endTS = 6;
B computes BT [b].switchTS = 4. A becomes responsible
for all windows up to Wi since its starting timestamp is
lower than BT [b].startTS. B becomes responsible for all
windows starting from Wi+1 since its starting timestamp is
greater than BT [b].startTS. Tuples T3 to T4 are sent from
LBs to both instances because their timestamp is earlier than
BIM [b].endTS. Tuple T6 should be sent only to B (its
timestamp being 6) but it is sent to both instances because LB2
processes it before receiving the EndOfReconfiguration
message. Tuples T3 is discarded by B because its timestamp
is earlier than BT [b].switchTS. Tuples T6 is discarded by
A because its timestamp is equal to BT [b].endTS. Starting
from tuple T9, LBs only forward tuples to B.

3) State Recreation Protocol: The Window Recreation
protocol avoids communication between instances being re-
configured, but its completion time is proportional to the
window size. Hence, if window size is large (e.g., 24 hours),

4All windows of buckets being reconfigured share the same startTS. This
is because SC enforces that all windows are aligned to the same timestamp
as in [3].

completion time can be too long for the protocol to be
effective. The State Recreation protocol aims at completing
the reconfiguration independently of the window size. This
is achieved by transferring the state of the bucket being
reconfigured, from the old owner to the new one.

The pseudocode is shown in Fig. 11. Once BT [b].startTS
has been set, A sends the EndOfReconfiguration message
with BT [b].endTS = BT [b].startTS to upstream LBs. All
tuples with timestamp later than or equal to BT [b].startTS
are discarded by A. At this time, A also serializes the state
associated to bucket b and sends it to B (Fig. 11, lines 3-7).
Upstream LBs forward to both A and B all tuples processed
after reception of the ReconfigurationCommand that have
a timestamp earlier than BIM [b].endTS. Tuples with a times-
tamp later than BIM [b].endTS are only forwarded to B (Fig.
11, lines 1-2). B buffers all tuples waiting for the state of
bucket b. Once the state has been received and installed, B
processes all buffered tuples and ends the reconfiguration (Fig.
11, lines 8-11).

Figure 9.b shows a sample execution where window size
and advance are set to 6 and 2, respectively. The execution
resembles the one in the example of the Window Recreation
protocol, up to the time when BT [b].startTS is computed.
Tuple T3 has timestamp later than BIM [b].endTS but it is
forwarded to both A and B because LB1 processes it before
receiving the EndOfReconfiguration message. The tuple
is discarded by A. B processes T3 because it has already
received the state associated to bucket b (denoted as CP in
Fig. 9.b). Tuple T5 is only sent to B since it is processed by
LB2 after the reconfiguration has ended.

B. Elasticity Protocol
Elasticity rules are specified as thresholds that set the

conditions that trigger provisioning, decommissioning or load
balancing. Provisioning and decommissioning are triggered if
the average CPU utilization is above the Upper-Utilization-
Threshold (UUT ) or below the Lower-Utilization-Threshold
(LUT ). Reconfiguration actions aim at achieving an average
CPU utilization as close as possible to the Target-Utilization-
Threshold (TUT ).

Load balancing is triggered when the standard deviation of
the CPU utilization is above the Upper-Imbalance-Threshold
(UIT ). A Minimum-Improvement-Threshold (MIT ) specifies
the minimal performance improvement to endorse a new
configuration. That is, the new configuration is applied only
if the imbalance reduction is above the MIT . The goal is
to keep the average CPU utilization within upper and lower
utilization thresholds and the standard deviation below the
upper imbalance threshold in each subcluster.

SC features a load-aware provisioning strategy. When pro-
visioning instances, a naı̈ve strategy would be to provision
one instance at a time (individual provisioning). However,
individual provisioning might lead to cascade provisioning,
i.e., continuous allocation of new instances. This might happen
with steadily increasing loads when the additional computing
power provided by the new instance does not decrease the
average CPU utilization below UUT . To overcome this prob-
lem, SC load-aware provisioning takes into account the current
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ElasticManager
Upon: new monitoring period has elapsed

1: Uav =
∑n

i=1 Ui

n
2: if Uav /∈ [LUT,UUT ] then
3: old:= n
4: n:=ComputeNewConfiguration(TUT, old, Uav)
5: if n > old then
6: Provision(n-old)
7: if n < old then
8: freeNodes:= Offload(old-n)
9: Decommission(freeNodes)

10: Usd =
√∑n

i=1(Ui − Uav)2

11: if Usd > UIT then
12: BalanceLoad(Usd)
Fig. 12. Elastic Management Protocol.

subcluster size and load to decide how many new instances to
provide in order to reach for TUT .

The protocol for elastic management is illustrated in Fig. 12.
In order to enforce the elasticity rules, the EM periodically
collects monitoring information from all instances on each
subcluster via the LMs. The information includes the average
CPU usage (Ui) and number of tuples processed per second
per bucket (Tb). The EM computes the average CPU usage
per subcluster, Uav (Fig. 12, line 1). If Uav is outside the
allowed range, the number of instances required to cope with
the current load is computed (Fig. 12, lines 2-4). If the
subcluster is under-provisioned, new instances are allocated
(Fig. 12, lines 5-6). If the subcluster is over-provisioned, the
load of unneeded instances is transferred to the rest of the
instances by the Offload function and the unneeded instances
are decommissioned (Fig. 12, lines 7-9).

M1 J1 F1 J2 M2 A1 F2 M3

M1 J1 F1 J2 M2 A1 F2 M3

M1 J1 F1 J2 M2 A1 F2 M3

Query-Cloud

Operator-set-cloud

Operator-Cloud

Intra-Cluster Communication

Extra-Cluster Communication

Cluster boundaries

M1: Map 1

J1: Join 1

F1: Filter 1

J2: Join 2

M2: Map 2

A1: Aggregate 1

F2: Filter 2

M3: Map 3

Fig. 13. Query used for the evaluation.

Load Balancing is triggered if Usd > UIT (Fig. 12, lines
10-12) and is based on a greedy algorithm5 similar to Bubble-
sort. Initially, instances are sorted by Ui and, for each instance,
buckets are sorted by Tb. At each iteration the algorithm iden-
tifies the most and least loaded instances; the bucket with the
highest Tb owned by the most loaded instance is transferred to
the least loaded one. The CPU usage standard deviation (Usd)
is updated and iteration halts when the relative improvement
(i.e., difference of standard deviation between two consecutive
iterations) is lower than MIT . The provisioning strategy is
encapsulated in the ComputeNewConfiguration function (Fig.
12, line 4). The interaction with the pool of free instances
(e.g., a cloud resource manager) is encapsulated in functions
Provision and Decommission. The load balancing algorithm is
abstracted in the BalanceLoad function (Fig. 12, line 12).

5Optimal load balancing is equivalent to the bin packing problem that is
known to be NP-hard. In fact, each instance can be seen as a bin with given
capacity and the set of tuples belonging to a bucket b is equivalent to an
object “to be packed”. Its “volume” is given by the sum of all Tb at each
instance of the subcluster.
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Fig. 14. Parallelization strategies evaluation - CPU usage breakdown.
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Fig. 15. Parallelization strategies evaluation - Scalability.

VI. EVALUATION

A. Evaluation Setup

The evaluation was performed in a shared-nothing cluster
of 100 nodes (blades) with 320 cores. Further details of the
evaluation setup can be found in Section X of the supple-
mentary document. All the experiments have 3 phases: warm-
up, steady-state and cool-down. The evaluation was conducted
during the steady-state phase that lasted for at least 10 minutes.
Each experiment was run three times and we report averaged
measurements.

B. Scalability Evaluation

In this section we evaluate the scalability of SC with
respect to the input load. We first evaluate the scalability
and overhead of the parallelization strategies of Section III-
A. Two additional sets of experiments focus on individual
operators and evaluate their scalability for increasing input
loads. Finally, we highlight how SC takes full advantage of
multi core architectures.

1) Scalability of Queries: The query of Fig. 13 was de-
ployed in a cluster of 30 instances, according to the three
parallelization strategies of Section III-A. For each of the three
approaches, Fig. 14 shows how the CPU usage is split among
tuple processing, distribution overhead and idle cycles.

The query-cloud approach requires communication from
each of the 30 instances to all other peers, for each of the three
stateful operators (roughly 3 · 302 communication channels).
Figure 14 shows that the overall distribution overhead is
around 40%. The remaining 60% is used for tuple processing.

The operator-cloud strategy shows a distribution overhead
of more than 30%, while CPU ratio used to process tuples
is roughly 35%. The unused CPU cycles (tagged as “idle” in
Fig. 14) are related to the difference between the nominal
subcluster sizes and the actual ones. For instance, when
computing the optimal distribution plan, an operator might
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Fig. 16. Individual Operator and Query Scalability Evaluation Results. Solid lines in the upper part of each figure refer to throughput (t/s). In the bottom
part of each figure, solid lines refer to CPU usage (%) while dotted lines refer to queue lengths (#t).

require 4.3 instances that translates to an actual assignment of
5 instances, thus leading to one CPU that is not fully utilized.

The operator-set-cloud approach exhibits the lowest com-
munication overhead (roughly 10%). As with the previous
approach, the difference between nominal and actual sub-
cluster sizes lead to unused resources. However, since fewer
subclusters are generally used, the “idle” percentage is lower
than that of the operator-cloud approach.

The upper part Fig. 15 shows the scalability of the three
approaches, using up to 60 instances. For the query-cloud
approach, we could only use half of the instances because
the fan-out overhead with more than 30 instances was already
exceeding the available resources at deployment time. For each
strategy, different subcluster sizes have been evaluated and
we only report the configurations that achieved the highest
throughput. The SC approach (operator-set-cloud) attains a
performance that is 2.5 to 5 times better than operator-cloud
and query-cloud, respectively.

The bottom part of Fig. 15 also shows the evolution of the
CPU usage for increasing loads. The query-cloud and operator-
set-cloud approaches reach 100% CPU utilization. However,
the former hits the maximal CPU usage with low input loads
(≤ 10, 000 tuples per seconds or t/s) while the operator-set-
cloud approach sustains up to 70, 000 t/s. The operator-cloud
approach shows a maximal CPU utilization of 60%; roughly
40% of the CPU is not used.

2) Scalability of Individual Operators: This set of exper-
iments focuses on the scalability of subclusters with one
deployed operator (i.e., Aggregate, Map, Join and Cartesian
Product) and shows the associated overhead (CPU utilization
and queue sizes). All the experiments share the same input
schema: a CDR consisting of calling and called number, call
start and end time, district, latitude and longitude coordinates

and emission timestamp.
The experiments show the throughput behavior as the

injected load increases. We experienced a common pattern
that can be summarized in three stages: (1) an initial stage
with increasing throughput, CPU utilization below 100% and
empty queues; (2) a second stage where throughput increases
with a milder slope: instances are close to saturation and
queues start growing; (3) a final stage showing 100% CPU
utilization where queues reach their limits and throughput
becomes stable. Each stage can be clearly seen in the bottom
parts of Fig. 16.a through Fig. 16.d, where solid lines show the
CPU usage (left Y axis) and dotted lines show queue lengths
(right Y axis).

The Aggregate operator computes the number of calls and
average duration by grouping results by district; windows size
and advance are set to 60 and 10 seconds, respectively. It
exhibits a linear evolution of the throughput for different input
rates and number of instances (upper part of Fig. 16.a). Twenty
instances manage an input rate of roughly 200, 000 t/s while
forty instances double the handled input rate, reaching roughly
400, 000 t/s.

For each input CDR, the Map operator computes the call
duration, given the start and end time. The upper part Fig.
16.b shows a linear throughput where twenty instances process
230, 000 t/s; doubling the number of available instances the
throughput reaches 450, 000 t/s.

The Join operator matches phone calls made by the same
user every minute and computes their distance in time and
space. The upper part of Fig. 16.c shows the evolution of the
throughput in comparisons per second (c/s) for all configura-
tions. From 20 to 40 instances the throughput almost doubles,
which means that scalability is almost linear.

The evaluation of the Cartesian Product operator is shown
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Fig. 18. Join max throughput vs. number of instances per node.

in the upper part of Fig. 16.d. Also in this case, the scale-out
is almost linear. Twenty instances achieve close to two billions
c/s and 40 instances reach four billions c/s.

3) Scaling with Fixed-Size Windows: In this set of ex-
periments, we focus on CP operators defined over fixed-size
windows. The operator is the same as the one used in Section
VI-B.2. The window size has been set to 20, 000 tuples. Each
tuple is 12 bytes long yielding to a memory footprint of 240
Kbytes.

Distributing CP operators defined over fixed-size windows
has the advantage of reducing the number of comparisons per
instance. The former translates to a smaller per-tuple process-
ing time. For example, in a non-parallel CP operator with
windows of size 20, 000 and an average input load of 1, 000
t/s, the operator must perform 20 million c/s. Distributing the
operator over N instances, each instance would perform 1√

N
-

th of 20 millions comparisons. For instance, if N = 4, the
number of c/s per instance drops to 10 million. In other words,
the per-tuple processing time is halved.

Figure 17 shows super-linear scalability of the throughput.
In fact, as the per-tuple processing cost at each instance
decreases, the parallel CP operator outperforms its non-parallel
counterpart by a factor of N2.

4) Multi-Cores: In this experiment, we aim at quantifying
the scalability of SC with respect to the number of available
processors in each node, that is, to evaluate whether SC is able
to effectively use the available CPUs/cores/hardware threads
of each node.

We focus on the Join operator of Section VI-B.2 deployed
over 1, 10 and 20 quad-core nodes, respectively. On each node,
up to 4 SC instances were deployed.

Figure 18 shows linear scalability with respect to the
number of SC instances per node. For example, 1 node running

4 SC instances handles 0.4× 1011 c/s, 10 nodes running 4 SC
instances each can reach 4×1011 c/s and 20 nodes with 4 SC
instances each go up to 8×1011 c/s. This is because SC defines
three threads for receiving, processing and sending tuples. As
the scheduling policy enforces only one active thread at a given
point in time, we can deploy as many SC instances as available
cores and scale with the number of cores per node.

C. Elasticity Evaluation

This section presents the experiments performed to evaluate
the elasticity of SC.

1) Elastic Reconfiguration Protocols: This set of exper-
iments aims at evaluating the trade-off between the elastic
reconfiguration protocols of Section V. We run the stateful
subquery of Fig. 2, with window size of 1, 5 and 10 seconds
(WS labels in Fig. 19), respectively. UUT is set to 80%, that
is, when the average CPU utilization reaches 80%, the Elastic
Manager provisions a new instance and running instances
transfer ownership of some of their buckets to the new one. For
each reconfiguration protocol, Fig. 19 shows the completion
times and the amount of data transferred between instances.
Completion time is measured from the sending of the reconfig-
uration command to the end of the reconfiguration at the new
owner. Figures 19.a, 19.b, and 19.c show the time required to
complete a reconfiguration from 1 to 2 instances, from 15 to
16 instances and from 30 to 31 instances, respectively, with an
increasing number of transferred windows. Completion time
for the State Recreation (SR) protocol grows linearly with the
number of windows being transferred. This is because all the
windows of the buckets being transferred must be sent to the
new owner.

The Window Recreation (WR) protocol takes a time pro-
portional to the window size, regardless of the number of
windows to be transferred. The time to complete shown in
Fig. 19.a increases with a steeper slope with respect to Fig.
19.b and Fig. 19.c. This is because there is only one instance
transferring a large number of buckets; for configurations with
a higher number of instances, this effect disappears and the
completion time only depends on the window size. Figures
19.d, 19.e, and 19.f show the amount of data transferred to
the new owner in each configuration. With the SR protocol,
data received by the new instance grows linearly with the
number of transferred windows; using the WR protocol no
data is exchanged between instances being reconfigured.

Comparing the results of this set of experiments, we con-
clude that SR provides better performance as long as the
completion time (dependent on the windows being transferred)
does not exceed the time to fill up a window.

2) Load balancing: The goal of this set of experiments is
to evaluate the effectiveness of load balancing for input loads
with a distribution that changes over time. We use the query
of Fig. 2 and monitor the evolution of the stateful subquery
deployed in a subcluster of 15 instances that process a constant
input load of 150, 000 t/s.

Input tuples have 10, 000 different phone numbers, i.e., the
Group− by parameter of the Aggregate operator has 10, 000
keys. Input tuples were generated according to a normal
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Fig. 19. Evaluation of the elastic reconfiguration protocols.

distribution that varies over time, either its average µ or its
standard deviation σ. The goal is to show that load balancing
allows keeping a balanced CPU utilization rate of the allocated
instances, despite the variability of the input load.

Figure 20.a compares system performance with and without
load balancing. The experiment is divided in periods. During
the first period, input data follows a uniform distribution.
In all other periods, we use a normal distribution with µ
that changes periodically from 2, 000 to 8, 000 in steps of
2, 000. In Fig. 20.a, periods are separated with vertical lines
and for each of them, µ and σ are specified. Dashed lines
show the CPU average utilization rate (primary Y-axis) and
its standard deviation (secondary Y-axis) when load balancing
is not enabled. In this case, the standard deviation grows
each time µ changes. Solid lines show the performance when
load balancing is enabled. The standard deviation exhibits
a peak after the beginning of each new period, which is
reduced after SC balances the load. Load balancing keeps
the standard deviation constant, despite the changes in the
input distribution. Both configurations show a constant average
utilization rate because we fixed the injected load. Figure 20.b
provides results of the experiment where µ is kept constant and
σ changes periodically from 100 to 25 in steps of 25. Without
load balancing, the imbalance among instances increases as
σ decreases. With load balancing, the load is redistributed
and the standard deviation is constantly kept below the upper
imbalance threshold.

3) Self-Provisioning: In this set of experiments, we evaluate
the effectiveness of provisioning and decommissioning in-
stances on-the-fly. We use the query of Fig. 2 and monitor the
evolution of the stateful subquery as the size of the subcluster
changes. We set LUT = 0.5, UUT = 0.9 and TUT = 0.6.
The load is increased (resp. decreased) linearly to observe the
effectiveness of provisioning (resp. decommissioning). Figure
21.a shows the behavior of the individual provisioning strategy,
i.e., when provisioning one instance at a time. We study
the system behavior when growing from 1 to 15 instances.
The throughput increases linearly with the input load, despite
negligible variations at each provisioning step. However, the
target utilization is achieved only when moving from 1 to 2
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Fig. 20. Elastic Management - Load Balancing.

instances. Starting from size 3, each provisioning step does
not provide enough additional computing power to decrease
the average CPU utilization to the target one (TUT ). For
larger configurations (e.g., 15 nodes), provisioning of one
instance results in a negligible increase of the overall com-
puting power, leading to an average CPU utilization close to
the upper threshold. As soon as the average CPU utilization
stays above the upper threshold, the system suffers from
cascade provisioning. Figure 21.b, shows the effectiveness of
the SC load-aware provisioning strategy. As the number of
provisioned nodes is computed on the current subcluster size
and load, each provisioning step achieves the target utiliza-
tion threshold. Moreover, load-aware provisioning affords less
frequent reconfiguration steps than individual provisioning.
Hence, the system can reach higher throughput with fewer
reconfiguration steps. In other words, load-aware provisioning
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Fig. 21. Elastic Management - Provisioning Strategies.

TABLE I
STATIC VS. ELASTIC CONFIGURATIONS OVERHEAD.

Configuration CPU usage (%) Throughput (t/s)
Static (11 instances) 0.81 64, 506
Elastic (11 instances) 0.80 64, 645
Static (17 instances) 0.85 100, 869
Elastic (17 instances) 0.84 102, 695

is less intrusive than individual provisioning. Once reached 27
instances, we start decreasing the load and show the system
behavior in Fig. 21.c. Decommissioning works as effectively
as provisioning. The decommissioning intrusiveness is even
lower than provisioning due to the decreasing load. That is,
once instances are transferring ownership of their buckets,
the decreasing input rate results in a CPU average utilization
slightly below the TUT .

Elastic resource management overhead does not affect the
performance of the parallelization technique used in SC. To
support our claim, we ran the same query used for the
experiment of Fig. 21 for two static configurations of 11 and
17 SC instances, respectively, and we compared throughput
and CPU consumption with the results of Fig. 21.b. Size and
injected data rate of each configuration were chosen upon the
experiment of Fig. 21.b. During this experiment, the cluster
reached size 11 around time 500 (seconds) and ramped up

to size 17 around time 900 (seconds). Results are provided
in Table I: for both cluster sizes, the static and the elastic
configuration reach about the same throughput with similar
CPU usage.

VII. RELATED WORK

Distributed Stream Processing. Distributed SPEs (e.g.,
Borealis [3]) allow deployment of each operator to a different
node. Their scalability is bounded by the capacity of a single
node that must process the whole input data stream. SC
overcomes this issue by never concentrating the data stream
in any single node.

Parallel Stream Processing. Aurora* [8] and Flux [9]
are two early proposals for parallel stream processing in
shared nothing environments. Aurora* distributes the load
across several nodes running the same operator and is mostly
related to our parallelization approach. The main differences
stem from the fact that Aurora* box splitting uses a single
filter upstream of the parallel operator and a single union
downstream. This results in the whole data stream going
through a single node (the filter or the union), which bounds
its scalability. In contrast, in SC, a data stream never needs
to go through a single node. Instead, it travels from a cluster
of nodes to another cluster in parallel. To support our claims,
we have run the Join operator of Section VI-B.2 over two
clusters of 20 and 40 nodes running Aurora*. The smaller
cluster reached a throughput of less than 13, 000 t/s while
the largest configuration reached roughly 11, 000 t/s6. With
the same configurations, SC has reached around 170, 000 and
300, 000 t/s, respectively (as shown in Fig. 16). Flux extends
the exchange operator [10] to a shared nothing environment for
data streaming. The exchange operator is a parallelization op-
erator for parallel databases in multi-processors environments.
It has a role similar to our load balancer, that is, parallelizing
without having to customize query operators. Both provide
semantic awareness or, in Flux terminology, “content sensitive
routing” . One important difference between Flux and SC is
that the exchange operator in Flux needs to be implemented
for each SPE, while our load balancer is implemented via
standard filters. Further, Flux’s evaluation was performed using
simulations and focused on a single operator. In contrast, SC
has been evaluated in a real deployment with both individual
operators and full queries. Neither Aurora* nor Flux perform
any evaluation of the scalability of their approaches, that is
one of the main contributions of our paper. A novel approach
to data stream processing based on NFA was initially proposed
in [11] and later extended to distributed processing by [12].
Cayuga [11] does not support Cartesian Product and windowed
Join operators. Its successor, Johka [12], provides two com-
bined techniques to afford distributed processing. The first
technique, row/column scaling replicates a query over several
machines; hence, a query-aware data partitioning technique
forwards only to a subset of the machines, all events related to
a given query. The second technique, called pipelining, splits a
query over several nodes so that sequentially process the input

6The smaller configuration has better performance as the single upstream
Filter incurs in less fan-out overhead.
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data. Both techniques are similar to the semantic-aware data
partitioning and the operator-set-cloud query partitioning of
SC. However, [12] lacks details about automatic partitioning
of the data and the query, suffer from the same semantic
limitations of [11] (i.e., no Cartesian Product nor windowed
Join operators) and does not provide elasticity. S4 [13] is a
scalable distributed SPE that does not use windowing. State
information in S4 are continuously maintained but stale data
is periodically purged to free memory. As in SC, S4 uses the
hash of the keys in an event to distribute them across multiple
processing nodes. The system is at an early development stage
and currently does not provide elasticity. One work that is
mostly related to SC is [14]. The parallelization approach
of [14] is similar to the one of SC but is tailored for one
specific type of query (refereed to “Sense-and-Respond”).
Differently, we propose a generic approach to parallelize any
query. Finally, [14] proposes a static system while SC provides
elastic resource management. This paper is an extension of [5]
where the static version of SC is presented. In this manuscript
we extend SC with elasticity and load balancing.

Load Balancing The authors of [15] study static load
balancing and use correlation information of input loads to im-
prove the operator distribution plan. They achieve fine resource
utilization by allocating operators with highly-correlated input
streams on different nodes. Dynamic load balancing is ad-
dressed in [9] with a focus on intra-operator load distribution,
but the authors do not provide a detailed evaluation of their
system. In [16], overloaded operators trigger a reconfiguration
of the load distribution policy with a “backpressure” message
to upstream peers. However, the authors of [16] only consider
stateless operators. SC provides load balancing for stateless
and stateful operators and redistributes the load on-the-fly.

Elasticity. Elasticity in streaming environments has not
been considered before. In the context of traditional database
management systems, the solutions in [17] and [18] provide
autonomic provisioning of database servers in order to keep
the average query latency under an arbitrary service level
agreement. However, database applications typically do not
require near real-time processing and do not face a number
of issues that we address in the provisioning for SPEs. [19]
proposes an adaptive SPE where resources are dynamically
allocated. The system uses exchange operators similar to those
in [9] but does not provide details on how states are managed
among a variable set of instances. The evaluation lacks stateful
operators and only shows query response times as the number
of available resources increases.

In some settings, elasticity is closely related to fault-
tolerance [20] where the former adds resources as the sys-
tem saturates while fault-tolerance requires new computing
resources as some of them fail. However, we assume fault-
tolerance to be beyond the scope of this paper and we plan to
add fault-tolerance to SC as future work. Both fault-tolerance
and elasticity require state transfer between processing units.
However, we argue that the approaches are different: fault-
tolerance requires proactive state-transfer because the state of
a processing unit is lost once the unit fails; elasticity requires
reactive state-transfer as the saturated instances is still working
and can transfer its state information to a peer.

VIII. CONCLUSIONS

We have presented SC, a highly scalable and elastic data
streaming system. SC provides transparent parallelization that
preserves the syntax and semantics of centralized queries.
Scalability is attained by means of a novel parallelization
strategy that minimizes the distribution overhead. Elasticity
and dynamic load balancing minimize the number of re-
sources used for coping with varying workloads. The eval-
uation demonstrates the large scalability and effectiveness of
elasticity of SC.
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Abstract— This manuscript includes the supplementary sec-
tions for the paper titled “StreamCloud: An Elastic and Scalable
Data Streaming System”. It provides more details on data stream
processing and the testbed used for performance evaluation of
StreamCloud.

IX. A PRIMER ON DATA STREAM PROCESSING

In contrast with the traditional store-then-process paradigm,
Stream Processing Engine (SPE) defines a new computing
paradigm where data is processed on the fly. This is particu-
larly suited in many application scenarios where both the input
rates and the tight processing time requirements call for fast
data analysis and prompt result reporting.

SPEs handle continuous queries over streaming data. A con-
tinuous query differs from its traditional database counterpart
as it is always “standing” over the streaming data. That is,
once the query has been deployed, results are produced each
time the input data satisfies the query predicate.

A data stream S is a potentially infinite sequence of tuples.
All tuples of a stream share the same schema. The latter de-
fines name and type of each attribute of a tuple; common data
types are string, integer, double, time, etc.. We denote the
schema of a generic stream as (A1, A2, . . . , An) and refer to
attribute Ai of tuple t as t.Ai. We also assume that data sources
and system nodes are equipped with well-synchronized clocks,
using a clock synchronization protocol (e.g., NTP [1]) as
already done in [2]. When clock synchronization is not feasible
at data sources, tuples can be timestamped at the entry point
of the data streaming system. We refer to the timestamp of
tuple t as t.ts.

Continuous queries are defined over one or more input data
streams and can have multiple output streams. A continuous
query is modeled as a directed acyclic graph, with additional
input and output edges representing input and output streams,
respectively. Each node u in the graph is an operator, which
consumes tuples of at least one input stream and produces
tuples for at least one output stream. The presence of an edge
(u, v) means that the output stream of node u is the input
stream of node v, i.e., node v consumes tuples produced by
node u.

Typical query operators of SPEs are similar to relational al-
gebra operators. They are classified depending on whether they
keep state information across input tuples. Stateless operators
(e.g., Map, Union and Filter) do not keep any state across

tuples and perform one-by-one computation; that is, each
incoming tuple is processed and an output tuple is produced,
if any. Stateful operators (e.g., Aggregate, Join and Cartesian
Product) perform computation over multiple input tuples; that
is, each incoming tuple updates the state information of the
operator and contributes to the output tuple, if any. Because
of the infinite nature of data streams, stateful operators keep
state information only for the most recent incoming tuples.
This technique is referred to as windowing. Windows can be
defined over a period of time (e.g., tuples received in the last
hour) or over the number of received tuples (e.g., last 100
tuples).

The rest of this Section provides details on the main SPE
operators.

A. Map
The Map operator is a generalized projection operator

defined as

M{A′1 ← f1(tin), . . . , A
′
n ← fn(tin)}(I,O)

where I and O denote the input and output stream, respec-
tively. tin is a generic input tuple and {A′1, . . . , A′n} is the
schema of the output stream. The operator transforms each
input tuple via the set of user-defined functions {f1, . . . , fn}.
The output stream schema might differ from the input one,
but the output tuple preserves the timestamp of the input one.

B. Filter
The Filter operator is used either to discard tuples or to

route them over different output streams. It is defined as

F{P1, . . . , Pm}(I,O1, . . . , Om[, Om+1])

where I is the input stream, O1 . . . , Om, Om+1 is an
ordered set of output streams and P1, . . . , Pm is an ordered
set of predicates.

The number of predicates equals the number of output
streams and each input tuple is forwarded over the out-
put stream associated to the first predicate that the tuple
satisfies. That is, tin is forwarded over Oj where j =
min1≤i≤m{i | Pi(tin) = TRUE}.

Tuples that satisfy none of the predicates are output on
stream Om+1, or discarded if output m + 1 has not been
defined. Output tuples are identical to input tuples.
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C. Union

The Union operator merges multiple input streams sharing
the same schema into a single output stream. Input tuples are
propagated over the output stream in FIFO order. The Union
operator is defined as

U{}(I1, . . . , In, O)

where I1, . . . , In is a set of input streams and O is the only
output stream; all streams share the same schema.

D. Aggregate

The Aggregate operator computes aggregate functions (e.g.,
average, count, etc.) over windows of tuples. It is defined as

Ag{Wtype, Size,Advance,A′1 ← f1(W ), . . .

. . . , A′n ← fn(W ),

[Group− by = (Ai1 , . . . , Aim)]}(I,O)

Tuples over input stream I are stored in the current window
W until it becomes full. Wtype specifies the window type
that can be either time-based (Wtype = time) or tuple-based
(Wtype = numTuples). If the window is time-based, it is
considered full if the time distance between the incoming tuple
and the earliest tuple in the window exceeds the window Size.
In case of Tuple-based windows, a window is full if it contains
Size tuples.

Once a window is full, an output tuple is produced. Output
tuples are propagated over stream O and have timestamp equal
to the timestamp of the earliest tuple in the current window.
The output tuple schema is {A′1, . . . , A′n} and {f1, . . . , fn}
is the set of user-defined functions (e.g., sum, count, average,
etc.) computed over all tuples in the window.

After an output tuple has been propagated, the window
is updated (or “slid” forward) and stale tuples are discarded
according to parameter Advance. If Wtype = time and tin
is the current input tuple, a tuple t in the current window is
discarded if tin.ts − t.ts > Size. If Wtype = numTuples,
the earliest Advance tuples are discarded from the current
window.

Finally, the parameter Group−by is optional and is used to
define equivalence classes over the input stream. In particular,
assume Group − by = Ai, where Ai is an attribute of the
input schema. Then, the Aggregate operator handles separate
windows for each possible value of Ai.

E. Join and Cartesian Product

Join and Cartesian Product operators are used to correlate
tuples from multiple streams. They only differ in the complex-
ity of their predicate: Join operator requires a predicate with
at least one equality statement (e.g., t.Ai = t′.Aj), while the
predicate of the Cartesian Product can be arbitrarily complex.
The Join operator is defined as

J{P,Wtype, Size}(Sl, Sr, O)

while the definition of the Cartesian Product is

CP{P,Wtype, Size}(Sl, Sr, O)

Sl, Sr are two input streams referred to as left and right,
respectively, while O denotes the output stream. P is a
predicate over pairs of tuples (one from each input stream)
while Wtype and Size are windows parameters similar to the
ones in the Aggregate operator.

Both operators keep two separate windows, Wl,Wr, for
each input stream. Tuples arriving on the left (resp. right)
stream are stored in the left (resp. right) window and used
to update (i.e., slide forward) the right (resp. left) window. If
Wtype = time, upon arrival of tuple tin ∈ Sl, window Wr is
updated by removing all tuples t such that tin.ts−t.ts ≥ Size.
If Wtype = NumTuples, upon arrival of tuple tin ∈ Sl,
window Wr, if full, is updated by removing the earliest tuple.

After window update, for each t ∈ Wr, the concatenation
of tuples tin and t is produced as a single output tuple if
P (tin, t) = TRUE.

Window update, predicate evaluation and output propaga-
tion for input tuples over the right stream are performed in a
similar fashion.

X. EVALUATION TESTBED AND DATA SET

This section provides details on the evaluation testbed,
the data set and the semantics of the queries using for the
evaluation of StreamCloud.

All experiments were run in a shared-nothing cluster of
100 nodes (blades) with 320 cores. All blades are Supermicro
SYS-5015M-MF+ equipped with 8GB of RAM and 1Gbit
Ethernet and a directly attached 0.5TB hard disk. Blades are
distributed into 4 racks: Rack 1 has 20 blades, with a dual-core
Intel PentiumD@2.8GHz. Rack 2 has 20 blades, with a dual-
core Intel Xeon 3040@1.86GHz. Rack 3 and rack 4 have 30
blades, each with a quad-core Intel Xeon X3220@2.40GHz.
During the experiments, roughly half of the available nodes
was devoted to load injection in order to reach input rates that
would saturate the remaining nodes.

Our evaluation focused on mobile telephony application
scenarios where activities like customer billing and fraud
detection, require processing massive amount of calls per
seconds. Each call generates a tuple referred to as Call
Description Record (CDR), that contains information about
the parties involved in the call. The schema of the CDRs used
for the evaluation is shown in Table II. Each CDR carries the
number of the caller and the callee, the start and end time of
the call, localization information of the caller and a timestamp
related to the moment when the CDR was emitted.

A. Scalability

THe evaluation of StreamCloud scalability focused on the
scalability of individual operators. Particular emphasis was
given to the scalability of stateful operators that are more
challenging to distribute.

In particular, the experiments evaluated the scalability of
the following operators: Aggregate, Map, Join and Cartesian
Product. The semantics of each of them is as follows:
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TABLE II
CALL DESCRIPTION RECORD SCHEMA USED FOR EVALUATION.

Name Type Description
Src string Caller’s number
Dst string Callee’s number
Start time Start time of the call
End time End time of the call
District integer Area-Id where caller is located
Lat double Latitude coordinate of the caller
Lon double Longitude coordinate of the caller
Ts time Emission timestamp of the CDR

• Aggregate. Computes the number of calls and average
duration grouped by District. Aggregates are computed
over windows of 60 seconds with advance of 10 seconds.

• Map. Computes the call duration time, given the call start
and end time, i.e., Duration = End− Start.

• Join. Computes the distance in time and space of two
calls originated at the same number within an interval of
60 seconds. That is, for each two CDRs, say CDRi and
CDRj , if CDRi.Src = CDRj .Src ∧ |CDRi.Start −
CDRj .Start| ≤ 60, the operator computes the
orthodromic distance on the earth surface between
CDRi.Lat, CDRi.Lon and CDRj .Lat, CDRj .Lon.

• Cartesian Product. Checks whether two calls that have
the same number (either as source or destination) overlap
in time, i.e., whether CDRi.Start < CDRj .Start <
CDRi.End ∨ CDRj .Start < CDRi.Start <
CDRj .End.

Experiments titled Scaling with Fixed-Size Windows and
Multi-Cores were carried out using the above Cartesian
Product and Join operator, respectively.

B. Elasticity
This set of experiments evaluates the elastic capabilities

of StreamCloud. Evaluation focused on the query of Fig. 22
that is used to detect heavy customers in a mobile telephony
application. Input tuples are CDRs with the schema given in
Table II. CDRs are fed to the Map operator (M) that computes
the call duration time given the start and end time of the CDR.
The following Aggregate operator (Ag) groups CDR on the
Src attribute (i.e., Group − by = Src) and computes the
average call duration time on an hourly-basis, with granularity
of one minute (i.e., Size = 3, 600 and Advance = 60).
Finally, the Filter operator (F) only propagates tuples that have
an average call duration above an arbitrary threshold.

According to the parallelization strategy of StreamCloud the
query is split into two subqueries. The first one only contains
the Map operator (i.e., the stateless prefix of the query), while
the second (stateful) subquery contains the Aggregate and the
Filter operators.

Unless stated otherwise, in all experiments regarding elas-
ticity we were monitoring the behavior of the subcluster where
the stateful subquery was deployed (i.e., the subcluster with
the Aggregate and the Filter operators).

XI. COST MODEL OF PARALLELIZATION STRATEGIES

In this section we provide a cost model for the three
parallelization strategies taken into account during the de-
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Fig. 22. Query used for the Elastic Reconfiguration Protocols evaluation.

sign of StreamCloud. The three strategies taken into account
are Query-cloud (QC), Operator-cloud strategy (OC) and
Operator-set-cloud (OS).

Cost analysis of a parallelization strategy must take into
account (1) the fan-out, i.e., the system-wide cost related
to establishing and keeping communication channels be-
tween instances and (2) the per-tuple overhead (for serializa-
tion/deserialization) that is related to the number of hops the
tuple must traverse.

Our analysis focuses on a cluster of N nodes where a query
with l operators (of which s ≥ 1 are stateful) is deployed;
the query is receiving input tuples at rate ρ. Without loss of
generality, we assume that the query has a stateless prefix and
that all subclusters (if any) have the same size1.

For any parallelization strategy X we define the cost func-
tion c(X) = α · f(X) + β · ρ · h(X) where f(X) is the
fan-out overhead, h(X) is the number of hops overhead, and
α, β ∈ [0, 1] are two arbitrary weights.

The fan-out overhead for the QC strategy is quadratic in
the number of instances, since each node must keep a com-
munication channel towards all other instances. The overhead
related to the number of hops is given by the number of stateful
operators; this is because, to guarantee semantic transparency,
a tuple might be redirected to a different instance right before
each stateful operator.

The OC strategy deploys one operator per subcluster and
each instance of a subcluster must keep a communication
channel with all the instances of the downstream subcluster:
hence, f(OC) = N

l · (l− 1). The number of hops per tuple is
l − 1 as each node runs only one operator.

The OS strategy uses a number of subclusters that is
proportional to the number of stateful operators and each
instance must keep communication channels with all instances
in the downstream subcluster. Since the OS also assigns
a subcluster for the stateless prefix of the query, we have
f(OS) = N

s+1 · s. In this case, there will be s+ 1 subclusters
so the number of hops of a tuple is s.

From the above discussion, we can summarize the cost of
each parallelization strategy as:

c(QC) = α ·N · (N − 1) + β · ρ · s ' α ·N2 + β · ρ · s

c(OC) = α · N
l
· (l − 1) + β · ρ · (l − 1) ' α ·N + β · ρ · l

c(OS) = α · N

s+ 1
· s+ β · ρ · s ' α ·N + β · ρ · s

We claim that, for realistic parameters of α, β, ρ, we have
c(QC) > c(OP ) > c(OS), that is, OS is the least expensive
parallelization strategy. Clearly, QC is the worst strategy as
the quadratic-term increases the value of its cost function.

1The analysis can be easily extended to the case where the query has no
stateless prefix and/or subclusters have different sizes.
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Further, c(OC) > c(OS) since l > s and, for the considered
application scenarios, ρ should at least be in the order of 105.

Finally note that, there is a natural trade-off between f(X)
and h(X). On one side, h(X) lies within ρ · s and ρ · (l− 1).
In fact, semantic transparency requires to re-distribute tuples
before each stateful operator (h(X) ≥ ρ · s); at the other
extreme, we can choose to re-distribute tuples before each
(either stateful or stateless) operator as in the OC strategy
(h(X) ≤ ρ · (l − 1)).

On the other side, minimizing f(X) requires picking small
subcluster sizes that, given a fixed number of available in-
stances, leads to a larger number of subclusters. The latter
translates in a larger fan-out overhead.

We anticipate that in realistic setting, the number of hops
overhead should have a greater impact compared to the fan-out
overhead (i.e., β >> α). This is especially true in application
scenarios with massive data rates. Further, subcluster sizes
are not fixed but benefit from elasticity and load balancing
to vary in accordance with the current input load. Hence, we
conclude that the best parallelization strategy should set h(X)
to its lower bound as a constraint and, at the same time, try to
minimize f(X), given the current input load. This is exactly
what StreamCloud does, partitioning a query according to the
number of stateful operators and assigning to each subcluster
the minimum number of instances required to cope with the
input load.
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