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Abstract—In this paper, the classic oscillator design methods are
reviewed, and their strengths and weaknesses are shown. Provisos
for avoiding the misuse of classic methods are also proposed. If the
required provisos are satisfied, the solutions provided by the classic
methods (oscillator start-up linear approximation) will be correct. The
provisos verification needs to use the NDF (Network Determinant
Function). The use of the NDF or the most suitable RRT (Return
Relation Transponse), which is directly related to the NDF, as a
tool to analyze oscillators leads to a new oscillator design method.
The RRT is the “true” loop-gain of oscillators. The use of the new
method is demonstrated with examples. Finally, a comparison of
NDF/RRT results with the HB (Harmonic Balance) simulation and
practical implementation measurements prove the universal use of the
new methods.

1. INTRODUCTION

The oscillators are fundamental elements for all RF and microwave
systems, as Radar and Electronic Warfare Systems. They are one
of the circuits types that have more problems with their design
process. Nowadays, the linear simulation, as a first approximation, is
widely used for RF and microwave oscillator design [1–3]. Non linear
simulation needs more computational resources than linear simulation,
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and the non linear models for active devices must be available, but they
are not always available. In some cases they are not accurate enough.
However, it is necessary, before starting a non linear simulation, to
have a good approximation of the frequency and start-up conditions.
To conclude, it is desirable to have a good background in non linear
approximation and simulation [2, 4], and in some cases, knowledge in
non linear solution stability [5] is necessary, mainly if the harmonic
balance is used.

One of the most important reasons for using the linear simulation
in oscillator design is that it is quicker and simpler than the non linear
and more suitable for tuning the circuit. It is only necessary for these
linear simulations to have the S parameters or the linear model of the
active device. These linear models are much easier to get than the
non linear ones. A simple linear oscillator model and quick simulation
give us the chance of looking for new topologies [2, 6]. On the other
hand, the linear simulation can only estimate the oscillation frequency,
gain margin and oscillator QL (loaded quality factor), but neither the
output power nor phase noise or harmonic levels can be estimated.
Therefore, nowadays oscillator design methodology consists on a first
linear simulation step, following with harmonic balance and transient
simulations and optimizations.

In this paper, as a first step the classic oscillator linear analysis
methods are described. Then, their strengths and weaknesses are
analyzed and the provisos for their proper use defined. In a second
part, it is demonstrated that the proposed linear method is the unique
method for universal use. Then, the use of the proposed method is
demonstrated with two practical examples. And as a last step the
conclusions are exposed.

2. PROVISOS FOR CLASSIC LINEAR OSCILLATOR
DESIGN METHODS

Linear oscillator analysis design techniques can be divided into
two groups: Loop gain [1, 2, 7, 8] and reference plane [9–12].
Negative resistance, negative conductance and reflection coefficient (for
microwave circuits) are members of the second group. Each group have
numerous advantages and disadvantages described in the following
sections.

These methods have been used by different authors, but the
required conditions for their proper use have been omitted. These
conditions are defined in this paper.
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2.1. Reference Plane Methods

The reference plane methods define an imaginary plane which divides
the circuit into two sub-circuits. The resonator sub-circuit is located on
one side of the plane and the active sub-circuit on the other side. The
use of these methods is preferred when the resonator can be identified
as a dipole and the feedback is not easily identified. If the feedback
is identified, the loop-gain method is usually the chosen one [2]. The
reference plane methods have the main advantage of being suitable for
RF topologies, mainly for microwave and distributed elements circuits.
The circuits with distributed elements, even with the use of Alechno’s
virtual ground concept [13], are difficult or impossible to analyze by
the loop-gain method.

All circuits can be analyzed by Z/Y/Γ network functions. The
network functions are preferred as they include all the system poles,
but the general transfer functions (defined by Z/Y/Γ parameters) do
not include all the system poles.

The condition for a stable oscillation and proper start-up is that
the network function has a unique pair of complex poles in the s domain
Right Half Plane (RHP). The factorized network function defines a
time response (Equation (1)), for the p-pole and with k-multiplicity.

L−1

[
ak

(s− sp)
k

]
=

ak · tk−1 · esp·t

(k − 1)!
(1)

Following the same procedure, it is possible to obtain the
conclusion that if there is more than one pair of poles in the RHP the
solution will be quasi-periodic [5]. Neither the quasi-periodic solutions
nor the positive real poles are desirable for oscillators.

The reference plane methods are: negative resistance, negative
conductance and reflection coefficient. All these methods divide the
oscillator into resonator and active parts. Both sub-circuits must be
analyzed by impedance, admittance or reflection coefficient (Z/Y/Γ),
as defined in Figure 1.

The classic interpretation of the oscillators, when they are
analyzed by reference plane methods, is that the resonator defines
the oscillation frequency and that the active sub-circuit compensates
the resonator losses. This interpretation is based on the Kurokawa’s
first harmonic approximation or descriptive function [14]. This classic
interpretation is easy to understand and usually shown on reference
books with a parallel resonator in parallel with a negative conductance
generator and a serial resonator in serial with a negative resistance
generator [2, 3, 9].

The network function is a more formal and powerful method
for oscillator analysis. The procedure is similar for the three types
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Figure 1. Oscillator reference plane division.

of network functions, so only the impedance network function is
described. The network function is obtained on a negative conductance
circuit by injecting current at one node on the reference plane with
an ideal current generator. The network function includes all the
poles from the sum of the numerators of the admittance of both sub-
circuits (right and left) [15]. From Figure 1, the impedance network
function is defined (Equation (2)) where Ig is the injected current, V
the circuit response, and Z the inverse of the sum of the two sub-
circuits admittances.

V = Z · Ig

Z =
1

Yres + Yosc

(2)

If the circuit is a proper oscillator, Z must have only a pair of
complex poles in the RHP. The poles of Z are defined by the zeros
of YT (Equation (3)), where YT is the characteristic function. The
classic oscillation condition is defined as =(YT ) = =(Yres + Yosc) = 0
and <(YT ) = <(Yres + Yosc) < 0. This oscillation condition can be
extended, by means of the descriptive function, to the Kurokawa’s first
harmonic approximation [14]. With the first harmonic approximation,
the oscillation start-up condition, oscillation stability and minimum
noise can be defined (see Table 1). In equations of Table 1, V is the
voltage amplitude at reference plane (for the first harmonic), ω the
frequency, V0 the voltage amplitude at oscillation condition, and ω0
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the oscillation frequency.

YT = Yres + Yosc (3)

Following the same procedure, it is possible to get the conditions
for the negative resistance and reflection coefficient cases (see Table 2
and Table 3) [15].

Even if the first harmonic approximation is an attractive method,
it is important to remember that the first harmonic approximation is an
approximation and more accurate when the signal of the oscillator is a
purer tone. The harmonic level is lower when the poles QL is higher and
the amplifier device working in a quasi-A class. These two conditions
are usually related. One of the most important issues to have in mind
to decide the reference plane position is to choose a point where a serial
or parallel resonant circuit is clearly defined. With this plane position,
the equations in Tables 1, 2 and 3 are valid because the resonator

Table 1. Negative conductance oscillator design.

Parameter Expression

Characteristic Equation YT (V, ω) = Yosc (V ) + Yres (ω) = 0

Oscillation Condition YT (V0, ω0) = Yosc (V0) + Yres (ω0) = 0

Stability 0 to π clockwise cross of −Yosc (V ) with Yres (ω)

Minimum Noise π/2 clockwise cross of −Yosc (V ) with Yres (ω)

Table 2. Negative resistance oscillator design.

Parameter Expression

Characteristic Equation ZT (I, ω) = Zosc (I) + Zres (ω) = 0

Oscillation Condition ZT (I0, ω0) = Zosc (I0) + Zres (ω0) = 0

Stability 0 to π clockwise cross of −Yosc (V ) with Yres (ω)

Minimum Noise π/2 clockwise cross of −Zosc (I) with Zres (ω)

Table 3. Reflection coefficient oscillator design.

Parameter Expression

Characteristic Equation ΓT (A, ω) = − 1

Γosc (A)
+ Γres (ω) = 0

Oscillation Condition ΓT (A0, ω0) = − 1

Γosc (A0)
+ Γres (ω0) = 0

Stability 0 to π clockwise cross of
1

Γosc (A)
with Γres (ω)

Minimum Noise π/2 clockwise cross of
1

Γosc (A)
with Γres (ω)
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Table 4. Reference plane oscillator design.

Parameter Expression

Impedance Rosc (ω0) + Rres (ω0) < 0 Xosc (ω0) + Xres (ω0) = 0

Admittance Gosc (ω0) + Gres (ω0) < 0 Bosc (ω0) + Bres (ω0) = 0

Reflection Coefficient | Γosc (ω0) | · | Γres (ω0) |>1 Φosc (ω0) + Φres (ω0) = 0

sub-circuit response varies mainly with the frequency and because the
active sub-circuit response varies with the signal amplitude. This plane
position also guarantees a low harmonic level. This representation and
plane position are usually shown on oscillator design bibliography, but
they are difficult to achieve in real oscillator circuits. These reference
plane properties are valid for negative resistance, negative admittance
and reflection coefficient methods.

As indicated previously, many references [2, 3] consider the
reference plane methods as completely valid, but the additional
conditions to assure the proper use of these methods have not been
defined in most of the cases. So, it is necessary to add auxiliary
conditions to the ones in Table 4 to assure the proper use of these
methods.

The conditions in Table 4 are neither necessary nor sufficient to
guarantee the proper oscillator start-up as they have just been defined
at the oscillation frequency. These conditions are a simplification of the
Nyquist analysis. The necessary and sufficient condition for a proper
oscillator start-up is the existence of a pair of complex poles in the
RHP. To have access to the s domain network function of the circuit
is difficult or even impossible for RF and MW circuits. A frequency
analysis of the network function is the most common approach, which
is the Nyquist Analysis.

The described conditions are only valid if some additional
conditions are also satisfied. These Z and Y additional conditions are
that the cross over the real axis must be only at a unique frequency
and that the imaginary part must change from negative to positive
on the crossing. The additional conditions for the Γ case are that
the cross over the real axis must be only at a unique frequency
and that the imaginary part of the sum of the phases must change
from positive to negative on the crossing. Simple circuits, as a serial
resonator with a negative resistance generator and a parallel resonator
in parallel with a negative conductance generator, comply with these
additional conditions. The common unconditional trust in Table 1
and Table 2 is strengthened with the use of these simple circuit models
on bibliography. Jackson’s work [16] is very interesting because it
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demonstrates that the conditions in Table 4 for the reflection coefficient
case are neither necessary nor sufficient for the oscillator start-up.

The Nyquist plots only provide information about the difference
of zeros and poles of the analyzed function, so it is necessary to have
additional conditions to assure the correct analysis of the oscillator.
From the works of some authors [15, 17–19] it is possible to define the
additional conditions for the correct use of these methods for stability
analysis. The additional conditions for the right and left sub-circuits
for the Z, Y and Γ methods are defined in the following sections.

2.1.1. Negative Conductance Oscillator

The negative conductance oscillator is analyzed by the Z network
function. For the negative conductance criteria the simulator is
suitable for getting the YT frequency response. The frequency response
of YT is the application of the Nyquist criteria to it. The Nyquist
criteria provides information of (NZ −NP ), where NZ is the number
of zeros of YT in the RHP and NP the number of poles of YT in the
RHP. For a positive (NZ−NP ), this value is the number of clockwise
encirclements of the origin when the frequency goes from −∞ to +∞.
The Nyquist analysis of YT will show the number of zeros of YT if YT

does not have any poles in the RHP, so it is necessary to guarantee
that YT does not have any poles in the RHP before testing it using the
Nyquist analysis.

YT must not have any visible or hidden poles in the RHP. As Yres

is passive, the required condition to assure that YT does not have any
poles in the RHP is that Yosc does not have visible or hidden poles
in the RHP. It is important to remember that as Yosc is a reduced
function from the active sub-circuit, it can have some hidden poles. If
the network has any hidden poles, the hidden poles can invalidate the
YT Nyquist analysis and make the oscillator operate in a wrong way.

To apply the Normalized Determinant Function (NDF) to a
network formed by the negative conductance generator sub-circuit with
a short-circuit on its port is the only way to assure that Yosc does not
have any (visible or hidden) poles in the RHP.

The (Yosc+Yres) Nyquist analysis (if the NDF analysis of the short-
circuited Yosc is complied) provides information about the Z poles, but
it may not provide accurate information about oscillation frequency
because the position of the RHP poles of YT depends on the reference
plane position. The higher the QL of the poles (QL(p) = =(p)/<(p))
is, the nearer the =(Yosc + Yres) cross over the real axis will be to the
oscillation frequency.

When the transistor gain is compressed, by decreasing gm as
Kurokawa defines the first harmonic approximation, YT crosses over
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zero. At the zero crossing it will be =(Yres + Yosc) = 0 and
<(Yres+Yosc) = 0, and this is the oscillation frequency at first harmonic
approximation. The gm compression for first harmonic approximation
is more valid for FET than for BJT.

2.1.2. Negative Resistance Oscillator

The negative resistance oscillator is analyzed by the Y network
function. The same analysis as in the previous case can be performed
with ZT = (Zosc + Zres). In this case, it is necessary that ZT does not
have any poles in the RHP for a proper Nyquist analysis. As Zres is a
passive network, the poles can only be from Zosc. The NDF analysis of
the negative resistance generator sub-circuit with its port terminated
with an open circuit is necessary to assure that Zosc does not have any
poles in the RHP.

The Nyquist analysis of ZT (if Zosc complies with the NDF
requirement) provides information about the existence of Y visible or
hidden poles in the RHP, but, as in the previous case, the cross over
the real axis of =(Zres + Zosc) is not exactly the oscillation frequency.
The reference plane position also modifies the =(Zres + Zosc) cross
frequency over the positive real axis. The gm compression displaces
the =(Zres + Zosc) cross over zero and when =(Zres + Zosc) = 0
and <(Zres + Zosc) = 0 the cross frequency is the first harmonic
approximation oscillation frequency.

2.1.3. Reflection Coefficient Oscillator

For this analysis, the Γosc and Γres frequency response is analyzed
with a circuit analysis software. Then the 1− (Γosc ·Γres) or Γosc ·Γres

(looking for +1 encirclement instead of 0) is analyzed by Nyquist.
Nyquist analysis provides information of NZ −NP , where NZ is the
number of zeros in the RHP and NP the number of poles in the RHP.

The necessary and sufficient condition for proper oscillator start-
up is the existence of a unique pair of complex poles in the RHP of Γ
(Equation (4)).

Γ (s) =
Γosc (s)

1− Γosc (s) · Γres (s)
(4)

As Γres is a passive network, it does not have any poles in the
RHP. It is necessary to assure that Γosc does not have any visible or
hidden poles in the RHP before performing the Nyquist analysis of
1 − (Γres · Γosc). The only possible way to assure that Γosc does not
have any poles in the RHP is to calculate the NDF of the active sub-
circuit with its port terminated with Z0.
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As with the negative resistance and admittance cases, the cross
over the real axis of =(Γosc · Γres) is not the oscillation frequency and
it has the same dependence with the QL of the poles and with the
reference plane position. In this case the gm compression also makes
the cross frequency coincide with the first harmonic aproximation
oscillation frequency.

Examples of circuits that comply with the conditions in Table 4
but not with the additional conditions defined on this paper are shown
by the authors in [15].

To summarize, it is important to point out that the proviso
must be assured before analyzing an oscillator with a linear negative
conductance, negative resistance or reflection coefficient method. The
provisos for negative conductance, negative resistance and reflection
coefficient methods are the stability of the active sub-circuit loaded
with an open-circuit, a short-circuit and Z0, respectively. The stability
of the loaded active sub-circuits is determined by the NDF plots. Some
examples of erroneous classic linear analysis are shown by the authors
on [15].

2.2. Loop-Gain Method

The Loop-Gain method [1] is equivalent to the reference plane methods.
It also analyzes the Nyquist plot of a network function, but the loop-
gain method is suitable to calculate the gain margin and QL. The
QL is related to the phase noise, and the QL and gain margin are
related to the start-up time [1, 2, 20]. If the oscillator is analyzed by a
plane reference method, these two parameters, phase-noise and start-
up time, are not easily estimated, but they can be easily estimated with
the loop-gain method. Another advantage of the loop-gain method is
that it is useful for studying new oscillator topologies [20, 21].

Equation (5) is the equation of a general feed-back system. The
main problem to use this equation is that the analytical expression in
Laplace domain of RF and MW systems is difficult or even impossible
to get. Most designers use the Nyquist criteria for linear oscillator
start-up conditions analysis [22]. Simplifications of Nyquist analysis,
which are not valid for all cases, as the Barkhausen criteria, are
sometimes used.

X0 (s) =
G (s)

1 + G (s) ·H (s)
·Xi (s) (5)

The Nyquist criteria are used to determine the stability of
Equation (5) by determining the zeros of the characteristic equation
(Equation (6)). These zeros are the poles of the feed-back
Equation (5)). The Nyquist criteria determine the difference of zeros
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and poles in the RHP of the characteristic equation. The system will
have a periodic solution if it has a pair of complex poles in the RHP.
This condition must be verified by using the Nyquist plot analysis.

1 + G (s) ·H (s) (6)

The loop-gain method [1, 2] tries to identify a feed-back structure
as the one shown in Figure 2. Randall and Hock [1] obtain the network
function as a function of Z parameters, and later it is transformed as a
function of S parameters. Randall and Hock’s feed-back equation has
gained a great importance thanks to its S parameters formulation.

Io

I
=

Z21 − Z12

Z11 − Z12 − Z21 + Z22

Io

I
=

S22 − S11 + 2S21 − S12S21 + S11S22 − 1
1 + (S12 + S21 − S12S21 + S11S22)

(7)

The system in Figure 2 will be unstable if Io/I has a pair of
complex poles in the RHP. To determine the number of poles of
the network function the zeros of the Characteristic Function (CF),
Equation (8), are analyzed by Nyquist criteria. To assure a correct
Nyquist analysis of the CF, it is necessary to guarantee that none of
the S parameters have any poles in the RHP. It is also necessary that
the Io/I numerator does not have any visible or hidden poles in the
RHP. The best way to verify this condition is to analyze the circuit
in Figure 2 with both ports Z0 loaded with the NDF [17, 18]. This
condition assures the correct solution of the CF Nyquist analysis but
is not remarked by Randall and Hock [1].

CF = 1 + (S12 + S21 − S12S21 + S11S22) (8)

The open-loop stability condition of the oscillator is similar to the
Rollet proviso [19] for amplifier design methods that use the K [23] or

[Z] II O

Figure 2. Randall feed-back diagram.



Progress In Electromagnetics Research, Vol. 126, 2012 27

µ [24, 25] parameters. It is necessary to be able to perform a Nyquist
analysis.

The CF predicts the oscillator start-up properly when the required
conditions are satisfied, but it has the disadvantage of being dependent
of the open loop point. This CF problem was solved by Randall
and Hock with the definition of a new function [1]. This function
is extracted from the eigenvalues of an infinite chain of quadrupoles.
This new function (Equation (9)) solves the problem and the partial
solutions proposed by Alechno [7, 8].

GL =
Z21 − Z12

Z11 + Z22 − 2Z12

GL =
S21 − S12

1− S11S22 + S12S21 − 2S12

(9)

Randall and Hock’s loop-gain function (Equation (9)) is an
attractive tool, but it needs to verify a set of additional conditions
as the CF needs. The additional conditions are required to guarantee
the correct determination of the RHP poles when Nyquist criteria is
applied to GL. This loop-gain function has, as the CF, dependence
with the virtual ground position, defined by Alechno [13]. The
virtual ground concept makes possible the loop-gain analysis of any
circuit topology. The GL dependence with the virtual ground position
makes the GL provides different solutions (oscillation frequency, QL,
gain margin). The necessity of testing the additional conditions and
the multiple solutions occurrence with virtual ground position are
illustrated with examples by the authors.

Equation (7) is rewritten as Equation (10) for defining the GL

additional conditions.

Io

I
=

(
1− S11S22 + S12S21 − 2S12 − S22 + S11

1− S11S22 + S12S21 − 2S12

)

(
1− S21 − S12

1− S11S22 + S12S21 − 2S12

) (10)

The GL, Equation (9), can be found in the denominator of
Equation (10). Randall and Hock’s gain is obtained from the
eigenvalues of an open loop loaded with Z0. In our case it is possible
to obtain a gain loop, Equation (11), thanks to its similarity to the
expression of a feed-back system.

GL = 1−
(

1− S21 − S12

1− S11S22 + S12S21 − 2S12

)

=
S21 − S12

1− S11S22 + S12S21 − 2S12
(11)
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The GL has the advantage, in addition to the loop open point
invariance, of providing the CF for GL = 1. When GL = 1, the poles
are located in the imaginary axes and this is first harmonic stable
oscillation condition.

Equation (10) is rewritten in function of GL as Equation (12). And
from this equation it is possible to define the additional conditions for
Randall and Hock’s GL equation.

Io

I
=

Z21 − Z12

Z11 − Z12 − Z21 + Z22
=
− GL (S22 − S11)

S21 − S12
+ 1

1−GL
(12)

It is necessary that the RHP poles of the system are only from
the 1 − GL zeros. So, it is necessary to guarantee that neither GL

nor Equation (12) numerator have any poles in the RHP. When these
conditions are fulfilled, the GL Nyquist analysis is suitable to predict
the oscillation condition. The Nyquist plot of GL must clockwise
encircle the +1 to predict a proper oscillation condition.

With the analysis of Equations (10) and (12), it can be guaranteed
that the poles of the system are only the zeros of 1−GL if the following
conditions are satisfied:

• None of the S parameters have any poles in the RHP. This
condition is guaranteed if the NDF analysis of the circuit with
both ports loaded with Z0 does not clockwise encircle the origin.

• The Nyquist analysis of TF (Equation (13)) assures that it does
not have any zeros in the RHP.

TF = 1− S11S22 + S12S21 − 2S12 (13)

The cross over the real axis of the GL Nyquist plot predicts the
presence of poles but it does not predict accurately the oscillation
frequency. The cross frequency is nearer to the oscillation frequency
when the QL of the poles is higher. But, even the cross frequency is the
same for different open loop points, and it is important to remember
that the cross frequency and gain margin are different for each virtual
ground position.

Now that the additional conditions for GL proper analysis have
been defined, it can be extended to the first harmonic approximation.
The characteristic equation, the oscillation condition and the minimum
noise conditions are defined in Table 5. The GL is divided into an
active gain Gosc and a resonator circuit gain Gres. The A variable is
the control variable, normally the incident wave when GL is defined as
a function of S parameters, and ω is the frequency. Ao and ωo are the
control variable and the frequency at the stable oscillation condition.
It is important to remember that the conditions in Table 5 are defined
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Table 5. Loop gain oscillator design.

Parameter Expression

Characteristic Equation 1−GL (A, ω) = − 1

Gosc (A)
+ Gres (ω) = 0

Oscillation Condition 1−GL (Ao, ωo) = − 1

Gosc (Ao)
+ Gres (ωo) = 0

Stability 0 to π clockwise cross of
1

Gosc (A)
with Gres (ω)

Minimum Noise π/2 clockwise cross of
1

Gosc (A)
with Gres (ω)

for the first harmonic approximation, so they will be more precise when
the A signal is a purer tone.

To summarize, it is important to point out that the provisos for
the use of Randall and Hock’s equation or any of the simplifications
are the verification of the stability of the open loop circuit with both
ports loaded with Z0 and that TF does not have any zeros in the RHP.
The stability of the loaded open circuit is determined with the use of
the NDF Nyquist plot.

3. PROPOSED METHOD

The most significant conclusion that can be obtained from the study
of the additional conditions of the plane reference methods and gain
loop method is that it is necessary to use the NDF to guarantee
the applicability of any method. The question that must be done
is: “Why is not the NDF directly used for oscillator linear design?”.
This question is the start point for the new proposed method. It will
show that this new method solves many of the problems of the plane
reference and gain loop methods.

The NDF is the quotient of the network determinant and the
normalized network determinant, Equation (14). The normalized
network determinant is obtained by disabling all the active devices
of the network.

NDF =
4 (s)
4o (s)

(14)

The NDF properties were described by Platzer [18]. The Nyquist
plot analysis of the NDF is suitable for determining in one step the
number of poles in the RHP of a network. Each clockwise encirclement
of the zero for positive frequencies indicates the existence of a pair of
conjugated complex poles in the RHP. On this way, the condition for
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a start-up and proper operation of an oscillator is the existence of just
one clockwise encirclement of the zero for positive frequencies. The
NDF has an asymptotic behaviour towards +1, which is useful for
determining the analysis upper frequency limit.

The NDF can be calculated by using the Return Relation (RR)
suggested by Bode [26], as it has been described by Plazter [18]. The
NDF calculation from the RR is shown in Equation (15). The RRi

is the Return Relation of the i dependent generator while the i − 1
previous dependent generators have been disabled. It is necessary
to have a linear model of the transistor to have access to the ports
of the amplifier element (controlled current source). If the available
model is a Spice or S parameters data file, then the linear model must
be extracted from it. A linear model of a generic transistor without
parasitic elements is shown in Figure 3. This model is suitable for
NDF calculation using the Bode’s RR, as the internal generator of the
transistor is accessible. The parasitic elements of the transistor can be
considered as part of the passive subcircuit of the oscillator.

NDF =
n∏

i=0

(RRi + 1) (15)

If the oscillator circuit is redrawn as in Figure 4, then it is possible
to calculate the NDF from the RR function. The terminals of the
dependent generator are accessible and all the other elements, even
the chips and case parasitics, are included on the feedback network,
this access to the transistor of an oscillator circuit is shown in Figure 5.
A problem of this NDF calculation method is that a linear model of the
transistor is required, but this linear model is necessary for all linear
stability analysis methods as it was suggested by Jackson [19].

The NDF predicts the oscillation frequency without transistor
compression for Kurokawa’s first harmonic approximation. It is also
suitable for the calculation of the QL of the circuit as the NDF is

Vi Z i

I =g  V

g  Vim

m i

Figure 3. Generic intrinsic transistor linear model.



Progress In Electromagnetics Research, Vol. 126, 2012 31

directly related with the RR. In order to simplify the calculus the
RRT is defined in Equation (16).

RRT = −RR = RRosc ·RRres = gm ·H (ω) (16)

The RRT is the “true” way to consider an oscillator as a feed-
back system. The NDF separates the feed-back network from the
amplifier function, as shown in Figure 4, so the RRT can be considered
as the “true” loop-gain. Considering the RRT as an open loop gain

Feedback 
Circuit
H(ω)

1 2

V13 g  Vm ext Vext
+

Amplifier 
Ideal

RR   =
  - V =13 

Vext

-H(ω) .g   Vm ext.

Vext

= -g  m. H(ω)

Figure 4. Oscillator model for RR calculation.

V13 

Vext
RR   =

  - V 13 

Vext

g  Vm ext
4

1

3

2

Figure 5. Circuit transistor model for RR calculation.
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Table 6. RRT oscillator design.

Parameter Expression

Characteristic

Equation
1−RRT (V, ω)=− 1

RRosc(V )
+RRres (ω)=− 1

gm (V )
+H(ω)=0

Oscillation

Condition
1−RRT (Vo, ωo)=−

1

RRosc (Vo)
+RRres(ωo)=−

1

gm(Vo)
+H(ωo)=0

Stability 0 to π clockwise cross of
1

RRosc (V )
with RRres (ω)

Minimum Noise π/2 clockwise cross of
1

RRosc (V )
with RRres (ω)

and in a similar way as in Table 5, the characteristic equation, the
oscillation condition and the minimum noise conditions are defined in
Table 6. RRT is decomposed into the active contribution of the loop,
RRosc, and the passive contribution of the loop, RRres. The active
contribution only considers the dependent generator (RRosc = gm) and
the passive contribution includes the resonator and all the other passive
elements (RRres = H(ω)). The V variable is the control variable of
the dependent generator, and ω is the frequency. Vo and ωo are the
control variable and the frequency at the stable oscillation condition.
It is important to remember that these conditions are defined for first
harmonic approximation, so they will be more precise when the V
signal is a purer tone, the required compression level is lower and the
resonator bandwidth is smaller.

The proposed method for oscillator quasi-linear analysis is to use
the Nyquist plot of the NDF/RRT . If the RRT Nyquist plot has a
unique clockwise encirclement of the +1 (or of the zero if the NDF is
used) the plot cross over the real axis is the oscillation frequency. The
gain margin is determined by the distance between the real axis cross
and the +1 and the QL is determined by the phase variation speed at
the cross.

The main advantages of the NDF/RRT method are:

• It provides the oscillation frequency at first harmonic approxima-
tion without requiring transistor compression. The cross over the
real axis is always at the same frequency without gm dependence.
This independence with gm is because gm is only a multiplicative
constant of H (ω).

• It can be used for any oscillator topologies, whereby, it is not
necessary to identify the resonator as a dipole or quadrupole, as
required by the loop-gain and reference plane methods.

• It is not necessary to redraw the circuit for a more suitable
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distribution. The Alechno’s virtual ground has been applied as a
tool to make possible the use of the loop-gain method for multiple
topologies. The virtual ground requires a thorough redraw of the
circuit. An additional limitation of the loop-gain method is that
some circuits, as the ones that use transmission lines, cannot be
redrawn using virtual ground because they do not have explicit
ground.

• The solution is unique and it has not dependence with the
virtual ground. The solution is always the correct, but with
classic methods, even if the provisos are fulfilled, it cannot be
guaranteed because the classic methods solutions depend on the
virtual ground position.

• The upper frequency of analysis can be assured thanks to the
NDF asymptotic behaviour towards +1. By this way, it can be
guaranteed that only a pair of conjugated poles in the RHP exist
(condition for proper operation of an oscillator).

• The oscillator gain margin and QL can be estimated. As the
RRT is the “true” open loop-gain, the QL is determined from
the gain variation speed. The reference plane methods cannot
determine the QL as the gain is not calculated. The loop-gain
method provides different gain solutions for each virtual ground
position.

• The phase noise for a first harmonic approximation can be
estimated and optimized as the QL is estimated without
ambiguity.

4. PRACTICAL EXAMPLES

Two oscillators usually analyzed by reference plane methods have been
designed: a capacitive emitter feed-back common collector oscillator
and an inductive base feed-back common base oscillator. These circuits
are shown in Figure 6 and Figure 20. The simulations have been
performed with complete circuits that include all parasitic elements
and microstrip lines, but the schematic shown on this paper are
simplifications without parasitic elements to improve readability. A
low cost and medium noise Siemens BFR380F transistor is used for
these circuits.

AWR Microwave Office has been used as simulation software. This
tool has an internal NDF function, but the authors have developed a
script that has been used in order to generalize the method. This script
automatizes the procedure shown in Figure 5.
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Figure 6. Common collector oscillator.
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Figure 7. Common collector oscillator proviso verification.
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4.1. Example 1. Common Collector Oscillator (Negative
Resistance Oscillator)

Before starting an analysis using any reference plane method, it is
required to perform the verification of the necessary conditions. This
analysis consists on the analysis of the plot of the NDF of the right
sub-circuit of Figure 6. The NDF must be calculated for the negative
resistance generator circuit, Figure 7. This circuit must be loaded
with an open-circuit for admittance network function analysis, with a

(a) (b)

(c)

Figure 8. Common collector oscillator (a) open-circuit, (b) short-
circuit, and (c) Z0 loaded Proviso tests.
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short-circuit for impedance network function and with Z0 for reflection
coefficient network function.

The NDF plots for open-circuit, short-circuit and Z0 load
conditions do not encircle the origin, Figure 8. As the origin is
not encircled in any case, it is possible to analyze this circuit using
admittance, impedance and reflection coefficient network functions.

This circuit is a negative resistance generator and usually analyzed
by the admittance network function. In other words, the circuit is
analyzed by the calculation of its impedances. The Nyquist plots for
the three network functions are shown in Figures 9, 10 and 11.

Figure 9. Common collector oscillator impedance Nyquist plot.

Figure 10. Common collector oscillator admittance Nyquist plot.
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The three plane reference network functions predict an oscillation
near to 1.14 GHz, but the predicted frequencies are different for each
case. The plane reference methods are not suitable for the estimation
of the oscillator QL, gain margin or start-up time.

This circuit can be prepared for open-loop analysis [2]. The chosen
open point is between the emitter and the center point of the feed-back
capacitors (see Figure 12).

Figure 11. Common collector oscillator reflection coefficient Nyquist
plot.

Figure 12. Common collector oscillator for GL analysis.
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Before analyzing the circuit in Figure 12, it is necessary to test
the required additional conditions. The proviso is tested with the NDF
plot of the open-loop circuit loaded with Z0 on both ports. This plot
is shown in Figure 13. This plot shows that there are a pair of poles
in the RHP, so the GL analysis will not provide correct information
about the circuit oscillation condition. As the NDF proviso indicates
that the GL analysis will be incorrect, it is not necessary to study the
TF.

Figure 13. Common collector oscillator proviso plot for GL analysis.

Figure 14. Common collector oscillator GL Nyquist plot.
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The GL analysis is performed only for illustrative purposes, even
it is known that the GL analysis will provide wrong information. The
Nyquist GL plot is shown in Figure 14. This plot crosses, with real
part higher than 1, two times the real axis, one time clockwise and the
other counterclockwise. The +1 is not encircled, so the GL analysis
predicts a non-oscillating condition.

The circuit has been analyzed with reference plane and loop-gain
methods. The first method has estimated the oscillation frequency, but
the gain margin and QL cannot be estimated by using it. The second
method, using Randall and Hock’s gain, has concluded that the circuit
does not have an oscillation condition. Now, the NDF/RRT method
will be used and the different linear methods solutions will be compared
with the Harmonic Balance (HB) and experimental results.

The proposed method is applied to the circuit in Figure 6. The
RRT plot is shown in Figure 15. This analysis predicts a unique
pair of poles in the RHP at 1.12GHz. This frequency is similar to
the one predicted by the reference plane methods. It is important
to remember that the NDF/RRT method estimates the first harmonic
approximation oscillation frequency, and it is not necessary to compress
the gm of the transistor as with the reference plane and loop-gain
methods. With the NDF/RRT method is possible to calculate the
QL of the circuit, Equation (17). As it is possible to estimate QL,
the phase noise of the oscillator can be approximated with the Lesson
expression [27], or the Everard improved one [28, 29]. The QL is shown
in Figure 16, and the QL estimated value for the oscillation frequency

Figure 15. Common collector oscillator NDF/RRT Nyquist plot.
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is 28.

QL = −ω

2
· d

dω
arg (RRT (ω)) = −f

2
· d

df
arg (RRT (f)) (17)

The measured and HB simulated spectra are shown in Figure 17.
The HB oscillation frequency is 1.129GHz, similar to the one obtained
with the NDF/RRT method. The measured and HB simulated phase
noises are shown in Figure 18. The two phase noises have a great
concordance. The measured floor noise in Figure 18 is the measurement
equipment floor noise (HP E4446A Spectrum Analyzer) and not the
oscillator floor noise. A summary of the most significant parameters
of the oscillator are shown in Table 7.

Table 7. Common collector oscillator parameters.

Parameter Value
Output Frequency 1.143 GHz

1 kHz −86.44 dBc/Hz
Phase Noise 10 kHz −112.1 dBc/Hz

100 kHz −133.7 dBc/Hz
Output Power > −5.63 dBm

The QL can be calculated with Equation (18) from the HB
simulation of the phase noise, Figure 18. The QL is similar to the
one estimated by the NDF/RRT method with Equation (17), which is
shown in Figure 16.

Figure 16. Common collector oscillator QL.
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Figure 17. Common collector oscillator HB and measured spectrum.

Figure 18. Common collector oscillator HB and measured phase
noise.

QL ≈ f0

fm
=

1.129 GHz
0.035 GHz

≈ 32 (18)

The manufactured oscillator is shown in the photo in Figure 19.
To summarize, the RRT method has predicted the oscillation

condition and it gets an accurate estimation of the oscillation frequency
and the QL. The loop-gain method (GL) has not predicted the
oscillation condition. The reference plane methods have predicted the
oscillation condition, but they are not suitable for gain margin and QL

estimation.
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Figure 19. Common collector oscillator photo.

Figure 20. Common base oscillator.

4.2. Example 2. Common Base Oscillator (Negative
Conductance Oscillator)

The second example is a negative conductance oscillator, Figure 20.
In this case, it is not possible to define a suitable feed-back path for
open-loop GL analysis. This impossibility appears because the feed-
back includes the internal base-emitter capacitance. For this reason,
this circuit model is usually analyzed by a reference plane method. In
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this case the sub-circuits admittances are analyzed and the impedance
network function is used. It is difficult to define the oscillator QL when
the plane reference methods are used. Without information of the QL,
the phase noise of the oscillator cannot be estimated neither optimized.
The NDF method and the RRT are suitable for analyzing the circuit
on a similar way as the loop-gain. With the NDF/RRT method the
oscillator QL is available and it can be optimized for a phase noise
improvement.

The RRT analysis of the circuit in Figure 20 is shown in Figure 21.
The trace encircles clockwise the +1, then the circuit has a pair of
complex poles in the RHP. The poles frequency is 1.27 GHz.

Figure 21. Common base oscillator NDF/RRT Nyquist plot.

1.275 GHz
18.61

Figure 22. Common base oscillator Q.
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Figure 23. Common base oscillator photo.

Figure 24. Common base oscillator HB and measured spectrum.

The QL is calculated from the RRT plot using Equation (17) and
shown in Figure 22. The QL at the oscillation frequency has a value
of 18.

This oscillator has been manufactured and shown in the photo in
Figure 23.

The oscillator measured and HB simulated spectra are shown in
Figure 24. The measured and HB simulated phase noises are shown in
Figure 25. As on the previous example, the simulated and measured
phase noises have a great concordance.

A summary of the most significant parameters of the oscillator are
shown in Table 8.
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Figure 25. Common base oscillator HB and measured phase noise.

Table 8. Common base oscillator parameters.

Parameter Value
Output Frequency 1.318 GHz

1 kHz – 76.5 dBc/Hz
Phase Noise 10 kHz −101 dBc/Hz

100 kHz −123.8 dBc/Hz
Output Power > 11.13 dBm

5. CONCLUSIONS

This paper focuses on a new method for quasi-linear (descriptive
function) oscillator design. This new method is based on the use of the
NDF/RRT . It has been demonstrated that the classic reference plane
and loop-gain methods can provide wrong solutions. They cannot
be considered universal design methods. These problems and wrong
solutions are solved with the proposed method.

The classic method chosen for the analysis of a circuit is
determined by experience with each topology. But the proper choice of
the most suitable method is not guaranteed. The NDF must be used
as it is necessary to test some additional conditions before any classic
method is used. These additional provisos have been defined for each
method as some authors defined amplifiers provisos.

The necessity of using the NDF for the verification of provisos
of the classic methods makes the NDF/RRT a natural method. The
proposed NDF/RRT method does not need any additional proviso, so
it is always the correct method for any topology.
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The use of the loop-gain method depends on the topology; however
the provided solution is not always correct. Some topologies cannot be
analyzed with the loop-gain but can be analyzed with plane reference
methods. These methods do not provide information about the
oscillator QL and gain margin. Without these two parameters, the
phase noise and start-up time cannot be estimated, neither optimized.

The proposed NDF/RRT method is suitable as a general method
for all topologies and provides information about the oscillator QL

and gain margin. The NDF/RRT method is a general linear method
for oscillator design which is suitable for phase noise estimation
and optimization. The good results of this method have been
demonstrated and compared with the results of the classic methods
and the measurements of two practical examples.
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