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Abstract—Finite element hp-adaptivity is a technology that allows
for very accurate numerical solutions. When applied to open region
problems such as radar cross section prediction or antenna analysis,
a mesh truncation method needs to be used. This paper compares
the following mesh truncation methods in the context of hp-adaptive
methods: Infinite Elements, Perfectly Matched Layers and an iterative
boundary element based methodology. These methods have been
selected because they are exact at the continuous level (a desirable
feature required by the extreme accuracy delivered by the hp-adaptive
strategy) and they are easy to integrate with the logic of hp-
adaptivity. The comparison is mainly based on the number of degrees
of freedom needed for each method to achieve a given level of accuracy.
Computational times are also included. Two-dimensional examples
are used, but the conclusions are directly extrapolated to the three
dimensional case.
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1. INTRODUCTION

The use of “adapted” meshes [1], not only to the geometry of the
problem domain, but to the solution of the problem itself, is a powerful
feature of the Finite Element Method (FEM) [2–7]. Finite element
hp-adaptivity is a technology that, by means of simultaneous h-
refinements (modification of element size) and p-refinements (variation
of the polynomial order or approximation p), it delivers very accurate
numerical solutions. Actually, it provides exponential rates of
convergence even in the presence of singularities, in contrast to h and
p adaptive schemes, in which only algebraic rates of convergence are,
in general, obtained. An illustration of the differences between the
mentioned types of adaptive strategies is shown in Fig. 1.

(a) (b) (c) (d)

Figure 1. Different types of refinements. Different colors indicate
the polynomial order p of approximation of the elements (blue being
p = 1 and orange p = 6). (a) Given initial mesh. (b) h-refined mesh.
(c) p-refined mesh. (d) hp-refined mesh.

The use of h-adaptivity is relatively common within the electrical
engineering community (see [3] and references therein). However, p
and hp adaptivity are rarely utilized, despite the intensive research
performed during the last two decades in the development of
hierarchical higher order curl-conforming basis (e.g., see [8–12]).
During the last years, the authors have developed a fully automatic
hp-adaptivity for electromagnetic problems (see [13, 14] and references
therein) with applications to microwave engineering and scattering-
radiation problems [15, 16].

In contrast to boundary element formulations [17, 18], finite
element formulations have as unknown the electromagnetic field (and
not its sources). Thus, when dealing with open region problems, as
in the case of scattering and radiation of electromagnetic waves, the
problem domain is infinite. Several approaches can be used in order to
make the number of degrees of freedom finite after the discretization
stage. Typically, the original infinite domain is decomposed into one
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finite (interior) domain and one infinite (exterior) domain.
One approach is to use a non-standard FEM discretization of the

infinite exterior domain with infinite elements [19].
Other approach is the integral equation representation of the

field in the infinite domain by using boundary elements [20] on the
interface between the exterior and interior domains. Thus, this
interface becomes an artificial boundary that is used to truncate the
problem domain (mesh) in order to keep the number of unknowns finite.
Boundary elements provide an exact radiation boundary condition at
the artificial boundary, allowing for the FEM domain to be truncated
very close to the sources of the problem and, hence, reducing the
number of unknowns of the problem. However, boundary element
discretizations provide dense matrices.

Another truncation method consists of using local boundary
conditions on the artificial boundary, whose discretization yields
to sparse matrices. They are referred to as Absorbing Boundary
Conditions (ABCs) [21–25]. However, ABCs are obtained using several
approximations and are not exact, even at the continuous level (before
discretization). In general, they are more accurate as the artificial
boundary is placed at a longer distance from the sources. There
exist several numerical techniques to obtain local ABCs, such as the
so called Numerical ABC (NABC) [26], and Measured Equation of
Invariance (MEI) method [27]. It is also remarkable the use of adaptive
ABCs in which a given local boundary condition is iteratively updated;
typically using the information about the radiation boundary condition
implicit in the Green’s function corresponding to the integral form
representation of the exterior field. See e.g., [3, Chap. 6, 7], [28–31].

Another domain truncation method is the inclusion of one or
several layers of lossy material that does not produce any reflection
of the waves, independently of the incidence angle, i.e., Perfectly
Matched Layers (PML). Although PML materials are unphysical, they
can be used for the numerical analysis of open problems. PML was
first proposed in [32], and later reformulated in several ways [33, 34].
PML provide solutions which are arbitrarily exact at the continuous
level. That is, the reflection can be made arbitrarily small (for any
given PML thickness) by properly selecting the parameters of the
PML profile. However, at the discrete level, this property could be
seriously compromised. Indeed, PML may damage the accuracy and
increase the conditioning of FEM solutions (e.g., see [35] and references
therein). However, for the case of hp-adaptivity, the PML seems a good
candidate to truncate the computational domain, as shown in [36, 37].

The main contribution of this paper is to compare available
mesh truncation methods in electromagnetics that may be suitable
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for hp-adaptivity. Due to the very high accuracy provided by the
hp-adaptivity, truncation methods are required to be exact, or at
least, they should be arbitrarily exact at the continuous level. It is
also desirable for the mesh truncation techniques to provide an easy
integration with the logic of the hp-adaptivity. Thus, the methods
selected for the comparison are: Infinite Elements, PML, and the
iterative boundary-based hp method described in [16]. Further details
about each one of the mentioned methods will be given later. The
main criteria for the comparison is the number of degrees of freedom
(d.o.f.) needed by each method to achieve a given level of accuracy.
Computational times will be also compared.

2. HP -ADAPTIVITY AND MESH TRUNCATION
METHODS

The hp-FEM utilizes quadrangles/triangles of variable order of
approximation supporting anisotropic refinements and hanging nodes.
The adaptive strategy is fully automatic and is based on minimizing
the interpolation error by using the projection of the error from a fine
grid. This fine grid is obtained from a uniform refinement in h and p
of the given coarse grid. The resulting hp-adaptive strategy delivers
exponential convergence rates in terms of the energy error versus the
number of d.o.f., even in the presence of singularities. For details
see [13] and references therein.

In this paper, the adaptivity is applied to the scalar 2D Helmholtz
problem consisting of the scattering of infinitely long z-oriented
cylinders with TM and TE incidence polarized waves, i.e.,

∂

∂x

(
1
fr

∂u

∂x

)
+

∂
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(
1
fr

∂u

∂y

)
+ k2

0gru = q (1)

where k0 = ω
√

µ0ε0 is the vacuum wavenumber, µ0, ε0 are the
permittivity and permeability of vacuum, respectively. For TE
polarization, fr = εr, gr = µr and u refers to the z-component of
the magnetic field (for TM polarization, see [38]). Symbol q represents
the interior sources. H1-conforming finite elements using hierarchical
basis functions based on integrated Legendre polynomials are used to
discretize (1).

2.1. Infinite Element

The analysis with infinite elements is made by using a scattered
field formulation enclosing the scatterer with a circular boundary of
radius a. The infinite element extends from the enclosing boundary
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up to infinity. In practice, it is displayed as an elongated element
in the radial direction ρ. This setup can be identified in the hp
meshes shown in Section 3. The basis functions of the infinite element
are constructed by taking tensor products of one-dimensional radial
shape functions ψ(a/ρ) with the traditional (used within the interior
domain) hierarchical basis functions corresponding to the edge lying
on the truncating circle e(φ). Thus, the variation in the far-field
region is factorized. The infinite element basis functions are expressed
(assuming the enclosing boundary centered in the origin) as:

u(ρ, φ) =
e−jk(ρ−a)

ρ
1
2

∑

j

∑

l

gjlel(φ)ψj(a/ρ) (2)

where coefficients gjl denote the degrees of freedom. See [13] for details.
It is worth noting that the infinite element is not considered in the

optimization procedure that yields to the next optimal mesh. Thus,
no h-refinements are made in the radial direction. h-refinements are
forced by the topology of the edges lying on the truncating circle.
The order p in the radial direction is simply set to the p of the edge
on the truncating circle plus one. In addition, there is a maximum
p in practice (p = 9 in our code), that limits the accuracy of the
approximation in the radial direction. Nonetheless, infinite elements
are exact at the continuous level. However, the practical limitations
of the implementation described above precludes an arbitrarily exact
field modeling within the exterior domain. Another disadvantage is
the need of a simple analytic type of truncating interface, such as a
circle in 2D or sphere in 3D.

2.2. Perfectly Matched Layers (PML)

The analysis with PML is made by enclosing the scatterer with a
PML of a given thickness at a given distance from the scatterer. The
geometry is typically circular or rectangular. PML can be formulated
in several ways. The most useful and elegant way is the one based
on the concept of analytical continuation of a real function into the
complex plane (referred to as complex coordinate stretching [39]). For
instance, with rectangular box type PML, the stretching is made on
the Cartesian coordinates as follows (analogous stretching with y):

x → zx(x) = x + ax(x)− jbx(x) (3)

where zx(x) is the complex coordinate. Factor bi takes care of the
attenuation of propagating waves and factors ai of the evanescent
waves. In the domain of interest, ai = bi = 0 which yields zx(x) = x
and thus, the original unstretched equations are recovered.
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Mapping (3) is introduced into (1) and the stretching yields to
complex material constants (see [36] for details). Different mappings
can be selected yielding to different PML “profiles”. For example, bx

could be set for a wave travelling in the positive x direction as:

bx(x) =
x

C1

(
x− xPML

C2

)n

, x > xPML (4)

where xPML indicates the beginning (in x) of the PML. It is easily
deduced that the level of reflection of the PML can be arbitrarily small
by properly selecting parameters C1, C2 and integer n. In addition, it
is very simple to implement a PML within the hp-adaptive code; PML
is simply another medium of the problem. Another advantage of PML
is that it is suitable for mesh truncation in different types of problems
without modifications, e.g., for multilayer structures. The drawback
comes from the high number of extra degrees of freedom that have to
be spent within the PML, as it will be clear later.

In contrast to the infinite element, finite elements within the
PML region are taken into account in the self-adaptive algorithm.
Thus, they are automatically refined in h and p at each step of the
adaptivity. However, their contributions to the error are not taken into
account in the comparison. Although hp-adaptivity has demonstrated
to accurately resolve (in contrast to classical FE discretizations) the
electromagnetic field, independently of the PML profile [36, 37], there
is an optimum profile (in terms of the number of unknowns needed to
achieve a given level of accuracy of the field solution), which is problem
dependent.

2.3. Iterative Boundary Element Methodology (FE-IIEE)

The analysis with this mesh truncation technique is based on a
two domain decomposition with overlapping approach. An iterative
multiplicative Schwarz type algorithm is performed. A finite (interior)
domain is obtained by enclosing the scatterer with an arbitrary
(typically conformal) boundary (denoted by S). A FEM is used to
model the field within this domain. A local type of boundary condition
is used on S, e.g., a Cauchy type, ∂u/∂n+ jk0 u = Ψ being its residual
function Ψ assumed to be known.

An infinite (exterior) domain is obtained using an auxiliary
boundary S′ that is interior to S. Thus, the overlapping region is
limited by S and S′. The field on S for next iteration is calculated
using the Equivalence Principle on S′:

usc
(i+1)

∣∣∣
S

=
∮

S′

[
M t

eq

∂ G

∂n′
− jk0η0J

z
eq G

]
dl′ (5)
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where M t
eq and Jz

eq are the equivalent magnetic and electric currents,
respectively, on S′. Superindexes t and z refer to the tangential
and longitudinal components, respectively. Symbol G denotes the
Green’s function of the exterior domain (e.g., free space). The normal
derivative ∂u/∂n on S is calculated in an analogous way and, thus,
the residual Ψ of the boundary condition on S is updated. For
details see [38]. This approach can be interpreted as an iterative
implementation of a boundary element method in which no integral
equation must be solved, but only “evaluated” (expression (5) and
its analog for ∂u/∂n). This technique will be referred to as FE-IIEE
(Finite Element-Iterative Integral Equation Evaluation) in the rest of
the paper.

FE-IIEE allows for the radiation boundary condition provided
by the integral representation of the field to be imposed with an
arbitrary accuracy (asymptotically exact with the number of iterations
at the continuous level) without using boundary elements in the hp-
adaptivity. A drawback of this method, in comparison with PML, is
that it requires the use of the specific Green’s function of the exterior
domain [40]. Thus, for instance, when applied to stratified media, the
multilayer Green’s function [41] has to be implemented.

The use of FE-IIEE does not increase the order of the
computational complexity of the hp-adaptivity with the number of
degrees of freedom (provided a fast method is used to evaluate (5))
because the FE overhead of using IIEE reduces simply to forward and
backward substitutions. In addition the number of extra forward and
backward substitutions is small. This is due to the reutilization of the
residual Ψ of previous instances. First, at each step j of the adaptivity
the last residual Ψ of the previous step of the adaptivity is used to
start the FE-IIEE iterations. Second, the discrete Ψ obtained in the
last iteration of FE-IIEE of the coarse mesh is used to start the FE-
IIEE iterations for the fine mesh. In practice, two extra iterations of
the iterative FEM for the fine mesh have demonstrated to be enough
to guide the adaptivity. For details see [16, 42]. However, as it will
be clear later, the overhead due to the evaluation of the convolutional
expressions as the one of (5) affects to the computational time.

3. NUMERICAL RESULTS

Results for TE and TM cases provide similar conclusions. Thus, only
results for the TE case are shown. Very coarse meshes with uniform
order p = 2 have been used as initial meshes. The error is measured in
the H1 semi-norm only within the finite (interior) domain, which is the
region of interest. That is, the error contributions of infinite elements
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(a) (b)

Figure 2. Scattering on PEC circular cylinder (hp-meshes with
infinite elements). (a) Initial mesh. (b) 11th hp-mesh. ε ' 0.01%.

(a) (b)

Figure 3. Scattering on PEC circular cylinder (hp-meshes with PML).
(a) Initial mesh. (b) 18th hp-mesh. ε ' 0.01%.

as well as those within the PML are not taken into account. Note
again that finite elements in the PML region are taken into account in
the self-adaptive algorithm to yield the next hp mesh.

The first scatterer is a circular cross-section metallic cylinder
of radius equal to one wavelength (λ) illuminated from the right as
displayed in the figures mentioned below. The cylinder surface is a
perfect electric conductor (PEC).

The analysis with infinite elements is performed by placing a layer
of infinite elements on a circular enclosing boundary at a distance equal
to 0.5λ from the metallic cylinder boundary. The initial mesh and some
of the hp-meshes provided by the adaptivity are shown in Fig. 2, in
which colors indicates, according to the scale on the right (used also
for the rest of the mesh plots), the order p of the elements. Due to
the smoothness of the solution, the hp-adaptivity automatically selects
p-refinements. Since the maximum p is limited in our implementation
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(a) (b)

Figure 4. Scattering on PEC circular cylinder (hp-meshes for FE-
IIEE). (a) Initial mesh. (b) 18th hp-mesh. ε ' 0.01%.
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Figure 5. Scattering on PEC circular cylinder (convergence history).

by p ≤ 9, once the maximum p is reached, h-refinements are selected.
Fig. 5 describes the error history obtained with the sequence of hp-
meshes provided by the self-adaptive algorithm. The marks with the
circles correspond to the exact error measured with respect to the
exact solution. Marks without circles correspond to the estimated
error. The error estimation provided by the hp-adaptivity is highly
accurate. Note that the abscissa scale corresponds to N

1/3
dof (being Ndof

the number of degrees of freedom) while abscissa axis tics should be
read as Ndof in the plots. This is due to the fact that, according to [43],
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error = C exp(−Nα
dof) (with α = 1/3 for 2D) in the asymptotic regime.

Thus, the exponential convergence behavior is identified by a straight
line in the plot. In this case, the convergence presents different changes
in the slopes due to the limitation on the maximum p mentioned above.

The analysis with PML is performed by placing a conformal PML
region starting at 0.5λ away from the scatterer. A linear profile for b(ρ)
(i.e., n = 1 is set in an analogous mapping as (4) but with the radial
coordinate ρ) was selected to be optimal for this case. The profile was
designed for a (2 way) attenuation of approximately 70 dBs being a(ρ)
of expression (3) set to zero. The initial mesh and some of the hp-
meshes provided by the adaptivity are displayed in Fig. 3, exhibiting
a boundary layer type of behavior due to the presence of a PML. Note
that, due to the use of isoparametric elements and the low error at
the end of the PML (where the field is basically null), the geometry
of the PML external boundary is modeled by straight lines. Fig. 5
describes the convergence history. The achieved error levels are very
low. However, a PML requires a larger number of degrees of freedom.
In average, between 40% and 80% of the total number of degrees of
freedom are placed in the PML region when the PML is located in the
proximity of the scatter (see Fig. 6 for a distance PML-scatter equal
to 0.1λ).

The analysis with FE-IIEE is performed by placing a conformal
truncation boundary at 0.5λ away from the scatterer. The initial
mesh and one of the hp-meshes is shown in Fig. 4. There are no
finite elements on the exterior domain; thus, the number of degrees
of freedom are only those needed to model the field within the finite
(interior) domain. This has a positive impact in the number of degrees
of freedom needed for a given error level, as observed in the convergence
history shown in Fig. 5.

As example of elongated structure, the scattering of an elliptical
PEC cylinder illuminated by a plane wave coming from φ = 90◦, was
selected. The truncation boundary is a circle with infinite elements, a
rectangle for PML, and conformal to the scatterer (an ellipse) for FE-
IIEE. An illustration of the setup is shown in Fig. 7. The dimensions
are indicated in the caption. Examples of the hp-meshes delivered by
the automatic adaptivity are shown in Fig. 8, Fig. 9, and Fig. 10,
for infinite elements, PML and FE-IIEE, respectively. By simple
inspection of the meshes, a lower performance of infinite elements with
respect to PML and FE-IIEE in terms of error versus number of degrees
of freedom is expected. This is confirmed in Fig. 11, which shows the
convergence history for the three methods.

The last example is the scattering of a rectangular PEC cylinder
(dimensions equal to 8λ × 1λ) illuminated by a plane wave coming
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Ra = 6λ, d = λ, h = λ. Incidence from above. (a) PML. (b) IIEE.
(c) Inf. Elem.
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(a) (b)

Figure 8. Scattering on PEC elliptical cylinder (hp-meshes with
infinite elements). (a) Initial mesh. (b) 39th hp-mesh. ε ' 1%.

(a)

(b)

Figure 9. Scattering on PEC elliptical cylinder (hp-meshes with
PML). (a) Initial mesh. (b) 18th hp-mesh. ε ' 1%.

from φ = 90◦. It is an example of an elongated structure but, in
contrast with previous structures, its solution is no longer smooth due
to the field singularities ocurring at the corners of the scatterer. The
truncation boundary is a circle (of radius 6λ) with infinite elements,
and conformal to the scatterer (at 1.5λ from the scatterer) for FE-IIEE
and PML. The convergence history for the three methods is shown in
Fig. 12. It is observed that, despite the field singularities, exponential
convergence is achieved. A stagnation with infinite elements is observed
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close to an error level of 0.1%. Similar conclusions to the ones of
previous structures hold with respect the performance of PML and
FE-IIEE. The performance of infinite elements deteriorates due to the
non smoothness of the solution and the need of a circle boundary to
enclose the elongated scatterer.

Results corresponding to a distance between the scatterer and the

(a)

(b)

Figure 10. Scattering on PEC elliptical cylinder (hp-meshes with
FE-IIEE). (a) Initial mesh. (b) 14th hp-mesh. ε ' 1%.
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history).
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Figure 12. Scattering on PEC elongated rectangular cylinder
(convergence history).

truncation boundary within 0.5λ–1.5λ have been shown. The main
reason for not using shorter distances has been to use the same distance
(for a given structure) for the three methods under comparison. As
explained below, the limitations have come by the accuracy when using
infinite elements. Another reason is simply graphical in the sense
that meshes with very thin layers of finite elements would have been
displayed in the paper. Additional results with much shorter distances
0.05λ–0.2λ have also been computed. In general, it has been observed
that when infinite elements are placed very close to arbitrary scatterers,
the hp-adaptivity demands h-refinements of the infinite elements in
the radial direction. This feature is not available in practice due to its
complexity. Equivalently, the infinite element layer might be placed
further away from the scatterer. However, the implementation of that
feature to be performed automatically (without user interaction) would
unnecessarily complicate the code. In addition, it would add a high
number of extra degrees of freedom to the analysis. On the other hand,
the percentage of degrees of freedom in the PML region with respect to
the total is getting higher as the PML is getting closer to the scatterer
(i.e., the non-PML region is getting smaller). Thus, PML performs
worse than FE-IIEE under these conditions.

The sparsity patterns of the FEM matrices obtained with the three
methods do not show significant differences. Additionally, the three
methods delivered a similar number of hp-iterations in order to obtain
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Table 1. Accumulated computational time (in seconds) for the
elliptical cylinder.

Inf. Elem. PML FE-IIEE FE-IIEE (fast)
Err = 10% 125 5 9 7
Err = 1% 554 20 34 28

Err = 0.1% - 69 88 72
Err = 0.01% - 155 204 160
Err = 0.001% - 338 402 306
Err = 0.0001% - 798 1049 730

meshes with a given number of degrees of freedom. This was expected,
since the hp-adaptive strategy was the same for the three methods.
Thus, the comparison has been based on the number of degrees of
freedom of the last hp mesh needed to obtain a given level of accuracy.

The dependence of the computational time per hp-iteration with
the number of degrees of freedom (of the coarse mesh) for the elliptical
cylinder is shown in Fig. 13. The accumulated time considering all
iterations needed for a given level of accuracy is shown in Table 1.
Fig. 13 (with loglog axis) shows that the slope of the three methods
is the same because they all use the same finite element solver.
However, the overhead of FE-IIEE corresponding to the brute-force
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accurate evaluation of the convolutional type operation of (5) (and
its analogous for the normal derivative) is reflected as a shift of
the FE-IIEE line towards larger computational times. Although the
development of an efficient implementation of an acceleration technique
(as FMM (Fast Multipole Method [44–46]) or ACA (Adaptive Cross
Approximation [47]) using the hierarchy of the meshes (tree type
data structures) is out of the scope of this paper, an estimation of
the performance of FE-IIEE with an acceleration technique has been
included. It corresponds to the line labeled as “FE-IIEE (fast)”. The
estimation of the computation time has been performed by considering
a dependence of the type O(N1.5

Γ ) corresponding to a single level
implementation (instead of O(N2

Γ) of the brute-force approach), being
NΓ the number of degrees of freedom of the exterior boundary. Based
on this estimate, the computational time of FE-IIEE for large number
of degrees of freedom is comparable to the ones of PML and infinite
elements. The introduction of the information about the convergence
history of each method in Fig. 13 is performed through marks: 4, ∗, ?.
Each mark corresponds to the number of degrees of freedom (and hence
computational time) for a given error level. The PML and FE-IIEE
require similar computational times (with a slight advantage of PML
over FE-IIEE), while infinite elements are discarded due to the large
computational time (a factor of 100 when compared with PML and
FE-IIEE). Although PML and FE-IIEE yield similar computational
times, FE-IIEE does it with a significant lower number of degrees of
freedom and thus, it requires less memory than PML. This issue may
be relevant with large 3D problems.

4. CONCLUSIONS

From the results of Section 3, the following conclusions are obtained.
Infinite elements are only competitive with PML and FE-IIEE for a
small set of specific cases, since infinite elements exhibit a lack of
robustness. Both, PML and FE-IIEE, are suitable for accurate hp
modeling of scattering problems requiring similar computational times
to deliver results with a given level of accuracy. FE-IIEE requires
a lower number of degrees of freedom than PML for a given level
of accuracy, i.e., it requires less memory than PML. Also, FE-IIEE
performs better than PML when the truncation boundary is close
to the scatterer. In addition, the truncation boundary can be made
conformal to the scatterer with FE-IIEE. However, FE-IIEE requires
the Green’s function of the exterior domain and the implementation
of the convolutional type of operation (preferably by using some sort
of fast method) to update the right hand side of the problem. In this
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sense, PML is simpler to be implemented within the hp-adaptive code
and it does not require specific implementations for different exterior
domains (e.g., free space, stratified media, etc.). Thus, although FE-
IIEE may perform better for specific problems, specially in 3D, the
simplicity of PML and its good performance when discretized with
hp-finite elements make PML the preferred option as mesh truncation
method for general purpose hp-adaptive codes.
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and M. Salazar-Palma, “A finite element method for the analysis
of radiation and scattering of electromagnetic waves on complex
environments,” Computer Methods in Applied Mechanics and



Progress In Electromagnetics Research, Vol. 126, 2012 519

Engineering, Vol. 194, Nos. 2–5, 637–655, Feb. 2005.
39. Chew, W. C., J. M. Jin, and E. Michielssen, “Complex coordinate

stretching as a generalized absorbing boundary condition,”
Microwave and Optical Technology Letters, Vol. 15, 363–369,
Sept. 1997.

40. Ubeda, E., J. M. Tamayo, and J. M. Rius, “Taylor-orthogonal
basis functions for the discretization in method of moments
of second kind integral equations in the scattering analysis
of perfectly conducting or dielectric objects,” Progress In
Electromagnetics Research, Vol. 119, 85–105, 2011.

41. Bahadori, H., H. Alaeian, and R. Faraji-Dana, “Computation of
periodic Green’s functions in layered media using complex images
technique,” Progress In Electromagnetics Research, Vol. 112, 225–
240, 2011.
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