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A B S T R A C T 

Algorithms for distributed agreement are a powerful means for formulating distributed versions of 
existing centralized algorithms. We present a toolkit for this task and show how it can be used 
systematically to design fully distributed algorithms for static linear Gaussian models, including principal 
component analysis, factor analysis, and probabilistic principal component analysis. These algorithms 
do not rely on a fusion center, require only low-volume local (1-hop neighborhood) communications, 
and are thus efficient, scalable, and robust. We show how they are also guaranteed to asymptotically 
converge to the same solution as the corresponding existing centralized algorithms. Finally, we illustrate 
the functioning of our algorithms on two examples, and examine the inherent cost-performance trade­
off. 

1. Introduction 

There exists a strong trend in modern signal processing research 
of moving away from classical centralized processing architectures 
towards fully distributed ones. These new platforms rely on a 
(possibly large) number of interconnected nodes to perform any 
given task without relying on any central entity such as a fusion 
center. This lends them unmatched adaptability, robustness, and 
fault-tolerance. 

However, this shift of paradigm also creates a need to reinvent 
traditional algorithms, since they are no longer applicable, for the 
lack of a fusion center. This is done by designing new distributed 
implementations aimed at such distributed platforms. 

Two distinct and equally important parts of any such imple­
mentation are the intra-node local processing at each node, and 
the inter-node communications which provides coordination. Only 
a coupled design of these two components assures the emergence 
of global behavior matching, or at least approximating, that of the 
original centralized algorithm. 

Investigation of such distributed platforms may be motivated 
by the wish to understand and recreate emergent behavior in 
large-scale decentralized biological systems, such as groups of 

animals (e.g. schools of fish), cardiomyocyte cells, or even the 
nervous system. Also, the same type of algorithm appears in large-
scale computer networks, such as wireless sensor networks. 

In this work, we will examine the processing and communi­
cations (intra- and inter-node) aspects of performing static lin­
ear Gaussian models (SLGMs), all in a distributed way based on 
consensus and gossip algorithms. As we will see, SLGMs include 
principal component analysis (PCA), as well as two closely related 
algorithms, factor analysis (FA) and probabilistic PCA (PPCA). 

2.2. Related work 

PCA is one of the most fundamental and best known feature 
extraction algorithms (Hotelling, 1933; Jolliffe, 2002; Pearson, 
1901), dating back to the 1930s. Since then it has enjoyed 
tremendous success in many diverse fields, inspiring numerous 
variations and extensions. 

There exist various partially distributed implementations of 
PCA. They focus on saving part of the multi-hop communica­
tion cost by either local computations (Kargupta, Huang, Sivaku-
mar, & Johnson, 2001) or aggregation services (Bai, Chan, & Luk, 
2005; Le Borgne, Raybaud, & Bontempi, 2008; Qi & Wang, 2004), 
but they still rely on a fusion center for merging the local re­
sults. In the context of distributed compression and source cod­
ing, Gastpar, Dragotti, and Vetterli (2006) proposed a distributed 
Karhunen-Loéve transform which is posed as an optimization 
problem, where convergence to the global optimum is, in gen­
eral, not assured. Our two consensus-based distributed PCA algo­
rithms (Valcarcel Macua, Belanovic, & Zazo, 2010) outperform all 
the above because they both guarantee convergence, with no fu­
sion center, just by local neighborhood communications. 



Meanwhile, computing over networks of processing elements is 
a potent paradigm, offering robust and scalable implementations 
for a variety of different algorithms (Bertsekas & Tsitsiklis, 1997). 
The rich body of knowledge on this topic includes parallel, decen­
tralized, and distributed implementations. Parallel computing fo­
cuses on splitting the input data, available at once on an incoming 
bus, into many processing units, each in charge of processing its 
own slice of information, and the final results are again gathered 
at the output. Performing algebraic operations on such platforms 
is well known (van de Geijn, 1997). On the other hand, when we 
talk of decentralized processing, the original data is spatially dis­
persed, i.e. partially available at each node, and some local process­
ing is performed before the intermediate results are passed on to a 
single fusion center, which produces the final result. An excellent 
example is given in Tsitsiklis (1993). 

Finally, in distributed processing, the spatially dispersed data 
is processed locally, usually in an iterative way, and the interme­
diate results are communicated only among neighboring nodes. 
Hence, no fusion center exists, and the final result is available at 
all the nodes when the iterative process stops. Consensus algo­
rithms, including gossip, have in recent years provided a pow­
erful tool for distributing existing centralized algorithms. For a 
comprehensive review of consensus and gossip, the reader is 
directed to Garin and Schenato (2011) and the references therein. 
Examples of algorithms distributed using consensus are the 
Kalman filter (Olfati-Saber, 2005), detection (Bajovic, Jakovetic, 
Xavier, Sinopoli, & Moura, 2011), clustering (Forero, Cano, & Gian-
nakis, 2011), support vector machines (Forero, Cano, & Giannakis, 
2010), linear discriminant analysis (Valcarcel Macua, Belanovic, & 
Zazo, 2011), and many others. In this work we explore the applica­
tion of consensus algorithms to SLGMs. 

1.2. Contributions 

The first contribution we present is a "toolkit": a set of matrix 
operations useful in distributing existing algorithms over networks 
of nodes. These operations are based on the well-studied average 
consensus algorithms and include the distributed matrix product, 
distributed least-squares, and distributed estimation of the first 
two moments of a multi-dimensional data set. 

The main contribution of this article is a direct application of the 
toolkit: a set of fully distributed algorithms to systematically dis­
tribute SLGMs. We begin with two distributed algorithms to per­
form PCA. The first is a direct method, deriving local approximations 
of the sample covariance matrix of the global data set, and hence 
the dominant eigenvectors and the principal subspace spanned by 
these. The other is an iterative method, based on an expectation 
maximization (EM) procedure, producing local approximations of 
the global principal subspace. Both algorithms are guaranteed to 
asymptotically converge to the centralized solution given by clas­
sical PCA. 

In addition, both algorithms are based only on local computa­
tions, with strictly limited communications among nodes, only via 
consensus iterations. These low-volume communications do not 
grow with the number of data samples and involve only neigh­
boring (1-hop) nodes. Hence, the presented algorithms scale ex­
cellently and are applicable to arbitrarily large networks. 

We then present two extensions of our iterative algorithm, to 
distribute FA and PPCA algorithms. Although, as already stated, a 
multitude of variations of the PCA, PPCA, and FA algorithms exists, 
here we focus only on their basic forms in order to illustrate our 
key contribution. The application of this or similar methods to the 
numerous other variants of each algorithm falls outside the scope 
of this particular contribution. 

Our final contribution are two experimental examples of the 
use of our algorithms, in distributed scenarios over large, sparse 
networks, representing the most difficult type of system configu­
ration. 

1.3. Outline 

We start this article in Section 2 with a brief unifying review 
of SLGMs. Then in Section 3 we offer a description of the 
system model we will be considering, followed by an overview of 
distributed agreement algorithms, focusing on average consensus. 
These algorithms are summarized in their scalar, vector, and 
matrix forms. 

Based on these well-known algorithms we present our first 
contribution in Section 4: a toolkit of techniques for distributing 
algorithms using consensus interactions. 

Then, in Section 5, we present two distributed forms of 
performing PCA based on average consensus; one direct and the 
other iterative. In the same section we also show two further 
algorithms, to distributed FA and PPCA, which are extensions of 
the iterative PCA algorithm. 

In order to illustrate the functioning of these algorithms, we 
show two experiments in Section 6. The first demonstrates the 
gain achieved by all the nodes through (limited) cooperation via 
consensus interactions, while the second shows the application of 
our algorithms in typical real-world scenarios where PCA is known 
to be useful. 

Finally, we conclude the article in Section 7. 

2. Static linear Gaussian models 

Roweis and Ghahramani (1999) showed how a single mathe­
matical model, and a rather simple and commonly seen one at 
that, can be used to represent fully many different popular algo­
rithms, such as PCA, FA, PPCA, Independent Component Analysis 
(ICA), Hidden Markov Models (HMM) and the Kalman filter, among 
others. 

The mathematical model is that of a hidden system being 
imperfectly observed. It is composed of two rather generic, 
linear, discrete-time, difference equations for the state and the 
observation. In the first, the hidden system progresses through a 
number of states, x, as governed by the state transition matrix A, 
and affected by state noise w. ~ <U(0, Q). 

x [ k ] = A x [ k - l ] + w . . (1) 

In the second equation, noisy observations y are produced from the 
system state through an observation matrix C, and are also affected 
by observation noise v. ~ <U(0, R). 

y[k] = Cx[k]+v. . (2) 

We note that both noise variables are represented without a time 
index k, to emphasize the fact that their realizations are iid, i.e. not 
to be seen as a sequence. 

For obvious reasons the term linear Gaussian models is used to 
refer to all the models united under this umbrella. A particular 
subset of these are the static linear Gaussian models (SLGMs), in 
which A = 0, so that (1) reduces to 

x. = w. (3) 

and (2) becomes 

y. = C x . + v . . (4) 

In other words, in these models the time index is lost, as all the 
states x. (and consequently the observations y. as well) are iid 
realizations without any particular (temporal) ordering. 

The differentiation among the different SLGMs comes from the 
ways of constraining, or modeling R, the covariance matrix that 
controls the observation noise. As we will see later, R may be 
assumed to vanish (PCA), be a scaled identity matrix (PPCA), or 
diagonal (FA). 

In this paper we present a systematic way of distributing SLGMs 
using distributed agreement, and present how the particular 
assumptions on R of each SLGM affects the distributed algorithms 
we propose. 



3. Algorithms for distributed agreement 

As was discussed earlier, consensus and gossip algorithms are 
relatively new techniques for distributed agreement in networks, 
useful in deriving global functions using only iterative local 
interactions. They offer advantages such as excellent scalability, 
high energy efficiency, and under certain conditions even a 
guarantee of asymptotic convergence to the same result obtained 
by a centralized solution. In this section we first define the system 
model used throughout this paper, followed by a brief introduction 
to the workings of distributed agreement algorithms. 

3.1. Notation 

Bold uppercase letters like A denote matrices, while bold 
lowercase letters like x denote column vectors. Consequently, 1 is 
a column vector of all ones, while I is the identity matrix. Using 
Matlab-like notation, we say that the scalar element in the xth row 
and yth column of the matrix A is axy, its entire row is Ax>:, and 
entire column is A:y. 

The subscript D„ is given to local variables at any node n. When 
a variable converges to the same value in all the nodes (i.e. the 
network reaches consensus on that value), the subscript D+ denotes 
that common value. In iterative algorithms, the discrete index D[fc] 
indicates the fcth iteration. We use J^(fi, S) to denote Gaussian 
distributed data with mean ¡JL and covariance S. 

3.2. System model 

Let us consider a networked system made up of N nodes. 
Assuming all the connections are bi-directional, we represent this 
network with an undirected graph G = {V, £}, where V is the set 
ofN nodes (or vertices) v„, andE is the set of edges enm = emn that 
connect ordered pairs of nodes (v„, vm). 

Furthermore, we will assume an unweighted graph, i.e. all the 
edges in E have equal weights. Thus, we define the binary symmet­
ric adjacency matrix associated with the graph G as A = [anm]NxN, 

Internode 
(communication) 

Intra node 
(computation) 

where a„ 1 when enm e E, and an 0 otherwise. From this 
we derive the degree of each node as d„ = ||t>n|| = X!n=i a>™ = 
J2m=i anm- We further define the symmetric Laplacian matrix as­
sociated with G as L = [i„ffl]NxN, such that the diagonal entries are 
/„„ = dn and lnm = -anm when n =é m. 

Let us also assume that each node has associated with it a scalar 
local parameter xn e R. We let the distributed processing occur in 
discrete time steps k, which we will refer to as rounds, starting at 
k = 0. The initial value of the parameter, x„[0], maybe obtained 
by any process, such as measurement for example. We denote the 
set of values of this parameter at all the nodes in the network (i.e. 
the network state) asz[/c] = [xi[k],x2[k],... ,xn[k],... ,xN[k]]J. 

Given such a distributed system, we are interested in evaluating 
a global function x(z[0]) : RN -> R in a distributed manner, i.e. 
without the need to gather the contents of z at any central 
location. Algorithms for distributed agreement such as consensus 
and gossip are excellent tools for iteratively deriving this function 
in a distributed manner. 

3.3. Consensus and gossip 

Hence, at the core of every consensus or gossip algorithm is such 
a global function x(z[0]) which is to be evaluated by the entire 
network. In the discussion to follow, we will focus on averaging 
algorithms, where 

X(z[0])=AT 
1 N 

lTz[0] = - V x n [ 0 ] = x , 
N ¿—( 

f * c , [ k - l ] v . X r [ .k:1 ]vJ 
/ i x jk - l ] 
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t 
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Fig. 1. High-level illustration of the consensus and gossip algorithms, as iterative 
alternations between internode and intranode processing steps. 

In both consensus and gossip, this is achieved by iteratively apply­
ing 

z[/c]=W[/c-l]z[/c-l] (6) 

where W[/c] e is a time-varying doubly stochastic weights 

(5) 

matrix, associated with the graph G 
Many approaches for forming W[/c] exist. The reader is directed 

to Garin and Schenato (2011) and Olshevsky and Tsitsiklis (2009) 
for a thorough review of the various approaches of building the 
weights, and of consensus and gossip algorithms in general. 

Some strategies use time-varying weights, while others have 
a static matrix W[/c] = W. Some methods are globally optimal 
(e.g. fastest convergence Xiao and Boyd (2004)), while others 
are heuristics. Also, some methods are distributed, i.e. use only 
local information, while others are centralized, i.e. require the 
knowledge of a global quantity, such as N, or L. 

In general, consensus algorithms use a fully populated weights 
matrix, where every edge in G is represented in W[/c] at every 
round k. Often the weights matrix will be static, i.e. each edge in G is 
present in W and assigned a fixed weight. Gossip algorithms on the 
other hand use relatively sparse weights matrices that are always 
dynamic. Typically each W[/c] in a gossip algorithm represents 
non-zero weighs on a subset of the edges in G These edges are 
"active" in this particular round k. At the next round, a different 
subset of active edges is selected, and so on. These mechanisms 
are illustrated in Fig. 1, highlighting some of the different ways the 
internode and intranode stages can be alternated. It is important to 
note, as previously stated, that many variations on these common 
themes have been proposed in the literature. Fig. 1 also serves to 
illustrate how the information originating in each node diffuses 
throughout the network with each iteration. 

As we will see in Sections 4 and 5, the averaging ability 
of consensus and gossip algorithms will turn out to be a very 
powerful tool for distributed processing. In the literature there 
are many neural models performing PCA, either from the Hebbian 
learning rule or from back-propagation and other least-squares 
learning rules. The reader is directed to Diamantaras and Kung 
(1996) for a particularly lucid treatment. Although aesthetically 
the consensus-based approach shown here resembles a neural 
network, its functioning is distinct. The key difference is that 
information in a neural network flows in a very specific direction, 
from the input to the output, while in consensus information is 



Table 1 
Scalar, vector, and matrix forms of distributed agreement. 

Scalar Vector Matrix 

Local parameter 
Network state 
Update, dynamic 
Update, static 
Global function 

x„ S R 

z[k] s RN 

z[k] = W [ k - l]z[k-
z[k] = Wkz[0] 
X(z[0]) : RN - * R 

x„ S R ' 
Z[k] s RNxP 

Z[k] = W [ k - l]Z[k-
Z[k] = W*Z[0] 
X(Z[0]) :R N x P - * - » ' 

X„ s R x u 

Z[k] s RNPxQ 

Z[k] = W[k - l]Z[k - 1] 
Z[k] = W tZ[0] 
X(Z[0]) :RN P x Q - ^ R P x Q 

diffused in every direction, coming in and out bidirectionally at 
each link (see Fig. 1). Moreover, in consensus algorithms, every 
node of the network asymptotically converges to the whole result, 
while in neural networks each neuron only has part of it. Another 
effect of diffusion is the reduced dependence on the topology. With 
consensus algorithms, the only restriction on the topology is that 
the graph of the network is connected (on average for dynamic 
topologies), as opposed to classical neural networks that are more 
sensitive to, and dependent on their hard-wired structure. 

3.4. Higher dimensions 

It is of course possible to extend the averaging procedure from 
the scalar case given above, to a vector or a matrix of independent 
components at each node. 

In the vector case, each node starts with a vector of independent 
components x„[0] e Rp, so that the network state becomes the 
matrix Z[k] e RNxP. We see that (6) is now given by 

Z[k] = W [ k - l ] Z [ k - l ] (7) 

and in the static case (6) becomes 

Z[k] = WZ[k - 1] = WkZ[0] (8) 

and similarly (5) becomes 

N 

X(Z[0]) 
1 

(9) 

The matrix case is only slightly more complicated. Letting each 
node start with a matrix of independent components X„[0] e 
RPxQ, one way of proceeding is to vectorize each node's matrix. 
Then the nth row of the state matrix becomes 

Z[k]n, :=vec(Xn[k]T)T (10) 

and the complete state matrix becomes Z[k] e RNxPQ. This allows 
us to proceed with (7) or (8) as before. The global function x (Z[0]) 
is then given by 

X(Z[0]) 
1 N 

(11) 

However, if we wish to observe matrix properties of X„[k] as 
the system iterates, an alternative, but fully equivalent view of 
matrix consensus exists. It is achieved by stacking the matrices 
X„[0] vertically to obtain the network state matrix Z[k] e RNPxQ. 

In the case of a dynamic weights matrix, the update (6) is then 
given by 

Z[k] = W [ k - l ] Z [ k - l ] 

where 

W[fc] = W[fc] <g> I G RNPxNP. 
However, if the weights are static, (6) becomes 

Z[k] = WjZfk- 1] = W,<Z[0] 

where 

(12) 

(13) 

(14) 

(15) W,< = WK <g> I e Rvrx™\ 
Both (12) and (14) lead to the same global function x (Z[0]) as given 
in ( l l ) . 

The three forms of distributed agreement are summarized in 
Table 1. 

Ai A2 A3 • • • AN 

B Bi B2 B3 • • • BN 

Fig. 2. Global matrices A and B, each with a total of T samples, distributed unevenly 
over JV nodes. 

4. Distributed toolkit 

Given the basis described in Section 3, further more complex 
tools can be derived. Here we focus solely on the tools derived from 
the arithmetic average algorithms, be they consensus or gossip 
based. A later section will then show how these tools can in turn 
be used to distribute applied algorithms such as PCA in an elegant 
and systematic way. 

4.1. Distributed matrix product operator 

Let us assume the existence of two global and distributed 
matrices A and B, such that their contents are not available at 
any one location in the system, but rather are partially available 
at each node. This is depicted in Fig. 2, where each node n has 
the knowledge of a block of t„ vectors of the matrix A, and the 
corresponding block of the matrix B. We note that A and B share 
a dimension, T = X!n=i fn. with the other dimensions DA and DB 

generally not being the same. 
Should we desire to calculate the product ABT, we would 

normally have to resort to a traditional centralized solution. This 
involves gathering both matrices at a fusion center, calculating the 
result, and distributing it to all the nodes. 

However, this product can also be approximated arbitrarily 
closely in a distributed way, by letting each node calculate the local 
product 

Xn[0]=AnB^. (16) 

By iteratively applying (12) or (14), we see from (11) that 

lim X„[k] =X* 
1 N 

- V x » [ 0 ] Vn. (17) 



Hence, we define the distributed matrix product operator * 

A*BT 
1 N 

1 

Ñ" 
ABT. (18) 

In other words, we are able to guarantee asymptotic conver­
gence of all the nodes in the system to a scaled version of the de­
sired product. Although the appearance of the scaling factor N _ 1 

may be undesirable in some situations, we will see how it can be 
removed in some expressions of great practical importance that are 
derived from (18). 

It is of course also possible to evaluate the product A*AT. 
We note that while the residual factor of N _ 1 does scale the 
eigenvalues of AAT, it neither changes their order, nor affects the 
associated eigenvectors in any way. Hence, the distributed matrix 
product operator may be useful in eigenanalysis applications. 

Furthermore, the dimensionality of the variables that are ex­
changed during local interactions (X„[k]) is relatively low. Typi­
cally, the dimension shared by A and B, being t„ and T, is much 
larger than both DA and DB, especially in large scale systems, where 
N is large. 

4.2. Least-squares 

Given a linear system of equations AQ. = B, the least squares 
solution for Q. is given by Q. = (ATA)_1ATB. We can immediately 
split the pseudo-inverse into two factors 

<S = ATB (19) 

y = ATA. (20) 

By using the distributed matrix product operator in (18) we can 
easily approximate, in a distributed fashion, both averaged factors 

A1 * A : 

1 N 

N ¿-f 

1 N 

N 

1 

(21) 

(22) 

Moreover, since (22) has to be inverted, the scaling factors 
cancel out, and hence the required least squares solution of Q. is 
immediately achieved in a distributed way 

<Í = [AT*A]-1(AT*B) = y^S = Q. 

4.3. Estimation of the first and second moments 

(23) 

Let us assume that the matrix A contains a distributed sample 
set of T vector samples, as depicted in Fig. 2. Letting aj, = (A„):>t 

be the tth sample at node n, we remember that each node n has t„ 
samples. It is then possible for all the nodes to calculate the average 
number of samples, 

£*» (24) 

by simply performing average consensus or gossip on the parame­
ter t„ itself. We note that Nt* = T. 

From here, each node can derive in isolation (i.e. without any 
communications) the local globally weighted mean 

/*n (25) 

The global mean of the sample set A can be estimated by perform­
ing average consensus or gossip on these local means as 

N t„ 

/** 
1 " 1 " '" 

/¿(A). (26) 

It is important to note that fit can be used to center the data set 

A- )M T . (27) 

In fact, in the rest of this paper, we will assume that the data sets 
are centered, using the procedure (24)-(27) above, i.e. A = A0. 

In the final step, we note that the sample covariance matrix S 
can be derived in a distributed manner by 

1 
- A * A ' 

1 
-AA1 (28) 

Hence, it is possible to derive the first two moments of a 
distributed data set by performing only three averaging consensus 
algorithms. In particular the distributed derivation of the sample 
covariance matrices will play a significant role in the presented 
algorithms, as we will see in Section 5. 

One critical property of the estimates of the sample covariance 
matrices derived by (28) is their positive-definiteness. We must 
recall at this point that the distributed derivation of S+ is in fact 
an iterative procedure, whereby each node starts at 

Sn[0] = -^AnA^ 

and converges towards 

lim S„[k] S Vn. 

(29) 

(30) 

Although we see that Sn[k] >- 0 for k € {0, oo} in (29) and (30) 
respectively, it is not immediately obvious that this property also 
holds for all integers k € [1, oo), which is of course the range of k 
that is of greatest practical importance. 

Let us recall that in the case of a dynamic weights matrix, (12) 
and (13) tell us that 

Z[l] = W[0]Z[0] = (W[0] <g> I)Z[0] (31) 

where Z[0] is a stack of local covariance matrices S„[0] from 
(29), and Z[l] is a stack of the distributed estimates of the global 
covariance after the 1st iteration. Since each sub-block of W[0] is 
just a scaled identity matrix, (W[0])¡jl, we see that 

S„[l] 
N 

£ (W[0])n>iS,[0]. (32) 

We now recall from (29) that all S„[0] >- 0. Also, since all W[fc] 
are doubly stochastic matrices, all elements (W[0])¡j > 0. There­
fore, from (32) we stay in the positive semi-definite cone S„[l] >-
0, Vn. The same argument can be extended for all further iterations 
beyond the first, and hence Sn[k] >- 0, Vn, k. 

Things are even simpler in the case of a static weights matrix. 
We see from (14) and (15) that 

Z[fc] = WkZ[0] = (Wk <g> I)Z[0] (33) 

where Z[k] is a stack of the distributed estimates of^the global 
covariance at the fcth iteration. Since each sub-block of W/< is again 
a scaled identity matrix, (Wk)¡jl, we see that 

Sn[/<] = £(Wk)n , ,S,[0] . (34) 

In other words, all the distributed estimates of the global co-
variance matrix are always just a weighted sum of all the initial 
local covariance matrices. The same as before, since W is a doubly 
stochastic matrix, so is W \ and thus (Wk)¡j > 0. Therefore, from 
(34) we have that Sn[k] >- 0, Vn, k, as desired. 



5. Distributed algorithms for SLGM 

Provided the toolkit presented in Section 4, we are now ready 
to introduce two distributed algorithms for computing PCA. Fol­
lowing this, we extend the same argument to construct distributed 
algorithms for FA and PPCA. 

5.1. Distributed PCA from consensus in the covariance matrix 

The standard centralized PCA (computed in a fusion center) 
requires all the data samples, from all the nodes, to be gathered 
at the fusion center, assuming there is one in the network. With 
this access to the full data set Y e RDxT, the fusion center can 
obtain the principal subspace C e RDxP (P < D) directly by taking 
the P dominant eigenvectors of the sample data covariance matrix 

s = r-W. 
To distribute the same method, every node should first obtain 

the global mean (26) and remove it from its local data. Then, 
using (28), each node can start with its local, globally weighted co-
variance matrix S„[0] = t^YnY,, and proceed iteratively apply­
ing (12) or (14) until asymptotically converging to the global data 
covariance matrix S+ = t ^ Y i Y 7 = S. 

Finally, once the global covariance matrix is available, each node 
can locally obtain its own approximation to the global PCA as the 
subspace spanned by the dominant eigenvectors of its estimate 
of the global covariance. This subspace will be arbitrarily close, 
depending on the number of consensus iterations, to that spanned 
by the dominant eigenvectors of S. This is the base of Algorithm 1, 
denoted Consensus Based Distributed PCA (CB-DPCA). 

Algorithm 1 Consensus Based Distributed PCA (CB-DPCA) 

1: INPUT t„,Y„ 

2: t* <— N _ 1 X!n=l tn <<= = consensus l°°P 

4: ¡jLt <r- N _ 1 X!n=i a " < i = consensus loop 
5: Yn <- Yn - n.t 
6: S+ •<—t~1Y*Y ¿^ consensus loop 
1: C„ <r- P dominant eigenvectors of S+ 

8: OUTPUT Cn 

5.2. Distributed PCA as an expectation maximization algorithm 

In many real applications (like ambient intelligence, with cheap 
sensors ubiquitously deployed) nodes will likely offer low storing 
and processing resources; at least compared with the amount of 
continuously collected data that they may have to manage. Hence, 
an iterative algorithm to compute C is desirable. 

Roweis (1998) and Tipping and Bishop (1999) proposed a view 
where the observed data is the projection of lower-dimensional 
underlying latent data. Specifically, we let 

Y = CX + e (35) 

where Y ~ «V(0, CCT + R) e RDxT is the observed data, X ~ M 
(0,1) G RPxT is the latent data set, and e ~ ,M(0, R) is the observa­
tion noise. Then, the conditional distribution of the observed data, 
conditioned on the value of the latent variable, is again Gaussian, 
of the form p(Y|X) = «M (Y|CX, R). Taking the limit of zero obser­
vation noise and assuming independent data points results in the 
standard PCA model Y = CX, where the maximum likelihood es­
timate for C spans the P-dimensional subspace which maximizes 
the variance of the projection of Y onto that space. 

Based on this probabilistic latent variable model, Roweis (1998) 
and Tipping and Bishop (1999) also showed an iterative EM 
algorithm to obtain the principal components, without explicitly 
computing the sample covariance matrix. In each iteration, the 
E-step projects the data onto a lower dimensional subspace, while 

the M-step seeks for an update of that subspace which could 
minimize the mean square distance between the original and 
the projected data (i.e. the reconstruction error). Thus, in the fcth 
iteration, the E-step is given by 

X[k] = (C[fc - l]TC[k - l])_1C[k - 1]TY (36) 

while the M-step is given by 

C[fc] = YX[k]T(X[k]X[k]Tr1. (37) 

This algorithm will converge to a unique local and global 
maximum, or to a saddle point if the initial C[0] is rank deficient. 
De la Torre (2009) showed this EM algorithm to be equivalent 
to a block coordinate descent algorithm, used for least squares 
regression, whose convergence has already been analyzed in Baldi 
and Hornik (1989). 

It is important to note that, after centering the dataset, just as 
all the local measurements Y„ are independent of each other, but 
together form the global data set Y, so are the local projections X„, 
in turn forming the global projected data set X. In other words, X 
has the same block-wise structure depicted in Fig. 2. Hence, 

Y„ = CXn (38) 

so that given the global projection matrix C, each node can in 
isolation derive its part of the global projected data set. 

In order to distribute the EM algorithm for PCA (Eqs. (36) and 
(37)), we first note that, assuming the same C*[fc — 1] is available at 
all the nodes at the start of the iteration k, each node can carry out 
the E-step in isolation and derive its own portion of the projections 
X„[/<]. 

For the M-step, we can define the local variables 8n = Y„X„[k]T 

and yn = X„[k]X„[k]T as inputs into an embedded consensus loop, 
whose results are 8* = Y*X[k]T and y^ =X[k]*X[k]T . These 
outputs asymptotically approach the same values in all the nodes 
in the network. Indeed, as in consensus least squares (23), the 
nodes then locally compute 

C*[k] = ¿*(y*)_1 (39) 

which in each node asymptotically approaches that calculated 
by (37). 

Eqs. (38) and (39) are the base of the proposed Consensus Based 
EM Distributed PCA (CB-EM-DPCA), as it is shown in Algorithm 2, 
which asymptotically matches the results of both the E and M steps 
of the centralized EM algorithm for PCA at every iteration. 

Algorithm 2 Consensus Based EM Distributed PCA (CB-EM-DPCA) 

l: INPUTt„,Y„ 

2: t* <— N _ 1 J]n=l tn < < = = consensus loOP 
3 : a ^ t ^ E ^ y i , 

4: ¡it <— N _ 1 Yln=i a " < i = consensus loop 
5: Yn -< Yn ft^ 

6: C„[0] •<— P random columns 
7: repeat 
8: p, <- (CJfc - l]TCJ/< - l D ^ C J k - 1]T 

9: Xn[/<] <- j8,Y„ 

10: á*-<—Y*X[k]T -^= consensus loop 

li: y^ •<—X[k] *X[k]T -^= consensus loop 

12: C*[k]<-S*(y¿-1 

13: until the desired convergence criterion for C is met 
14: OUTPUT C„ 

It is worth noting that both the columns of C and the dominant 
P eigenvectors of the sample covariance matrix span the same 
principal subspace. However, they are not equal. In fact the 



columns of C are not orthogonal. In the case orthogonality is 
required, Ahn, Oh, and Choi (2007) showed that adding very simple 
lower and upper triangularization operators to the E and M step, 
respectively, the EM loop will output directly an orthogonal basis 
of the principal subspace, similar (up to rotation) to the one found 
in Algorithm 1. These operators could also be locally computed in 
each node. 

5.3. Factor analysis 

By restricting R, known as the uniqueness matrix in this context, 
to be diagonal, a standard statistical model known as maximum 
likelihood factor analysis is recovered (for a detailed review on FA 
see e.g. Reyment andjoreskog (1996)). 

The main difference between FA and PCA is that, instead of 
assuming that most of the total variance of a variable is important 
and in common with other observed variables, FA allows for a 
considerable amount of "uniqueness" to be present in the data. 
Hence, it takes into account that part of each variable that takes 
part in correlation with other variables. 

The learning algorithm for C, known as the factor loading ma­
trix, and R is in fact an EM algorithm. In each iteration, during the 
E-step, the factors (i.e. latent data) are obtained as the expectation X 
and covariance V of their posterior distribution given the observed 
data, using parameters of the last iteration (Roweis & Ghahramani, 
1999). Thus, defining/3 = C[k--[f(C[k--[]C[k--[]T+R[k--[])-\ 
we get 

X = /3Y (40) 

and 

V[k] = I - / 3 C [ k - l ] . (41) 

During the M-step, the maximization of the expected log 
likelihood over the new latent data X[k] yields the new parameter 
values C[k] and R[k].Thus, defining á = YX[k]T and y = X[k]X[k]T 

+ TV[k], we get 

C[k] 

and 

Sy-

R[k] = diag :(YYT-C[k]<ST) 

(42) 

(43) 

To distribute this EM algorithm for FA, we follow the same 
approach as in CB-EM-DPCA (Algorithm 2). Assuming the same 
C*[fc — 1] and R*[fc — 1] are available at all the nodes at the start 
of every new iteration k, then the E-step can be performed locally, 
because Xn[k] and V„[k] only depend on local or shared quantities. 

However, the M-step involves inter-node communications. 
Again, we split Cn[k] into terms Sn = Yn[k]X„[k]T and yn = Xn[k] 
X„[k]J + V„[k]. After running a consensus loop on the former and 
on the first term of the latter, all the nodes will agree on á* and an 
intermediate result, q^ = X[k] *X[k]T. Since V„[k] depends only 
on shared quantities, all the nodes will agree on VJk] too, as well 
as on y^. 

Although both á* and r]^ are weighted by the total number of 
samples T, the locally computed VJk] needs to be multiplied by 
the same factor. Therefore, T disappears from the equation, and 
every node will approximate the same value C+ [k], arbitrarily close 
to the centralized implementation (42). 

= ^YX[k]T(^X[k]X[k]T+V[k] 

= YX[k]T(X[k]X[k]T + TVlk])-1 

= C[k]. (44) 

Finally, to distribute (43), let us define R„[k] = diag[S„ — C*[fc] 
Sj]. Since all the nodes already know C*[fc] and á+, they only miss 

the global covariance matrix, which can be approximated through 
consensus S+ = Y*Y. Since both S+ and á* are scaled equally, the 
factor I - 1 can be moved out of the brackets resulting in R*[fc] that 
is arbitrarily close to R[k] and similar for every node 

RJk] = diag[S*-C*[k]Jl] 
T" 

1 
-YY1 - C[k] I -YX diag 

= R[k]. (45) 
Eqs. (44) and (45) are the baseline for the proposed Consensus 

Based Distributed FA (CB-DFA), shown as Algorithm 3. 

Algorithm 3 Consensus Based Distributed FA (CB-DFA) 

INPUT t, 
t N - 1 ^ N 

c-1 

Y„ 

Y„ 
T" t 

• Y„ - ft* 

t^YiY1 

•• consensus loop 

•• consensus loop 

•• consensus loop 

i ] T + R * [ k - i ] ) -

Cn[0] <— P random columns 
Rn[0] •<— random diagonal matrix 
repeat 

¿8, < - c * [ k - i ] T ( c * [ k - i ] c * [ k 
Xn[k] <- j8,Y„ 
v j k ] j - i - j 8 , c j k - i ] 
á* ^ Y * X [ k ] T 

r,, <-x[k]*x[k]J 

Y* <-ifM*+V*[k] 
CM^KÍYX1 

RJk] <r- diag(S, - Cdk]Sj) 
until the desired convergence criterion for C is met 
OUTPUT C„,R„ 

consensus loop 
consensus loop 

5.4. Probabilistic PCA 

Similar to FA, if we allow the covariance of the observed noise 
in (35) to be R ~ <U(0, art), then we get a fully probabilistic model 
for PCA, known as PPCA. Thus, an iterative EM algorithm to solve 
PPCA exists (Roweis, 1998; Tipping & Bishop, 1999), and we show 
here its distributed implementation. Indeed, the only difference to 
FA is how to update the observed noise 

a[k] 
1 

DT 
tr(YYT(I-C[k]/3)). (46) 

Hence, we follow the very same approach as CB-DFA to intro­
duce a fully distributed EM algorithm to compute PPCA. Once every 
node has S*. CJk] and ji^ available, it updates the observed noise 

a* = - l t r ( S * ( I - W ) = a . (47) 

We denote our proposed algorithm for distributed computation 
of PPCA as Consensus Based Distributed PPCA (CB-DPPCA). It is 
identical to Algorithm 3 for CB-DFA except for line 17, which must 
be replaced by these two lines: 

a*[k]<--^tr(S*(I-C*[k]j8*)) 

R*M 
D 
a*[k]I. 

6. Experiments 

In order to test the proposed distributed algorithms we present 
two simulated scenarios: a simple toy problem in which we 
examine the inherent properties of the proposed algorithms; and 
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(a) Network. (b) Without cooperation. (c) With 10 consensus rounds. 

Fig. 3. Performance of PCA in isolation and with cooperation via consensus using CB-DPCA, showing the convergence of all nodes towards the centralized solution. 

image compression, in order to demonstrate the applicability to 
traditional real-world applications. 

In both experiments we use a relatively large and sparse ran­
domly deployed Euclidean network of 200 nodes with average 
degree 5 (see Fig. 3(a)). The weight matrix is filled (in a fully 
distributed manner) using Metropolis-Hasting weights (Garin & 
Schenato, 2011). Although both examples are shown for the 
CB-DPCA algorithm, equivalent figures, behavior and conclusions 
are also valid for CB-EM-DPCA, CB-DPPCA and CB-DFA algorithms. 

We focus on the asymptotic behavior of our algorithms. Hence, 
we do not examine here the influence of noisy links, switching 
topologies, and delay and quantization effects. They have been 
extensively analyzed in the literature (Kar & Moura, 2009; Olfati-
Saber & Murray, 2004; Schizas, Giannakis, Roumeliotis, & Ribeiro, 
2008; Schizas, Ribeiro, & Giannakis, 2008) in generic terms, and 
their influence on our algorithms is beyond the scope of this paper. 

6.2. Toy problem 

In this problem, the input data is embedded in a 2-dimensional 
space, i.e. D = 2, as e.g. when every node in a sensor network is 
equipped with two sensors. Meanwhile the subspace is 1-dimen­
sional, P = 1. A distributed data set of 400 samples is drawn 
from a mixture of 4 Gaussians with random mean (over the range 
[(0, 0), (3, 3)]) and random covariance matrix (with variance over 
the range [0, 9]), are randomly allocated among the nodes. Every 
node has taken a different and random number of samples, be­
tween zero and four each, t„ € [0, 4]. A small number of samples in 
each node allows us to highlight the performance of the algorithm 
even in such a low-dimensional problem.1 

In Fig. 3, the performance of the CB-DPCA algorithm is shown 
with each node functioning in isolation (b); and with cooperation, 
after 10 consensus rounds (c). In both diagrams the subspace found 
by the traditional (centralized) PCA algorithm, which has access 
to the entire data set, is shown as a broken line. It can be seen 
clearly that the cooperation among the nodes which is built into 
the CB-DPCA algorithm leads not only to significant alignment 
among the nodes subspaces, but also to the centralized solution. 

A natural performance/cost trade-off exists in every consensus 
based algorithm, due to its iterative nature. The effects of this 
trade-off are shown in Fig. 4. As expected, the communication 
cost grows linearly with the number of iterations of the consensus 
algorithm, simply because each iteration demands the exchange of 
a given volume of data among all the neighbors in the network. 

0.5 

Worst case error 

-Mean error 

-Communication cost 

n400 

In general, when each node has very many samples, they are independently 
able to estimate the subspace well, making collaboration redundant. In our 
extremely simple toy example, we need ~2 samples/node to keep in a range where 
cooperation is meaningful, for illustration purposes. 

I 

20 30 
Number of consensus rounds 

Fig. 4. Inherent cost-performance tradeoff for CB-DPCA, cost being the volume 
of information transmitted, and performance represented by the reduction of the 
angle between the locally-estimated and the central (optimal) subspace. 

On the other hand, the angle between the resulting subspaces 
and the centralized solution drops monotonically (in the mean) 
with each iteration. In Fig. 4 we show both the mean and maximum 
angle for the whole network. The inverse of this angle can be 
seen as a metric of performance of the CB-DPCA algorithm. In 
other words, the subspaces computed in all the nodes in the 
network approximate the centralized solution more closely with 
each additional consensus iteration. 

6.2. Image compression experiments 

We use the Lena image at 512 x 512 resolution and 8 bit 
grayscale. The image has been divided into 441 blocks of 24 x 24 
pixels. Those blocks have been vectorized (aggregating columns) as 
points lying in a 576 dimensional subspace. Each node randomly 
draws an arbitrary number of samples over the range [1,6]. 
As explained in Section 5.1, every node first computes its own 
sample covariance matrix that is then shared iteratively with its 
neighbors a given number of consensus rounds. After the iterative 
collaboration, each node will compute, again in isolation, the 20 
first principal components based on its resulting estimate of the 
global sample covariance matrix. 

Fig. 5(a) displays the original Lena image, while Fig. 5(b) shows 
the compression that a fusion center would achieve in a centralized 
manner. Fig. 5(c) and (d) show the compression that two random 
nodes could achieve in isolation, i.e. with no cooperation with 
their neighbors. Then in Fig. 5(e) and (f) we show the noticeable 
improvement achieved when nodes share their estimates even for 



a) Original. (b) Compressed, centralized. (c) Node 1: isolation. 

(d) Node 2: isolation. (e) Node 1: 1 consensus round. (f) Node 2: 1 consensus round. 

(g) Node 1: 50 consensus rounds. (h) Node 2: 50 consensus rounds. 

Fig. 5. Performance of PCA in isolation and with cooperation via consensus using CB-DPCA. Images (c), (e), and (g) illustrate how a node asymptotically converges to the 
centralized solution given in image (b). Images (d), (f), and (h) show the same for another node in the network. 

just 1 consensus round. Finally, Fig. 5(g) and (h) show how both 
nodes asymptotically converge towards the same global solution 
after 50 consensus rounds. 

7. Conclusions 

In this article we presented a toolkit for creating distributed ver­
sions of centralized algorithms using average consensus. We also 
showed how this toolkit can be used to build two novel, fully dis­
tributed algorithms to perform PCA. Both algorithms require no 
fusion center and rely only on low-volume local (1 -hop) communi­
cations. This in turn makes them very efficient, scalable, and robust. 
Both also offer guaranteed convergence to the centralized solution. 
Furthermore, we gave two extensions of the presented algorithms 
to distribute two closely related techniques: FA and PPCA. We also 
illustrated the performance of our algorithms on two simulated 
examples, with a discussion on the convergence and the inherent 
cost-performance trade-off. 
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