
Distributed static linear Gaussian models using consensus
Pavle Belanovic , Sergio Valcarcel Macua , Santiago Zazo

A B S T R A C T

Algorithms for distributed agreement are a powerful means for formulating distributed versions of
existing centralized algorithms. We present a toolkit for this task and show how it can be used
systematically to design fully distributed algorithms for static linear Gaussian models, including principal
component analysis, factor analysis, and probabilistic principal component analysis. These algorithms
do not rely on a fusion center, require only low-volume local (1-hop neighborhood) communications,
and are thus efficient, scalable, and robust. We show how they are also guaranteed to asymptotically
converge to the same solution as the corresponding existing centralized algorithms. Finally, we illustrate
the functioning of our algorithms on two examples, and examine the inherent cost-performance trade­
off.

1. Introduction

There exists a strong trend in modern signal processing research
of moving away from classical centralized processing architectures
towards fully distributed ones. These new platforms rely on a
(possibly large) number of interconnected nodes to perform any
given task without relying on any central entity such as a fusion
center. This lends them unmatched adaptability, robustness, and
fault-tolerance.

However, this shift of paradigm also creates a need to reinvent
traditional algorithms, since they are no longer applicable, for the
lack of a fusion center. This is done by designing new distributed
implementations aimed at such distributed platforms.

Two distinct and equally important parts of any such imple­
mentation are the intra-node local processing at each node, and
the inter-node communications which provides coordination. Only
a coupled design of these two components assures the emergence
of global behavior matching, or at least approximating, that of the
original centralized algorithm.

Investigation of such distributed platforms may be motivated
by the wish to understand and recreate emergent behavior in
large-scale decentralized biological systems, such as groups of

animals (e.g. schools of fish), cardiomyocyte cells, or even the
nervous system. Also, the same type of algorithm appears in large-
scale computer networks, such as wireless sensor networks.

In this work, we will examine the processing and communi­
cations (intra- and inter-node) aspects of performing static lin­
ear Gaussian models (SLGMs), all in a distributed way based on
consensus and gossip algorithms. As we will see, SLGMs include
principal component analysis (PCA), as well as two closely related
algorithms, factor analysis (FA) and probabilistic PCA (PPCA).

2.2. Related work

PCA is one of the most fundamental and best known feature
extraction algorithms (Hotelling, 1933; Jolliffe, 2002; Pearson,
1901), dating back to the 1930s. Since then it has enjoyed
tremendous success in many diverse fields, inspiring numerous
variations and extensions.

There exist various partially distributed implementations of
PCA. They focus on saving part of the multi-hop communica­
tion cost by either local computations (Kargupta, Huang, Sivaku-
mar, & Johnson, 2001) or aggregation services (Bai, Chan, & Luk,
2005; Le Borgne, Raybaud, & Bontempi, 2008; Qi & Wang, 2004),
but they still rely on a fusion center for merging the local re­
sults. In the context of distributed compression and source cod­
ing, Gastpar, Dragotti, and Vetterli (2006) proposed a distributed
Karhunen-Loéve transform which is posed as an optimization
problem, where convergence to the global optimum is, in gen­
eral, not assured. Our two consensus-based distributed PCA algo­
rithms (Valcarcel Macua, Belanovic, & Zazo, 2010) outperform all
the above because they both guarantee convergence, with no fu­
sion center, just by local neighborhood communications.

Meanwhile, computing over networks of processing elements is
a potent paradigm, offering robust and scalable implementations
for a variety of different algorithms (Bertsekas & Tsitsiklis, 1997).
The rich body of knowledge on this topic includes parallel, decen­
tralized, and distributed implementations. Parallel computing fo­
cuses on splitting the input data, available at once on an incoming
bus, into many processing units, each in charge of processing its
own slice of information, and the final results are again gathered
at the output. Performing algebraic operations on such platforms
is well known (van de Geijn, 1997). On the other hand, when we
talk of decentralized processing, the original data is spatially dis­
persed, i.e. partially available at each node, and some local process­
ing is performed before the intermediate results are passed on to a
single fusion center, which produces the final result. An excellent
example is given in Tsitsiklis (1993).

Finally, in distributed processing, the spatially dispersed data
is processed locally, usually in an iterative way, and the interme­
diate results are communicated only among neighboring nodes.
Hence, no fusion center exists, and the final result is available at
all the nodes when the iterative process stops. Consensus algo­
rithms, including gossip, have in recent years provided a pow­
erful tool for distributing existing centralized algorithms. For a
comprehensive review of consensus and gossip, the reader is
directed to Garin and Schenato (2011) and the references therein.
Examples of algorithms distributed using consensus are the
Kalman filter (Olfati-Saber, 2005), detection (Bajovic, Jakovetic,
Xavier, Sinopoli, & Moura, 2011), clustering (Forero, Cano, & Gian-
nakis, 2011), support vector machines (Forero, Cano, & Giannakis,
2010), linear discriminant analysis (Valcarcel Macua, Belanovic, &
Zazo, 2011), and many others. In this work we explore the applica­
tion of consensus algorithms to SLGMs.

1.2. Contributions

The first contribution we present is a "toolkit": a set of matrix
operations useful in distributing existing algorithms over networks
of nodes. These operations are based on the well-studied average
consensus algorithms and include the distributed matrix product,
distributed least-squares, and distributed estimation of the first
two moments of a multi-dimensional data set.

The main contribution of this article is a direct application of the
toolkit: a set of fully distributed algorithms to systematically dis­
tribute SLGMs. We begin with two distributed algorithms to per­
form PCA. The first is a direct method, deriving local approximations
of the sample covariance matrix of the global data set, and hence
the dominant eigenvectors and the principal subspace spanned by
these. The other is an iterative method, based on an expectation
maximization (EM) procedure, producing local approximations of
the global principal subspace. Both algorithms are guaranteed to
asymptotically converge to the centralized solution given by clas­
sical PCA.

In addition, both algorithms are based only on local computa­
tions, with strictly limited communications among nodes, only via
consensus iterations. These low-volume communications do not
grow with the number of data samples and involve only neigh­
boring (1-hop) nodes. Hence, the presented algorithms scale ex­
cellently and are applicable to arbitrarily large networks.

We then present two extensions of our iterative algorithm, to
distribute FA and PPCA algorithms. Although, as already stated, a
multitude of variations of the PCA, PPCA, and FA algorithms exists,
here we focus only on their basic forms in order to illustrate our
key contribution. The application of this or similar methods to the
numerous other variants of each algorithm falls outside the scope
of this particular contribution.

Our final contribution are two experimental examples of the
use of our algorithms, in distributed scenarios over large, sparse
networks, representing the most difficult type of system configu­
ration.

1.3. Outline

We start this article in Section 2 with a brief unifying review
of SLGMs. Then in Section 3 we offer a description of the
system model we will be considering, followed by an overview of
distributed agreement algorithms, focusing on average consensus.
These algorithms are summarized in their scalar, vector, and
matrix forms.

Based on these well-known algorithms we present our first
contribution in Section 4: a toolkit of techniques for distributing
algorithms using consensus interactions.

Then, in Section 5, we present two distributed forms of
performing PCA based on average consensus; one direct and the
other iterative. In the same section we also show two further
algorithms, to distributed FA and PPCA, which are extensions of
the iterative PCA algorithm.

In order to illustrate the functioning of these algorithms, we
show two experiments in Section 6. The first demonstrates the
gain achieved by all the nodes through (limited) cooperation via
consensus interactions, while the second shows the application of
our algorithms in typical real-world scenarios where PCA is known
to be useful.

Finally, we conclude the article in Section 7.

2. Static linear Gaussian models

Roweis and Ghahramani (1999) showed how a single mathe­
matical model, and a rather simple and commonly seen one at
that, can be used to represent fully many different popular algo­
rithms, such as PCA, FA, PPCA, Independent Component Analysis
(ICA), Hidden Markov Models (HMM) and the Kalman filter, among
others.

The mathematical model is that of a hidden system being
imperfectly observed. It is composed of two rather generic,
linear, discrete-time, difference equations for the state and the
observation. In the first, the hidden system progresses through a
number of states, x, as governed by the state transition matrix A,
and affected by state noise w. ~ <U(0, Q).

x [k] = A x [k - l] + w . . (1)

In the second equation, noisy observations y are produced from the
system state through an observation matrix C, and are also affected
by observation noise v. ~ <U(0, R).

y[k] = Cx[k]+v. . (2)

We note that both noise variables are represented without a time
index k, to emphasize the fact that their realizations are iid, i.e. not
to be seen as a sequence.

For obvious reasons the term linear Gaussian models is used to
refer to all the models united under this umbrella. A particular
subset of these are the static linear Gaussian models (SLGMs), in
which A = 0, so that (1) reduces to

x. = w. (3)

and (2) becomes

y. = C x . + v . . (4)

In other words, in these models the time index is lost, as all the
states x. (and consequently the observations y. as well) are iid
realizations without any particular (temporal) ordering.

The differentiation among the different SLGMs comes from the
ways of constraining, or modeling R, the covariance matrix that
controls the observation noise. As we will see later, R may be
assumed to vanish (PCA), be a scaled identity matrix (PPCA), or
diagonal (FA).

In this paper we present a systematic way of distributing SLGMs
using distributed agreement, and present how the particular
assumptions on R of each SLGM affects the distributed algorithms
we propose.

3. Algorithms for distributed agreement

As was discussed earlier, consensus and gossip algorithms are
relatively new techniques for distributed agreement in networks,
useful in deriving global functions using only iterative local
interactions. They offer advantages such as excellent scalability,
high energy efficiency, and under certain conditions even a
guarantee of asymptotic convergence to the same result obtained
by a centralized solution. In this section we first define the system
model used throughout this paper, followed by a brief introduction
to the workings of distributed agreement algorithms.

3.1. Notation

Bold uppercase letters like A denote matrices, while bold
lowercase letters like x denote column vectors. Consequently, 1 is
a column vector of all ones, while I is the identity matrix. Using
Matlab-like notation, we say that the scalar element in the xth row
and yth column of the matrix A is axy, its entire row is Ax>:, and
entire column is A:y.

The subscript D„ is given to local variables at any node n. When
a variable converges to the same value in all the nodes (i.e. the
network reaches consensus on that value), the subscript D+ denotes
that common value. In iterative algorithms, the discrete index D[fc]
indicates the fcth iteration. We use J^(fi, S) to denote Gaussian
distributed data with mean ¡JL and covariance S.

3.2. System model

Let us consider a networked system made up of N nodes.
Assuming all the connections are bi-directional, we represent this
network with an undirected graph G = {V, £}, where V is the set
ofN nodes (or vertices) v„, andE is the set of edges enm = emn that
connect ordered pairs of nodes (v„, vm).

Furthermore, we will assume an unweighted graph, i.e. all the
edges in E have equal weights. Thus, we define the binary symmet­
ric adjacency matrix associated with the graph G as A = [anm]NxN,

Internode
(communication)

Intra node
(computation)

where a„ 1 when enm e E, and an 0 otherwise. From this
we derive the degree of each node as d„ = ||t>n|| = X!n=i a>™ =
J2m=i anm- We further define the symmetric Laplacian matrix as­
sociated with G as L = [i„ffl]NxN, such that the diagonal entries are
/„„ = dn and lnm = -anm when n =é m.

Let us also assume that each node has associated with it a scalar
local parameter xn e R. We let the distributed processing occur in
discrete time steps k, which we will refer to as rounds, starting at
k = 0. The initial value of the parameter, x„[0], maybe obtained
by any process, such as measurement for example. We denote the
set of values of this parameter at all the nodes in the network (i.e.
the network state) asz[/c] = [xi[k],x2[k],... ,xn[k],... ,xN[k]]J.

Given such a distributed system, we are interested in evaluating
a global function x(z[0]) : RN -> R in a distributed manner, i.e.
without the need to gather the contents of z at any central
location. Algorithms for distributed agreement such as consensus
and gossip are excellent tools for iteratively deriving this function
in a distributed manner.

3.3. Consensus and gossip

Hence, at the core of every consensus or gossip algorithm is such
a global function x(z[0]) which is to be evaluated by the entire
network. In the discussion to follow, we will focus on averaging
algorithms, where

X(z[0])=AT
1 N

lTz[0] = - V x n [0] = x ,
N ¿—(

f * c , [k - l] v . X r [.k:1]vJ
/ i x jk - l]

Imemoryl
t

13

x « [k - 1] v ^

x¡[k]

/ i x j k - l] ^

|memory|

J

Fig. 1. High-level illustration of the consensus and gossip algorithms, as iterative
alternations between internode and intranode processing steps.

In both consensus and gossip, this is achieved by iteratively apply­
ing

z[/c]=W[/c-l]z[/c-l] (6)

where W[/c] e is a time-varying doubly stochastic weights

(5)

matrix, associated with the graph G
Many approaches for forming W[/c] exist. The reader is directed

to Garin and Schenato (2011) and Olshevsky and Tsitsiklis (2009)
for a thorough review of the various approaches of building the
weights, and of consensus and gossip algorithms in general.

Some strategies use time-varying weights, while others have
a static matrix W[/c] = W. Some methods are globally optimal
(e.g. fastest convergence Xiao and Boyd (2004)), while others
are heuristics. Also, some methods are distributed, i.e. use only
local information, while others are centralized, i.e. require the
knowledge of a global quantity, such as N, or L.

In general, consensus algorithms use a fully populated weights
matrix, where every edge in G is represented in W[/c] at every
round k. Often the weights matrix will be static, i.e. each edge in G is
present in W and assigned a fixed weight. Gossip algorithms on the
other hand use relatively sparse weights matrices that are always
dynamic. Typically each W[/c] in a gossip algorithm represents
non-zero weighs on a subset of the edges in G These edges are
"active" in this particular round k. At the next round, a different
subset of active edges is selected, and so on. These mechanisms
are illustrated in Fig. 1, highlighting some of the different ways the
internode and intranode stages can be alternated. It is important to
note, as previously stated, that many variations on these common
themes have been proposed in the literature. Fig. 1 also serves to
illustrate how the information originating in each node diffuses
throughout the network with each iteration.

As we will see in Sections 4 and 5, the averaging ability
of consensus and gossip algorithms will turn out to be a very
powerful tool for distributed processing. In the literature there
are many neural models performing PCA, either from the Hebbian
learning rule or from back-propagation and other least-squares
learning rules. The reader is directed to Diamantaras and Kung
(1996) for a particularly lucid treatment. Although aesthetically
the consensus-based approach shown here resembles a neural
network, its functioning is distinct. The key difference is that
information in a neural network flows in a very specific direction,
from the input to the output, while in consensus information is

Table 1
Scalar, vector, and matrix forms of distributed agreement.

Scalar Vector Matrix

Local parameter
Network state
Update, dynamic
Update, static
Global function

x„ S R

z[k] s RN

z[k] = W [k - l]z[k-
z[k] = Wkz[0]
X(z[0]) : RN - * R

x„ S R '
Z[k] s RNxP

Z[k] = W [k - l]Z[k-
Z[k] = W*Z[0]
X(Z[0]) :R N x P - * - » '

X„ s R x u

Z[k] s RNPxQ

Z[k] = W[k - l]Z[k - 1]
Z[k] = W tZ[0]
X(Z[0]) :RN P x Q - ^ R P x Q

diffused in every direction, coming in and out bidirectionally at
each link (see Fig. 1). Moreover, in consensus algorithms, every
node of the network asymptotically converges to the whole result,
while in neural networks each neuron only has part of it. Another
effect of diffusion is the reduced dependence on the topology. With
consensus algorithms, the only restriction on the topology is that
the graph of the network is connected (on average for dynamic
topologies), as opposed to classical neural networks that are more
sensitive to, and dependent on their hard-wired structure.

3.4. Higher dimensions

It is of course possible to extend the averaging procedure from
the scalar case given above, to a vector or a matrix of independent
components at each node.

In the vector case, each node starts with a vector of independent
components x„[0] e Rp, so that the network state becomes the
matrix Z[k] e RNxP. We see that (6) is now given by

Z[k] = W [k - l] Z [k - l] (7)

and in the static case (6) becomes

Z[k] = WZ[k - 1] = WkZ[0] (8)

and similarly (5) becomes

N

X(Z[0])
1

(9)

The matrix case is only slightly more complicated. Letting each
node start with a matrix of independent components X„[0] e
RPxQ, one way of proceeding is to vectorize each node's matrix.
Then the nth row of the state matrix becomes

Z[k]n, :=vec(Xn[k]T)T (10)

and the complete state matrix becomes Z[k] e RNxPQ. This allows
us to proceed with (7) or (8) as before. The global function x (Z[0])
is then given by

X(Z[0])
1 N

(11)

However, if we wish to observe matrix properties of X„[k] as
the system iterates, an alternative, but fully equivalent view of
matrix consensus exists. It is achieved by stacking the matrices
X„[0] vertically to obtain the network state matrix Z[k] e RNPxQ.

In the case of a dynamic weights matrix, the update (6) is then
given by

Z[k] = W [k - l] Z [k - l]

where

W[fc] = W[fc] <g> I G RNPxNP.
However, if the weights are static, (6) becomes

Z[k] = WjZfk- 1] = W,<Z[0]

where

(12)

(13)

(14)

(15) W,< = WK <g> I e Rvrx™\
Both (12) and (14) lead to the same global function x (Z[0]) as given
in (l l) .

The three forms of distributed agreement are summarized in
Table 1.

Ai A2 A3 • • • AN

B Bi B2 B3 • • • BN

Fig. 2. Global matrices A and B, each with a total of T samples, distributed unevenly
over JV nodes.

4. Distributed toolkit

Given the basis described in Section 3, further more complex
tools can be derived. Here we focus solely on the tools derived from
the arithmetic average algorithms, be they consensus or gossip
based. A later section will then show how these tools can in turn
be used to distribute applied algorithms such as PCA in an elegant
and systematic way.

4.1. Distributed matrix product operator

Let us assume the existence of two global and distributed
matrices A and B, such that their contents are not available at
any one location in the system, but rather are partially available
at each node. This is depicted in Fig. 2, where each node n has
the knowledge of a block of t„ vectors of the matrix A, and the
corresponding block of the matrix B. We note that A and B share
a dimension, T = X!n=i fn. with the other dimensions DA and DB

generally not being the same.
Should we desire to calculate the product ABT, we would

normally have to resort to a traditional centralized solution. This
involves gathering both matrices at a fusion center, calculating the
result, and distributing it to all the nodes.

However, this product can also be approximated arbitrarily
closely in a distributed way, by letting each node calculate the local
product

Xn[0]=AnB^. (16)

By iteratively applying (12) or (14), we see from (11) that

lim X„[k] =X*
1 N

- V x » [0] Vn. (17)

Hence, we define the distributed matrix product operator *

A*BT
1 N

1

Ñ"
ABT. (18)

In other words, we are able to guarantee asymptotic conver­
gence of all the nodes in the system to a scaled version of the de­
sired product. Although the appearance of the scaling factor N _ 1

may be undesirable in some situations, we will see how it can be
removed in some expressions of great practical importance that are
derived from (18).

It is of course also possible to evaluate the product A*AT.
We note that while the residual factor of N _ 1 does scale the
eigenvalues of AAT, it neither changes their order, nor affects the
associated eigenvectors in any way. Hence, the distributed matrix
product operator may be useful in eigenanalysis applications.

Furthermore, the dimensionality of the variables that are ex­
changed during local interactions (X„[k]) is relatively low. Typi­
cally, the dimension shared by A and B, being t„ and T, is much
larger than both DA and DB, especially in large scale systems, where
N is large.

4.2. Least-squares

Given a linear system of equations AQ. = B, the least squares
solution for Q. is given by Q. = (ATA)_1ATB. We can immediately
split the pseudo-inverse into two factors

<S = ATB (19)

y = ATA. (20)

By using the distributed matrix product operator in (18) we can
easily approximate, in a distributed fashion, both averaged factors

A1 * A :

1 N

N ¿-f

1 N

N

1

(21)

(22)

Moreover, since (22) has to be inverted, the scaling factors
cancel out, and hence the required least squares solution of Q. is
immediately achieved in a distributed way

<Í = [AT*A]-1(AT*B) = y^S = Q.

4.3. Estimation of the first and second moments

(23)

Let us assume that the matrix A contains a distributed sample
set of T vector samples, as depicted in Fig. 2. Letting aj, = (A„):>t

be the tth sample at node n, we remember that each node n has t„
samples. It is then possible for all the nodes to calculate the average
number of samples,

£*» (24)

by simply performing average consensus or gossip on the parame­
ter t„ itself. We note that Nt* = T.

From here, each node can derive in isolation (i.e. without any
communications) the local globally weighted mean

/*n (25)

The global mean of the sample set A can be estimated by perform­
ing average consensus or gossip on these local means as

N t„

/**
1 " 1 " '"

/¿(A). (26)

It is important to note that fit can be used to center the data set

A-)M T . (27)

In fact, in the rest of this paper, we will assume that the data sets
are centered, using the procedure (24)-(27) above, i.e. A = A0.

In the final step, we note that the sample covariance matrix S
can be derived in a distributed manner by

1
- A * A '

1
-AA1 (28)

Hence, it is possible to derive the first two moments of a
distributed data set by performing only three averaging consensus
algorithms. In particular the distributed derivation of the sample
covariance matrices will play a significant role in the presented
algorithms, as we will see in Section 5.

One critical property of the estimates of the sample covariance
matrices derived by (28) is their positive-definiteness. We must
recall at this point that the distributed derivation of S+ is in fact
an iterative procedure, whereby each node starts at

Sn[0] = -^AnA^

and converges towards

lim S„[k] S Vn.

(29)

(30)

Although we see that Sn[k] >- 0 for k € {0, oo} in (29) and (30)
respectively, it is not immediately obvious that this property also
holds for all integers k € [1, oo), which is of course the range of k
that is of greatest practical importance.

Let us recall that in the case of a dynamic weights matrix, (12)
and (13) tell us that

Z[l] = W[0]Z[0] = (W[0] <g> I)Z[0] (31)

where Z[0] is a stack of local covariance matrices S„[0] from
(29), and Z[l] is a stack of the distributed estimates of the global
covariance after the 1st iteration. Since each sub-block of W[0] is
just a scaled identity matrix, (W[0])¡jl, we see that

S„[l]
N

£ (W[0])n>iS,[0]. (32)

We now recall from (29) that all S„[0] >- 0. Also, since all W[fc]
are doubly stochastic matrices, all elements (W[0])¡j > 0. There­
fore, from (32) we stay in the positive semi-definite cone S„[l] >-
0, Vn. The same argument can be extended for all further iterations
beyond the first, and hence Sn[k] >- 0, Vn, k.

Things are even simpler in the case of a static weights matrix.
We see from (14) and (15) that

Z[fc] = WkZ[0] = (Wk <g> I)Z[0] (33)

where Z[k] is a stack of the distributed estimates of^the global
covariance at the fcth iteration. Since each sub-block of W/< is again
a scaled identity matrix, (Wk)¡jl, we see that

Sn[/<] = £(Wk)n , ,S,[0] . (34)

In other words, all the distributed estimates of the global co-
variance matrix are always just a weighted sum of all the initial
local covariance matrices. The same as before, since W is a doubly
stochastic matrix, so is W \ and thus (Wk)¡j > 0. Therefore, from
(34) we have that Sn[k] >- 0, Vn, k, as desired.

5. Distributed algorithms for SLGM

Provided the toolkit presented in Section 4, we are now ready
to introduce two distributed algorithms for computing PCA. Fol­
lowing this, we extend the same argument to construct distributed
algorithms for FA and PPCA.

5.1. Distributed PCA from consensus in the covariance matrix

The standard centralized PCA (computed in a fusion center)
requires all the data samples, from all the nodes, to be gathered
at the fusion center, assuming there is one in the network. With
this access to the full data set Y e RDxT, the fusion center can
obtain the principal subspace C e RDxP (P < D) directly by taking
the P dominant eigenvectors of the sample data covariance matrix

s = r-W.
To distribute the same method, every node should first obtain

the global mean (26) and remove it from its local data. Then,
using (28), each node can start with its local, globally weighted co-
variance matrix S„[0] = t^YnY,, and proceed iteratively apply­
ing (12) or (14) until asymptotically converging to the global data
covariance matrix S+ = t ^ Y i Y 7 = S.

Finally, once the global covariance matrix is available, each node
can locally obtain its own approximation to the global PCA as the
subspace spanned by the dominant eigenvectors of its estimate
of the global covariance. This subspace will be arbitrarily close,
depending on the number of consensus iterations, to that spanned
by the dominant eigenvectors of S. This is the base of Algorithm 1,
denoted Consensus Based Distributed PCA (CB-DPCA).

Algorithm 1 Consensus Based Distributed PCA (CB-DPCA)

1: INPUT t„,Y„

2: t* <— N _ 1 X!n=l tn <<= = consensus l°°P

4: ¡jLt <r- N _ 1 X!n=i a " < i = consensus loop
5: Yn <- Yn - n.t
6: S+ •<—t~1Y*Y ¿^ consensus loop
1: C„ <r- P dominant eigenvectors of S+

8: OUTPUT Cn

5.2. Distributed PCA as an expectation maximization algorithm

In many real applications (like ambient intelligence, with cheap
sensors ubiquitously deployed) nodes will likely offer low storing
and processing resources; at least compared with the amount of
continuously collected data that they may have to manage. Hence,
an iterative algorithm to compute C is desirable.

Roweis (1998) and Tipping and Bishop (1999) proposed a view
where the observed data is the projection of lower-dimensional
underlying latent data. Specifically, we let

Y = CX + e (35)

where Y ~ «V(0, CCT + R) e RDxT is the observed data, X ~ M
(0,1) G RPxT is the latent data set, and e ~ ,M(0, R) is the observa­
tion noise. Then, the conditional distribution of the observed data,
conditioned on the value of the latent variable, is again Gaussian,
of the form p(Y|X) = «M (Y|CX, R). Taking the limit of zero obser­
vation noise and assuming independent data points results in the
standard PCA model Y = CX, where the maximum likelihood es­
timate for C spans the P-dimensional subspace which maximizes
the variance of the projection of Y onto that space.

Based on this probabilistic latent variable model, Roweis (1998)
and Tipping and Bishop (1999) also showed an iterative EM
algorithm to obtain the principal components, without explicitly
computing the sample covariance matrix. In each iteration, the
E-step projects the data onto a lower dimensional subspace, while

the M-step seeks for an update of that subspace which could
minimize the mean square distance between the original and
the projected data (i.e. the reconstruction error). Thus, in the fcth
iteration, the E-step is given by

X[k] = (C[fc - l]TC[k - l])_1C[k - 1]TY (36)

while the M-step is given by

C[fc] = YX[k]T(X[k]X[k]Tr1. (37)

This algorithm will converge to a unique local and global
maximum, or to a saddle point if the initial C[0] is rank deficient.
De la Torre (2009) showed this EM algorithm to be equivalent
to a block coordinate descent algorithm, used for least squares
regression, whose convergence has already been analyzed in Baldi
and Hornik (1989).

It is important to note that, after centering the dataset, just as
all the local measurements Y„ are independent of each other, but
together form the global data set Y, so are the local projections X„,
in turn forming the global projected data set X. In other words, X
has the same block-wise structure depicted in Fig. 2. Hence,

Y„ = CXn (38)

so that given the global projection matrix C, each node can in
isolation derive its part of the global projected data set.

In order to distribute the EM algorithm for PCA (Eqs. (36) and
(37)), we first note that, assuming the same C*[fc — 1] is available at
all the nodes at the start of the iteration k, each node can carry out
the E-step in isolation and derive its own portion of the projections
X„[/<].

For the M-step, we can define the local variables 8n = Y„X„[k]T

and yn = X„[k]X„[k]T as inputs into an embedded consensus loop,
whose results are 8* = Y*X[k]T and y^ =X[k]*X[k]T . These
outputs asymptotically approach the same values in all the nodes
in the network. Indeed, as in consensus least squares (23), the
nodes then locally compute

C*[k] = ¿*(y*)_1 (39)

which in each node asymptotically approaches that calculated
by (37).

Eqs. (38) and (39) are the base of the proposed Consensus Based
EM Distributed PCA (CB-EM-DPCA), as it is shown in Algorithm 2,
which asymptotically matches the results of both the E and M steps
of the centralized EM algorithm for PCA at every iteration.

Algorithm 2 Consensus Based EM Distributed PCA (CB-EM-DPCA)

l: INPUTt„,Y„

2: t* <— N _ 1 J]n=l tn < < = = consensus loOP
3 : a ^ t ^ E ^ y i ,

4: ¡it <— N _ 1 Yln=i a " < i = consensus loop
5: Yn -< Yn ft^

6: C„[0] •<— P random columns
7: repeat
8: p, <- (CJfc - l]TCJ/< - l D ^ C J k - 1]T

9: Xn[/<] <- j8,Y„

10: á*-<—Y*X[k]T -^= consensus loop

li: y^ •<—X[k] *X[k]T -^= consensus loop

12: C*[k]<-S*(y¿-1

13: until the desired convergence criterion for C is met
14: OUTPUT C„

It is worth noting that both the columns of C and the dominant
P eigenvectors of the sample covariance matrix span the same
principal subspace. However, they are not equal. In fact the

columns of C are not orthogonal. In the case orthogonality is
required, Ahn, Oh, and Choi (2007) showed that adding very simple
lower and upper triangularization operators to the E and M step,
respectively, the EM loop will output directly an orthogonal basis
of the principal subspace, similar (up to rotation) to the one found
in Algorithm 1. These operators could also be locally computed in
each node.

5.3. Factor analysis

By restricting R, known as the uniqueness matrix in this context,
to be diagonal, a standard statistical model known as maximum
likelihood factor analysis is recovered (for a detailed review on FA
see e.g. Reyment andjoreskog (1996)).

The main difference between FA and PCA is that, instead of
assuming that most of the total variance of a variable is important
and in common with other observed variables, FA allows for a
considerable amount of "uniqueness" to be present in the data.
Hence, it takes into account that part of each variable that takes
part in correlation with other variables.

The learning algorithm for C, known as the factor loading ma­
trix, and R is in fact an EM algorithm. In each iteration, during the
E-step, the factors (i.e. latent data) are obtained as the expectation X
and covariance V of their posterior distribution given the observed
data, using parameters of the last iteration (Roweis & Ghahramani,
1999). Thus, defining/3 = C[k--[f(C[k--[]C[k--[]T+R[k--[])-\
we get

X = /3Y (40)

and

V[k] = I - / 3 C [k - l] . (41)

During the M-step, the maximization of the expected log
likelihood over the new latent data X[k] yields the new parameter
values C[k] and R[k].Thus, defining á = YX[k]T and y = X[k]X[k]T

+ TV[k], we get

C[k]

and

Sy-

R[k] = diag :(YYT-C[k]<ST)

(42)

(43)

To distribute this EM algorithm for FA, we follow the same
approach as in CB-EM-DPCA (Algorithm 2). Assuming the same
C*[fc — 1] and R*[fc — 1] are available at all the nodes at the start
of every new iteration k, then the E-step can be performed locally,
because Xn[k] and V„[k] only depend on local or shared quantities.

However, the M-step involves inter-node communications.
Again, we split Cn[k] into terms Sn = Yn[k]X„[k]T and yn = Xn[k]
X„[k]J + V„[k]. After running a consensus loop on the former and
on the first term of the latter, all the nodes will agree on á* and an
intermediate result, q^ = X[k] *X[k]T. Since V„[k] depends only
on shared quantities, all the nodes will agree on VJk] too, as well
as on y^.

Although both á* and r]^ are weighted by the total number of
samples T, the locally computed VJk] needs to be multiplied by
the same factor. Therefore, T disappears from the equation, and
every node will approximate the same value C+ [k], arbitrarily close
to the centralized implementation (42).

= ^YX[k]T(^X[k]X[k]T+V[k]

= YX[k]T(X[k]X[k]T + TVlk])-1

= C[k]. (44)

Finally, to distribute (43), let us define R„[k] = diag[S„ — C*[fc]
Sj]. Since all the nodes already know C*[fc] and á+, they only miss

the global covariance matrix, which can be approximated through
consensus S+ = Y*Y. Since both S+ and á* are scaled equally, the
factor I - 1 can be moved out of the brackets resulting in R*[fc] that
is arbitrarily close to R[k] and similar for every node

RJk] = diag[S*-C*[k]Jl]
T"

1
-YY1 - C[k] I -YX diag

= R[k]. (45)
Eqs. (44) and (45) are the baseline for the proposed Consensus

Based Distributed FA (CB-DFA), shown as Algorithm 3.

Algorithm 3 Consensus Based Distributed FA (CB-DFA)

INPUT t,
t N - 1 ^ N

c-1

Y„

Y„
T" t

• Y„ - ft*

t^YiY1

•• consensus loop

•• consensus loop

•• consensus loop

i] T + R * [k - i]) -

Cn[0] <— P random columns
Rn[0] •<— random diagonal matrix
repeat

¿8, < - c * [k - i] T (c * [k - i] c * [k
Xn[k] <- j8,Y„
v j k] j - i - j 8 , c j k - i]
á* ^ Y * X [k] T

r,, <-x[k]*x[k]J

Y* <-ifM*+V*[k]
CM^KÍYX1

RJk] <r- diag(S, - Cdk]Sj)
until the desired convergence criterion for C is met
OUTPUT C„,R„

consensus loop
consensus loop

5.4. Probabilistic PCA

Similar to FA, if we allow the covariance of the observed noise
in (35) to be R ~ <U(0, art), then we get a fully probabilistic model
for PCA, known as PPCA. Thus, an iterative EM algorithm to solve
PPCA exists (Roweis, 1998; Tipping & Bishop, 1999), and we show
here its distributed implementation. Indeed, the only difference to
FA is how to update the observed noise

a[k]
1

DT
tr(YYT(I-C[k]/3)). (46)

Hence, we follow the very same approach as CB-DFA to intro­
duce a fully distributed EM algorithm to compute PPCA. Once every
node has S*. CJk] and ji^ available, it updates the observed noise

a* = - l t r (S * (I - W) = a . (47)

We denote our proposed algorithm for distributed computation
of PPCA as Consensus Based Distributed PPCA (CB-DPPCA). It is
identical to Algorithm 3 for CB-DFA except for line 17, which must
be replaced by these two lines:

a*[k]<--^tr(S*(I-C*[k]j8*))

R*M
D
a*[k]I.

6. Experiments

In order to test the proposed distributed algorithms we present
two simulated scenarios: a simple toy problem in which we
examine the inherent properties of the proposed algorithms; and

o ° ''II l\\\

¡ill í jia i o

¡III 1 III/ f/wÉr+ ° o*
nil ill// Jjj&SrMt*. *

W^^HH«5^*:^r> _

1 YflVVx̂ i ^ v ^ ^ \

A \\\ viiWv \

° data
- - - PCA centralized

PCA for each node

° o
0© ^ o

0 ° ^ %_.
o°0°%go°fj

° °0qs%oíÉllP^
o o s^m»e>

^ • w ' n u
°^W/ °

o S 7

"

o /^a
:I-/É^l

K° l
g OCP

° n O "

% °

o data

fa.° °*

%°
° ° o

o

o

- - PCA centralized
— PCA for each node

(a) Network. (b) Without cooperation. (c) With 10 consensus rounds.

Fig. 3. Performance of PCA in isolation and with cooperation via consensus using CB-DPCA, showing the convergence of all nodes towards the centralized solution.

image compression, in order to demonstrate the applicability to
traditional real-world applications.

In both experiments we use a relatively large and sparse ran­
domly deployed Euclidean network of 200 nodes with average
degree 5 (see Fig. 3(a)). The weight matrix is filled (in a fully
distributed manner) using Metropolis-Hasting weights (Garin &
Schenato, 2011). Although both examples are shown for the
CB-DPCA algorithm, equivalent figures, behavior and conclusions
are also valid for CB-EM-DPCA, CB-DPPCA and CB-DFA algorithms.

We focus on the asymptotic behavior of our algorithms. Hence,
we do not examine here the influence of noisy links, switching
topologies, and delay and quantization effects. They have been
extensively analyzed in the literature (Kar & Moura, 2009; Olfati-
Saber & Murray, 2004; Schizas, Giannakis, Roumeliotis, & Ribeiro,
2008; Schizas, Ribeiro, & Giannakis, 2008) in generic terms, and
their influence on our algorithms is beyond the scope of this paper.

6.2. Toy problem

In this problem, the input data is embedded in a 2-dimensional
space, i.e. D = 2, as e.g. when every node in a sensor network is
equipped with two sensors. Meanwhile the subspace is 1-dimen­
sional, P = 1. A distributed data set of 400 samples is drawn
from a mixture of 4 Gaussians with random mean (over the range
[(0, 0), (3, 3)]) and random covariance matrix (with variance over
the range [0, 9]), are randomly allocated among the nodes. Every
node has taken a different and random number of samples, be­
tween zero and four each, t„ € [0, 4]. A small number of samples in
each node allows us to highlight the performance of the algorithm
even in such a low-dimensional problem.1

In Fig. 3, the performance of the CB-DPCA algorithm is shown
with each node functioning in isolation (b); and with cooperation,
after 10 consensus rounds (c). In both diagrams the subspace found
by the traditional (centralized) PCA algorithm, which has access
to the entire data set, is shown as a broken line. It can be seen
clearly that the cooperation among the nodes which is built into
the CB-DPCA algorithm leads not only to significant alignment
among the nodes subspaces, but also to the centralized solution.

A natural performance/cost trade-off exists in every consensus
based algorithm, due to its iterative nature. The effects of this
trade-off are shown in Fig. 4. As expected, the communication
cost grows linearly with the number of iterations of the consensus
algorithm, simply because each iteration demands the exchange of
a given volume of data among all the neighbors in the network.

0.5

Worst case error

-Mean error

-Communication cost

n400

In general, when each node has very many samples, they are independently
able to estimate the subspace well, making collaboration redundant. In our
extremely simple toy example, we need ~2 samples/node to keep in a range where
cooperation is meaningful, for illustration purposes.

I

20 30
Number of consensus rounds

Fig. 4. Inherent cost-performance tradeoff for CB-DPCA, cost being the volume
of information transmitted, and performance represented by the reduction of the
angle between the locally-estimated and the central (optimal) subspace.

On the other hand, the angle between the resulting subspaces
and the centralized solution drops monotonically (in the mean)
with each iteration. In Fig. 4 we show both the mean and maximum
angle for the whole network. The inverse of this angle can be
seen as a metric of performance of the CB-DPCA algorithm. In
other words, the subspaces computed in all the nodes in the
network approximate the centralized solution more closely with
each additional consensus iteration.

6.2. Image compression experiments

We use the Lena image at 512 x 512 resolution and 8 bit
grayscale. The image has been divided into 441 blocks of 24 x 24
pixels. Those blocks have been vectorized (aggregating columns) as
points lying in a 576 dimensional subspace. Each node randomly
draws an arbitrary number of samples over the range [1,6].
As explained in Section 5.1, every node first computes its own
sample covariance matrix that is then shared iteratively with its
neighbors a given number of consensus rounds. After the iterative
collaboration, each node will compute, again in isolation, the 20
first principal components based on its resulting estimate of the
global sample covariance matrix.

Fig. 5(a) displays the original Lena image, while Fig. 5(b) shows
the compression that a fusion center would achieve in a centralized
manner. Fig. 5(c) and (d) show the compression that two random
nodes could achieve in isolation, i.e. with no cooperation with
their neighbors. Then in Fig. 5(e) and (f) we show the noticeable
improvement achieved when nodes share their estimates even for

a) Original. (b) Compressed, centralized. (c) Node 1: isolation.

(d) Node 2: isolation. (e) Node 1: 1 consensus round. (f) Node 2: 1 consensus round.

(g) Node 1: 50 consensus rounds. (h) Node 2: 50 consensus rounds.

Fig. 5. Performance of PCA in isolation and with cooperation via consensus using CB-DPCA. Images (c), (e), and (g) illustrate how a node asymptotically converges to the
centralized solution given in image (b). Images (d), (f), and (h) show the same for another node in the network.

just 1 consensus round. Finally, Fig. 5(g) and (h) show how both
nodes asymptotically converge towards the same global solution
after 50 consensus rounds.

7. Conclusions

In this article we presented a toolkit for creating distributed ver­
sions of centralized algorithms using average consensus. We also
showed how this toolkit can be used to build two novel, fully dis­
tributed algorithms to perform PCA. Both algorithms require no
fusion center and rely only on low-volume local (1 -hop) communi­
cations. This in turn makes them very efficient, scalable, and robust.
Both also offer guaranteed convergence to the centralized solution.
Furthermore, we gave two extensions of the presented algorithms
to distribute two closely related techniques: FA and PPCA. We also
illustrated the performance of our algorithms on two simulated
examples, with a discussion on the convergence and the inherent
cost-performance trade-off.

Acknowledgments

The authors would like to thank Silvana Silva Pereira and
Adriano Pastore for their collaboration in showing the positive
semi-definite property of the local intermediate estimates of the
global covariance matrix in Section 4.3.

References

Ahn, J.-H., Oh, J.-H., & Choi, S. (2007). Learning principal directions: integrated-
squared-error minimization. In Neurocomputing, I4th European symposium on
artificial neural networks (pp. 1372-1381) Vol. 70 (7-9).

Bai, Z., Chan, R.H., & Luk, F.T. (2005). Principal component analysis for distributed
data sets with updating. In Proceedings of international workshop on advanced
parallel processing technologies, APPT (pp. 471-483).

Bajovic, D., Jakovetic, D., Xavier, J., Sinopoli, B., & Moura.J. M. F. (2011). Distributed
detection via Gaussian running consensus: large deviations asymptotic analysis.
IEEE Transactions on Signal Processing, 59(9), 4381-4396.

Baldi, P., & Hornik, K. (1989). Neural networks and principal component analysis:
learning from examples without local minima. Neural Networks, 2(1), 53-58.

Bertsekas, D. P., & Tsitsiklis, J. N. (1997). Parallel and distributed computation:
numerical methods. Athena Scientific.

De la Torre, F. (2009). A unification of component analysis methods. In Handbook
of pattern recognition and computer vision (4th ed.) (pp. 3-22). World Scientific
Publishing.

Diamantaras, K. I., & Kung, S. Y. (1996). Principal component neural networks: theory
and applications. John Wiley & Sons.

Forero, P., Cano, A., & Giannakis, G. (2011). Distributed clustering using wireless
sensor networks. IEEE Journal of Selected Topics in Signal Processing, 5(4),
707-724.

Forero, P., Cano, A., & Giannakis, G. (2010). Consensus-based distributed support
vector machines Journal of Machine Learning Research, Ü, 1663-1707.

Garin, F., & Schenato, L. (2011). A survey on distributed estimation and control
applications using linear consensus algorithms. In A. Bemporad, M. Heemels,
& M. Johansson (Eds.), Lecture notes in control and information sciences: Vol. 406.
Networked control systems (pp. 75-107). Berlin, Heidelberg: Springer.

Gastpar, M, Dragotti, P., & Vetterli, M. (2006). The distributed Karhunen-Loéve
transform. IEEE Transactions on Information Theory, 52(12), 5177-5196.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24(6), 417-441.

Jolliffe, I. T. (2002). Springer series in statistics. Principal component analysis (2nd ed.).
Springer.

Kargupta, H., Huang, W., Sivakumar, K., & Johnson, E. (2001). Distributed clustering
using collective principal component analysis. Knowledge and Information
Systems, 3,422-448.

Kar, S., & Moura, J. (2009). Distributed consensus algorithms in sensor networks
with imperfect communication: link failures and channel noise. IEEE Transac­
tions on Signal Processing, 57, 355-369.

Le Borgne, Y.-A., Raybaud, S., & Bontempi, G. (2008). Distributed principal
component analysis for wireless sensor networks. Sensors, 8(8), 4821-4850.

Olfati-Saber, R. (2005). Distributed Kalman filter with embedded consensus filters.
In 44th IEEE conference on decision and control (pp. 8179-8184).

Olfati-Saber, R., & Murray, R. (2004). Consensus problems in networks of agents with
switching topology and time-delays. IEEE Transactions on Automatic Control, 49,
1520-1533.

Olshevsky, A., & Tsitsiklis, J. N. (2009). Convergence speed in distributed consensus
and averaging. SIAMJournal on Control and Optimization, 48,33-55.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2(6), 559-572.

CM, H., & Wang, T. (2004). Global principal component analysis for dimensionality
reduction in distributed data mining. In Statistical data mining and knowledge
discovery (pp. 327-342). Chapman & Hall, CRC Press.

Reyment, R. A., & Jóreskog, K. G. (1996). Applied factor analysis in the natural sciences
(2nd ed.). Cambridge University Press.

Roweis, S. (1998). EM algorithms for PCA and SPCA. Advances in Neural Information
Processing Systems, 10,626-632.

Roweis, S., & Ghahramani, Z. (1999). A unifying review of linear Gaussian models.
Neural Computation, 11, 305-345.

Schizas, I., Giannakis, G., Roumeliotis, S., & Ribeiro, A. (2008). Consensus in ad hoc
WSNs with noisy linkspart II: distributed estimation and smoothing of random
signals. IEEE Transactions on Signal Processing, 56,1650-1666.

Schizas, I., Ribeiro, A., & Giannakis, G. (2008). Consensus in ad hoc WSNs with noisy
linkspart I: distributed estimation of deterministic signals. IEEE Transactions on
Signal Processing, 56,350-364.

Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis.
Journal of the Royal Statistical Society, Series B, 61, 611-622.

Tsitsiklis, J. N. (1993). Decentralized detection. In H. V. Poor, &J. B. Thomas (Eds.),
Advances in signal processing: Vol. 2 (pp. 297-344). JAI Press.

Valcarcel Macua, S., Belanovic, P., & Zazo, S. (2010). Consensus-based distributed
principal component analysis in wireless sensor networks. In Proceedings
of the IEEE international workshop on signal processing advances for wireless
communications, SPAWC.

Valcarcel Macua, S., Belanovic, P., & Zazo, S. (2011). Distributed linear discriminant
analysis. In International conference on acoustics, speech and signal processing,
ICASSP (pp. 3288-3291).

van de Geijn, R. A. (1997). UsingPLAPACK. MIT Press.
Xiao, L, & Boyd, S. (2004). Fast linear iterations for distributed averaging. Systems

and Control Letters, 53,65-78.

