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The time a phenotype takes to achieve a stationary state from an initial condition depends on multiple

factors. In particular, it is a function of both its fitness and its mutation rate. We evaluate the average

time, referred to as the characteristic time, Tc, that the system takes to reach a final steady state of

simple models of populations formed by self-replicative sequences. The dependence of Tc on the

mutation rate and on the fitness landscape is also studied. For simple fitness landscapes, e.g. single

peak, the characteristic time can be analytically obtained as a function of the system parameters. In this

case, Tc for obtaining the quasispecies distribution presents a maximum at a Q-value that depends on

the initial conditions and decreases monotonously as the mutation rate tends to zero. For most of the

complex landscapes handled in this paper, the characteristic time to achieve the quasispecies

distribution picked around the fittest phenotype attains a local minimum for a given mutation rate

between 0 and the Q-value at which Tc reaches its local maximum. Thus, in these cases, an optimum

value for the mutation rate exists that corresponds to the lowest value of the characteristic time for

quasispecies evolution.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The quasispecies model developed by Eigen (1971) is a useful
general evolutionary model for error-prone self-replicative systems
that has been applied in many different fields such as, for example,
prebiotic self-replicating molecules (Schuster and Stadler, 2008),
RNA viruses (Domingo et al., 2006), cancer cells (Solé and
Deisboeck, 2004) and the immune system (Kamp et al., 2003). In
all these problems, the question of how long the system takes to
evolve is of great relevance. In particular, it is important to find out
how this time depends on two of the main factors that govern
evolution, namely the mutation rate and the fitness landscape.

In principle, as the mutation rate increases the time the system
takes to evolve must decrease because the exploration through the
sequences space is faster. However, the greater the value of the
mutation rate, the higher the fraction of the less fitted mutant
genotypes and, in consequence, the lower the average fitness of the
population. In other words, the turnover of the whole population
decreases, and therefore the evolution time increases. This trade-
off between the generation of diversity and the fixation ability of
advantageous mutants has been already described (Stich et al.,
2007; Stich and Manrubia, 2011). For particular fitness landscapes,
this balance is reflected in the appearance of a value for the
ll rights reserved.
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mutation rate at which the evolution time of the system presents
a minimum. However, an explicit relationship between the opti-
mum value of the mutation rate and the fundamental properties of
the system, such as the characteristics of the fitness landscape, has
not yet been exhaustively explored. Most of the models in which
this problem has been examined are stochastic in nature. In this
context different times have been defined, for instance, the
searching time and fixation time (Traulsen et al., 2007; Gokhale
et al., 2009; Stich et al., 2007; Stich and Manrubia, 2011), the
evolution time (Krug and Karl, 2003) the adaptation time (Stich
et al., 2007), the crossover time, the jump time, the residence time
and the tunneling time (Jain and Krug, 2007; Krug, 2002).

Evolution is intrinsically a stochastic process. Phenotype
existence depends on multiple factors that make it virtually
impossible to be considered in its entirety. The birth and death
of species occur according to probabilistic rules that, in the end,
determine the population dynamics. Moreover, species interac-
tion is also affected by randomness. Strictly speaking, mathema-
tical models should include these stochastic factors to ensure a
correct description of the population. However, it turns out that
under particular conditions average variables can provide useful
insights into the system’s behavior. In his seminal paper (Eigen,
1971) Manfred Eigen described the evolution of self-replicative
molecules in terms of ordinary differential equations. Explicitly,
he was assuming that stochastic fluctuations, whether internal or
external, were, at a first approximation, not relevant and there-
fore could be neglected. However, in the next section of his paper,
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he immediately went on to establish the limitation of this
phenomenological description. In any case, the deterministic
formulation brought about one of the most fruitful lines of
research in evolution.

The deterministic modeling of populations formed by error-
prone self-replicative sequences assumes that both the elementary
process of mutation and the growth dynamics are free of stochas-
ticity. Unfortunately, even under this approximation, finding the
exact solutions for the phenotypes concentration is a very hard
problem. Most of the mathematical analysis carried out on these
dynamical systems is qualitative, i.e. it seeks to understand the
asymptotic behavior of the system. It is implicitly assumed that
(stable) equilibrium states are the unique observable outcome of
actual systems. Nonetheless, this is not always true. During
evolution we only observe transient regimes. The system is always
evolving, although transient states can appear as metastables. In
these models, time takes on a new meaning, not only as the
continuous independent variable, but also as an observable of the
system that deserves further attention. In particular, the time a
dynamical system remains in a quasistationary state or the time
taken to reach another quasistationary state are of special rele-
vance. The problem arises when we want to characterize this time
within a deterministic framework since, strictly speaking, this time
is infinite because the trajectories approach the equilibrium points
asymptotically. To measure this time, some authors have used the
inverse of the largest eigenvalue or the inverse of the difference
between the two largest eigenvalues, see for instance (Kamp et al.,
2003; Nowak and Schuster, 1989). However, the application of
these definitions even to simple continuous dynamical systems
shows serious discrepancies.

The characteristic time, hereafter referred to as Tc (Llorens
et al., 1999), was previously defined to capture the global
evolutionary properties of dynamical systems. Based on a geome-
trical interpretation, the characteristic time provides the average
time the system takes to change from one state to another under
the action of a perturbation or a persistent variation. For parti-
cular linear dynamical systems, whose solution can be expressed
as a linear combination of exponentials, the characteristic time
corresponds to the average of the inverse of the exponents
weighted by the pre-exponentials, real-valued constants that
depend on the initial conditions and the matrix entries.

In general, the characteristic time depends on system para-
meters in a more complex way. In the case studied here, it also
depends on the mutation rate. To study this functional depen-
dence this paper is organized from simple to complex models.
Perhaps the simplest, though still interesting, system is the error-
prone replication in a single peak fitness landscape, where a
unique fittest phenotype and its indistinguishable mutants
exist. Fortunately, as we will see in Section 2, this model allows
a complete analytic treatment and thus, the obtention of an
expression for the characteristic times for any initial condition
as a function of the mutation rate and the amplification factors.
For more complex landscapes, the characteristic times will be
numerically computed for different parameter setups in Section 3.
Finally, these results are discussed in the last section.
2. Characteristic time for a simple replicator system

We start by studying the characteristic time of a population
formed by two self-replicative sequences. Fortunately, in this case
the characteristic time can be analytically calculated, allowing a
complete study of the dependencies with both the system para-
meters and initial conditions.

Let us assume a dynamic system formed by two species I1 and
I2, and let x1ðtÞ and x2ðtÞ be their population at time t, respectively.
Without loss of generality we can assume a null death rate for
both species. In the absence of any kind of constraint the time
evolution of each of the population is given by the following
system of ordinary differential equations (ODE):

_x1 ¼Q1A1x1þð1�Q2ÞA2x2

_x2 ¼Q2A2x2þð1�Q1ÞA1x1 ð1Þ

where A1 and A2 are the amplification factors of species I1 and I2,
respectively, and 0rQ1r1 and 0rQ2r1 are their respective
quality factors (i.e. 1�Q1 and 1�Q2 are the mutation rates for I1

and I2, respectively). Along this section, we will assume A1ZA2,
so I1 could be considered as the master copy, and I2 as the
error tail.

A complete description of the time evolution for each variable
can be performed in terms of the molar fractions of each
sequence. Let us define the molar fraction of the master
sequence by

y1 ¼
x1

x1þx2
ð2Þ

Note that y1A ½0;1�, and that the corresponding molar fraction of
the sequence I2 is given by y2 ¼ 1�y1. It is straightforward to find
the differential equation that describes the time evolution of y1

from the previous Eq. (1)

_y1 ¼ ð1�Q2ÞA2þy1ðQ1A1�A2�ð1�Q2ÞA2Þ�y2
1ðA1�A2Þ ð3Þ

To complete the initial value problem we define the initial
condition y1ðt¼ 0Þ ¼ y0

1. Although non-linear, this equation is
still solvable, which will allow an analytical evaluation of the
characteristic time according with the following definition. The
characteristic time to achieve the equilibrium point from a given
initial condition 0oy0

1o1 can be computed straightforwardly
using the equation

Tc ¼

R1
0 t9 _y19 dtR1
0 9 _y19 dt

ð4Þ

For a complete explanation of the meaning of Tc see Llorens et al.
(1999). According with this definition the characteristic time
provides an average time to reach the equilibrium state from any
initial condition along the trajectory. Let

gðtÞ ¼
9 _y1ðtÞ9R1

0 9 _y1ðtÞ9 dt
ð5Þ

be the density function obtained from the trajectory of variable y

from y0 at time t¼0 to the equilibrium point at t¼1. Then, the
characteristic time is the first moment of g, i.e.

Tc ¼/tS¼
Z 1

0
tgðtÞ dt ð6Þ

Contrary to the time obtained from the inverse of the eigenva-
lues of the corresponding linearized system that only considers
the dynamics on the neighborhood of the equilibrium point, the
characteristic time takes into account the complete path from
the initial point to the equilibrium point. In this sense, it
provides a more accurate measure of the time the system takes
to change its current state. However, because its dependence on
the initial conditions, in general, it does not define a unique time
scale of the system, as given by the inverse of the eigenvalues.
Finally, note that the analytic determination of the characteristic
time requires the explicit expression of the time evolution of the
molar fraction that can only be obtained in simple cases. None-
theless, as it will be done later, it can be also obtained
numerically (or either from empirical data).
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Fig. 1. Characteristic time for the fittest species in a model of two replicators.

(A) Three dimensional plot of the characteristic time Tc as a function of the quality

factor Q1 and the initial condition yð0Þ ¼ y0. As can be seen, the surface present a

maximum at a point Q1m for each initial condition y0. Both, the maximum value of

Tc and the Q-value at which it is achieved depend on y0. The rest of the parameter

values are: E¼ 0:01, A1 ¼ 10 and A2 ¼ 2. (B) From top to bottom, the curve of the

inverse of the eigenvalue, t (solid line), and the characteristic time Tc as a function

of the quality factor Q1 for the initial condition: y0¼0.1, y0¼0.3, y0¼0.5, y0¼0.7,

and y0 ¼ 1. The rest of the parameter values are as in (A).
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The initial value problem associated with Eq. (3) can be solved
analytically. If y1ðt¼ 0Þ ¼ y0, the general solution reads

yðtÞ ¼

yp�yn

y0�yp

y0�yn

� �
eðyn�ypÞt

1�
y0�yp

y0�yn

� �
eðyn�ypÞt

ð7Þ

where yp and yn are the equilibrium points of Eq. (3) (for
simplicity the subindex 1 of the molar fraction is removed)

yp,n ¼
1

2

Q1A1�ð1þEÞA27
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ1A1�ð1þEÞA2Þ

2
þ4EA2ðA1�A2Þ

q
A1�A2

ð8Þ

Here, E¼ 1�Q2 is the mutation rate back from species I2 to the
master copy, i.e. the probability of the production of master
copies from its error tail. As it can be easily checked, only the
equilibrium point with the positive root yp is non-negative
(assuming A1�A240) and then, has physical meaning. The
characteristic time can be analytically evaluated using Eq. (4)
for the molar fraction of the master copy to reach the equilibrium
point yp

Tc ¼
1

A1�A2

1

yp�y0

ln
yp�yn

y0�yn

� �
ð9Þ

Fig. 1A shows the characteristic time as a function of the
quality factor of the master copy Q1 and the initial conditions y0

when the back mutation rate is E¼ 10�2 and the amplification
factors are A1 ¼ 10 and A2 ¼ 2. As it can be seen, Tc exhibits a
maximum for all values of the initial conditions y0 at a Q-value
that will be referred as to Q1m (see also Fig. 1B). The maximum
value of Tc, Tmax

c and Q1m depend on the initial conditions, as well
as the rest of the parameters. Besides, Tmax

c depends on the value
of E. In the limit of negligible back mutation rate, i.e. when E tends
to 0, then Tmax

c tends to infinity at Q1m ¼ A2=A1, the Q-value that
corresponds with the error threshold.

It is worthy to compare the characteristic time Tc with the time
scale given by the inverse of the eigenvalue of Eq. (3) (solid line in
Fig. 1B)

t¼ 1

l
¼

1

ðA1�A2Þðyp�ynÞ
ð10Þ

Obviously, t is independent of the initial conditions and attains its
maximum at a Q-value, named as Q1c, that is given by

Q1c ¼
A2

A1
ð1þEÞ ð11Þ

Note that Q1c rQ1m for all initial conditions y0. As matter of
fact, Q1m-Q1c when y0-1. Moreover, contrary to what occurs
with the more complex landscapes we are going to investigate in
the next sections, neither Tc nor t exhibit a minimum for Q-values
larger than Q1c (i.e. both are monotonous decreasing function of
Q1 in this range). The value of Tc at Q1 ¼ 1 is given by

TcðQ1 ¼ 1Þ ¼
1

A1�A2

ln
A1�A2ð1�EÞ

A1y0�A2ðy0�EÞ

� �
1�y0

ð12Þ

that tends to the same value as t when y0-1 (see Fig. 1B)

TcðQ1 ¼ 1,y0 ¼ 1Þ ¼ tðQ1 ¼ 1Þ ¼
1

A1�A2ð1�EÞ
ð13Þ

The replicator model we have qualitatively analyzed in this
section can be used to measure the characteristic time for several
interesting processes that appear in quasispecies theory. In
particular, (A) the selection of one of the species in a double peak
landscape without mutation (when Q1 ¼ Q2 ¼ 1), (B) the dynamic
of two neutral species with different mutation rates (A1 ¼ A2),
(C) the quasispecies formation from an error-prone replicator
without back mutations in a single peak landscape (when Q2 ¼ 1
and Q14Q1c), and (D) the displacement of the master copy by the
error tail beyond the error threshold (Q2 ¼ 1 and Q1oQ1c). The
explicit expressions of the characteristic time for all these cases as
well as for the general problem (E) are summarized in Table 1.
3. Characteristic time for the evolution in more complex
fitness landscape

In the previous section we have treated a case that is
analytically solvable, but real cases respond to more complex
fitness landscapes, whose study requires numerical solutions.
This section examines the characteristic time ðTcÞ of a population
of replicators that evolve in different fitness landscapes of
increasing complexity.



Table 1
Characteristic time ðTcÞ for a quasispecies model of two replicators with different assumptions in relation with the value of both the mutation and the amplification factor

matrix (A, B, C and D), as described in the text (Section 2). (A) Tc depends not only on the difference between the amplification factors but also on the initial conditions.

(B) Tc corresponds to the inverse of the eigenvalue of the linear Eq. (1). It is a decreasing function of both Q1 and Q2. (C) Tc tends to infinity when Q1 tends to Qc from above.

It is a decreasing function of Q1 and tends to 1=ðA1�A2Þ as Q1 approaches 1. (D) Tc tends to infinity when Q1 tends to Qc from below. It is a increasing function of Q1.

(E) Tc reaches a finite maximum value at Q1m that depends on y0. Besides, it is a decreasing function of Q1 for Q 4Q1m .

Case Assumptions Initial value problem for molar fraction y Characteristic time (Tc)

(A) Q1 ¼Q2 ¼ 1

A1 4A2

_y ¼ ðA1�A2Þyð1�yÞ

yð0Þ ¼ y0
Tc ¼

1

A1�A2
ln

y0

y0�1

(B) A1 ¼ A2 ¼ A _y ¼ ð1�Q2ÞþyðQ 1þQ2�2Þ

yð0Þ ¼ y0
Tc ¼

1

A

1

2�Q 1�Q2

(C) Q2 ¼ 1

A1 4A2

Q1 4 ðA2=A1Þ ¼Qc

_y ¼ ðA1�A2Þy
Q 1A1�A2

A1�A2
�y

� �
yð0Þ ¼ 1

Tc ¼

ln
Q1A1�A2

A1�A2

� �
A1ðQ1�1Þ

(D) Q2 ¼ 1

A1 4A2

Q1 o ðA2=A1Þ ¼Q c

_y ¼ ðA1�A2Þy
Q 1A1�A2

A1�A2
�y

� �
yð0Þ ¼ 1

Tc ¼�
1

A1�A2
ln

Q1A1�A2

A1ðQ1�1Þ

� �

(E) A1 4A2 _y ¼ ð1�Q1ÞA2þyðQ1A1�A2�ð1�Q2ÞA2Þ�y2ðA1�A2Þ Tc ¼
1

A1�A2

1

yp�y0
ln

yp�yn

y0�yn

� �
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3.1. A two peak separated by a neutral valley fitness landscape

Let us assume a mutation matrix Q ¼ ½Qij� that results from
considering a classification of the sequence space according to the
Hamming distance to the master copy I1. We consider a landscape
formed by two peaks separated by a degenerate valley. The two
master copies I1 and I2 are the two complementary bit string, i.e.
those formed by all 0 and all 1 digits, respectively. Their
amplification factors are A1 and A2, respectively. The rest of the
sequences have the same amplification factors, Ae. It is assumed
that A24A14Ae.

The probability that a sequence of the Hamming class l, Il, gives
rise to a sequence of the Hamming class k, Ik, is given by Nowak
and Schuster (1989)

Qk,l ¼
Xminðk,lÞ

i ¼ l�nþk

k

i

� �
n�k

l�i

� �
qn

1�q

q

� �kþ l�2i

ð14Þ

where n is the length of the sequences and q is the quality factor
per digit. Since we are considering binary sequences, the total
number of different sequences in the population is 2n and they are
grouped into nþ1 Hamming classes.

The time evolution of the concentration of the Hamming class
Ij, xj, is described by

dxj

dt
¼ AjQjjxjþ

X
ka j

AkQjkxk ð15Þ

The corresponding differential equation for the molar fraction

yj ¼
xjP

ixi

is

dyj

dt
¼ yj AjQjj�

X
i

Aiyi

 !
þ
X
ka j

AkQjkyk ð16Þ

If the quality factor q is large enough, this system has a unique
steady state formed by a distribution of sequences that surrounds
the fittest sequence I2 (Nowak and Schuster, 1989). Our intention
is to compute the characteristic time for the molar fraction of the
copy I2 to achieve the steady state from an initial population
formed exclusively by copies of species I1. That is, we assume that
y1ðt¼ 0Þ ¼ 1.
The numerical integration of the ODE system was performed
by a Runge–Kutta method provided by the MATLAB platform. The
stop control was set to keep the difference between successive
steps of variable I2 at less than 10�4 during 200 steps. The
characteristic time was then calculated, as described in Llorens
et al. (1999), by computing the quotient between the area,
computed by the classical trapezoid rule, over the trajectory of
I2 and below the horizontal asymptote that corresponds to its
stationary value and the height of this asymptote. Fig. 2 shows the
dependence of the Tc on the Q value for different n values (10, 20,
and 50). This characteristic time Tc varies with the quality factor
per sequence Q ¼ qn in a different way as described in the
previous section. When q tends to 1, then Tc rises to infinity. In
addition, Tc exhibits a unique maximum at a Q-value that, as
before, will be referred to as Qm. Between these two values,
Q ¼Qm and Q¼1, can be found a value of Q, referred to as Qop,
where the characteristic time reaches a local minimum (char-
acterized by a null first derivative). The dependence of both Qop

and Tc at Qop on the value A2 and A1 is shown in Fig. 3 for n¼ 10. In
all cases, A1 ¼ 4 and Ae¼1, whereas A2 takes the values: 10, 20, 40,
80, 100, 200, 300, and 400. As can be observed, as A2 is increased
TcðQopÞ decreases. However, the functional dependence of Qop on
A2 is more complex, exhibiting a maximum value at an inter-
mediate value of A2.

3.2. Multiplicative fitness with two peaks

Multiplicative fitness landscapes have been largely used in the
framework of quasispecies theory (Woodcock and Higgs, 1996).
In this section, we compute the characteristic time for the evolu-
tion of the fittest sequence in the multiplicative fitness defined as
follows. The amplification factor of each sequence at a Hamming
distance i from the sequence I0 whose digits are all 0 is given by

Ai ¼
ið1�sÞðn�iÞ

n

 !
9þ1 i¼ 1, . . . ,n

A0 ¼ 2 ð17Þ

where n is the chain length and sA ½0;1� allows to tune the effect
that each mutation has on the fitness. In this way, the sequence
whose digits are all 1, referred as In, has an amplification factor
An ¼ 10. Note that, for the special case s¼1, this fitness landscape
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reduces to the degenerate fitness landscape assumed in the
previous section (where all the sequences between the I0 and In
are assigned the same amplification factor, 1). As the value of the
parameter s decreases the change of the amplification factor tends
to be linear with the Hamming distance i (Fig. 4, inset A).
Fig. 4 shows the dependence of the Tc on Q for different
multiplicative fitness landscapes and n¼ 20. Using Eqs. (14) and
(16), we determine the ODE systems that govern the time
evolution of each species. These systems are numerically solved
and then, the characteristic time Tc for In is estimated (all
calculations are performed in MATLAB) (Fig. 4). As it can be seen,
for the values of s larger than 0.3, Tc exhibits two maxima, one for
Q¼1 and the other for a low Q-value (approx. 0.1), and, as a
consequence, a minimum at Qop.

The insets B, C and D depict the classical figure of equilibrium
population of the different Hamming classes (Schuster and
Swetina, 1988) for the values s¼ 0:3,0:6 and 1, respectively. Note
that only for large values of s, e.g. s¼0.6 and s¼1, the steady
populations change abruptly for a Q-value around 0.1, below which
all sequences are equally populated. This Q-value corresponds to
the error threshold, Qc. It is also worthy to remark that the value of
Qc estimated in these cases s¼0.6 and s¼1 approximately coin-
cides with the Q-value for which Tc reaches its largest value ðQmÞ.

3.3. Binary rugged fitness landscape

Real fitness landscapes are rugged (Kauffman and Levin, 1987;
Kauffman and Johnsen, 1991; Schuster, 1997). In order to rise the
ruggedness of the fitness landscape, let us now consider a
population of binary sequences Ik, k¼ 1, . . . ,2n whose fitness is
related to the natural number codified in the sequence. Specifi-
cally, let us assign to sequence Ik the amplification factor

Ak ¼
Nkþ1

2n

� �p

ð18Þ

Here, Nk represents the natural number codified by Ik and p is an
arbitrary positive natural number. This landscape is similar to
that described in Nuño et al. to study adaptive evolution of
replicators (Nuño et al., 2010). Note that with this definition
1=2nrAkr1 for all k¼ 1, . . . ,2n. The largest amplification factor
A¼1 corresponds to the sequence whose digits are all 1. The
parameter p determines the steepness of the landscape, i.e. as the
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p value increases, the fitness landscape approaches a single peak
landscape. In contrast to the fitness landscape studied in the
previous section, different amplification factors now exist within
the same Hamming class sequences. This fact prevents a simpli-
fication of the mutation matrix similar to that used in Eq. (14).
The probability of obtaining the sequence Ii during the error-
prone self-replication of the sequence Ij is now calculated from
the general formula

Qij ¼ ð1�qÞnqn�n ð19Þ

where n is the number of digits in which both sequences differ. This
fitness landscape is rugged since sequences that differ in, for instance,
only one digit can possess very different amplification factors, that is
to say, they depend critically on the position of the digits.

The dynamics of the molar fraction of each sequence of the
population is also governed by Eq. (16). The simulations were
performed using the same algorithm in a MATLAB platform as
described in Section 3.1. In all cases, a sequence length n¼ 10 was
used. Thus, in this case, the dynamical system represented by Eq.
(16) has 1024 ordinary differential equations and, each time, the
variables satisfy

P
kykðtÞ ¼ 1. As in the previous section, initially

all the population is formed by sequences of 0, i.e. y0 ¼ 1, and
whose amplification factor is A0 ¼ ð1=210

Þ
p. The system (16) was

numerically solved for several values of q, raging from 0.5 to 1,
and for each value we computed the characteristic time asso-
ciated with the molar fraction of the fittest sequence.

The results are shown in Fig. 5 for several values of the
exponent p. As can be seen, the more relevant facts that appear
in double peak landscape are reproduced. In particular, a value of
Q at which the value of Tc attains its minimum is observed. As the
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value of p increases, the Tc value increases. This is a straightfor-
ward consequence of the fact that the average productivity of
the populations decreases with p at any q value. Moreover, the
Qop-value also increases with p. This fact does not have an evident
explanation since as p increases the average productivity of the
population decreases, while the apparent superiority of the fittest
sequence increases. So, the compromise between the searching
time and fixation time must vary.

3.4. NK fitness landscape

The NK model was introduced by Stuart Kauffman in the
beginning of the nineties to study coevolution in simple organ-
isms (Kauffman and Weinberger, 1989; Kauffman and Johnsen,
1991). Here, N corresponds to the chain length n, i.e. the number
of positions of each sequence, whereas K ð0oKoNÞ, represents
the number of positions that influence on the contribution of a
given position to the sequences fitness. This model generates
fitness landscapes whose ruggedness increases with K.

In the classical version, the K positions that are related to each
position are randomly assigned. Therefore, each position can
provide 2Kþ1 values of fitness, that are computed at random,
depending on its actual state and the state of the K positions that
interact with it. The fitness of each species (sequence) is obtained
from the average of the fitness of its N digits. As a consequence of
these ‘‘long distance’’ interactions among the positions, sequences
that belong to the same Hamming class could have very different
fitness values, giving rise to rugged fitness landscapes.

Fig. 6 depicts the dependence of the characteristic time Tc on
the quality factor Q in two NK fitness landscapes for N¼10 and
K¼2 and K¼3. The population dynamics (as in the previous
section, there are 1024 sequences) is again driven by Eq. (16), with
the entries of the mutation matrix given by Eq. (19). As can be seen,
in both cases the characteristic time Tc exhibits a local minimum at
Q-values close to the natural error threshold (located at Q ¼ 1=2n

Þ,
respectively, Qop ¼ 0:0024 for K¼2 and Qop ¼ 0:0022 for K¼3.
4. Discussion

In this paper, we have studied the dependence of the char-
acteristic time on the mutation rate for different fitness
landscapes. It is expected that, as a consequence of the trade-off
between the searching process inherent to any error-prone
system and the rate of fixation of new fitter mutants a value of
Q at which the evolutionary time is minimum must exist. This
opens interesting questions in evolutionary theory (Stich et al.,
2007, 2010a,b; Stich and Manrubia, 2011).

The problem of evaluating this time is enormous. On the one
hand, controlling transient events in complex systems is extre-
mely difficult. On the other hand, ensuring that the system
achieves a new stationary state is also risky. The time scale in
continuous dynamical systems has been defined as the inverse of
the module of the largest eigenvalue or, in some cases, as the
inverse of the module of the difference between the two largest
eigenvalues (Nowak and Schuster, 1989). However, its validity
must be reconsidered since these definitions provide bad estima-
tions even in simple linear dynamical systems since they only
yield information about the approximation to a final state from its
vicinity, and they do not take into account the initial conditions of
the system. The characteristic time, on the contrary, takes into
account the complete trajectory of the system, from an initial
condition to the final stationary state. Therefore, the character-
istic time is an average time and so, like any other average, can
hide information relevant to the study of the system, such as the
variation of the higher order moments. We are currently inves-
tigating the possibility of decomposing the characteristic time in
different contributions (for example, searching time and fixation
time) to avoid this limitation.

In Section 2, we have studied a population formed by two
replicators with non-null back mutation rate and an explicit
solution for Tc has been obtained Eq. (9). This analysis has
provided the functional dependence of the characteristic time
on the mutation rate and amplification factors for different initial
conditions. Tc depends inversely on the selection coefficient of
species I1 over species I2, s¼ A1�A2, a result similar to that
obtained by Johnson (1999) using a completely different
approach. Contrary to the time obtained from the inverse of the
eigenvalue, Tc also depends on the initial condition y0. Naturally,
as the initial condition is closer to the equilibrium point, Tc

approaches the time provided by the inverse of the eigenvalue
(Fig. 1B). When Tc is plotted as a function of the quality factor Q it
exhibits a global maximum at a Q-value, Q1m, that depends on y0

and that tends to the error threshold Qc as y0 tends to 1.
Unfortunately, analytical solutions can only be found for

simple systems. Notwithstanding this, although analytical expres-
sions cannot be obtained in more complex systems, a numerical
approach can be used. The characteristic time can be numerically
obtained as its computation only requires knowledge of the
trajectory, without an explicit definition of the dynamical system.
In other words, the characteristic time can be applied in a
semiempirical approach to study evolutionary processes
described by arbitrary complex models, if a numerical solution
is provided. Using this approach we have studied the dynamics of
adaptation in some more complex systems in Section 3.

It is well known that, independently of the fitness landscape,
an equal distribution of the sequences of the population in the
equilibrium of selection is obtained for Q ¼ 1=2n. For some fitness
landscapes this equidistribution of sequences occurs for a
Q 41=2n. This Q-value is usually called error threshold and
denoted as Qc. As can be deduced from the results obtained in
this paper, in the situations when an error threshold exists, e.g.
the single-peak landscape and the multiplicative landscape for
high enough values of s, the characteristic time Tc always exhibits
a local maximum at a Q-value Qm close to Qc. In those cases where
there is not evidence of the existence of an error catastrophe, Tc

can present or not a largest value at Q ¼ 1=2n. As a matter of fact,
while in the multiplicative fitness studied in Section 3.2 for low
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values of s, Tc does not exhibit a maximum, this local maximum of
Tc appears in the rugged fitness landscapes used in Sections
3.3 and 3.4.

When a second maximum of Tc appears as Q tends to 1, e.g. in
fitness landscapes with more than one peak, a lowest value of the
characteristic time is attained at Qop, in between Qm and Q¼1. This
lowest value depends on the fitness landscape and, in particular, on
the size of the sequence and on the superiority of the master
phenotype over the rest of the phenotypes (see Fig. 3). In the NK
fitness landscape this minimum occurs very near the natural limit
Q ¼ 1=2n and then its relevance for evolution is questioned since the
concentration of the fittest copy is very low. In the other cases,
however, the minimum is achieved at larger values of Q.

Note that, despite the flat appearance of the curve of Tc as a
function of Q in the neighborhood of Qop (Fig. 2), small differences
in the value of Tc could have strong consequences on the
competitive dynamics of populations (as occurs with the tiny
difference in the amplification factors). The question of how
natural selection magnifies these small differences in finite size
populations is currently under study.
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